LOW CORRELATION NOISE STABILITY OF EUCLIDEAN SETS
STEVEN HEILMAN

ABSTRACT. The noise stability of a Euclidean set is a well-studied quantity. This quantity
uses the Ornstein-Uhlenbeck semigroup to generalize the Gaussian perimeter of a set. The
noise stability of a set is large if two correlated Gaussian random vectors have a large prob-
ability of both being in the set. We will first survey old and new results for maximizing the
noise stability of a set of fixed Gaussian measure. We will then discuss some recent results
for maximizing the low-correlation noise stability of three sets of fixed Gaussian measures
which partition Euclidean space. Finally, we discuss more recent results for maximizing
the low-correlation noise stability of symmetric subsets of Euclidean space of fixed Gauss-
ian measure. All of these problems are motivated by applications to theoretical computer
science.

1. GAUSSIAN ISOPERIMETRY AND NOISE STABILITY

Definition 1.1. We call H C R” a half space if H is a set of points lying on one side of a
hyperplane.

Definition 1.2 (Gaussian Measure). Let n be a positive integer. Let A C R™ be a
measurable set. Define the Gaussian measure of A to be

dx
(A) = [ e~ Gittai)/2 _

Theorem 1.3 (Gaussian Isoperimetric Inequality, [SC74, Bor75]). The half space has
the smallest Gaussian surface area among all sets of fired Gaussian measure. That is, let
H CR"™ be a half space such that v,(A) = v,(H). Then

Vn-1(0A) = Yu-1(0H),
where ~,—1(A) = liminf._,o 57, {o € R": Ja € dA such that ||z — a|, < e}

Theorem 1.4 ([Bor85l Led94, MN15, [EId15]). Among all subsets of Fuclidean space R™ of
fixzed Gaussian measure, a half space maximizes noise stability (for positive correlation).

In order to be more formal, we now define noise stability. Let f: R” — [—1,1]. We define
T,, the Ornstein-Uhlebeck operator with correlation p € (-1, 1), by

Tpf(z) = . flxp+yV/1—=pPdy(y), VzeR" (1)

Definition 1.5 (Noise Stability). Let n be a positive integer. Let p € (—1,1). Let A CR"
be a measurable set. Define the Noise Stability of A with correlation p to be

/n La(z)T,14(z)dyn ().
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Equivalently, let X = (X,...,X,,),Y = (Y1,...,Y,) be jointly normal standard n-dimensional
Gaussian random vectors such that the covariances satisfy E(X;Y}) = p - 1;—;3. Then the
noise stability of A is

P((X,Y) € A x A).

To see that both definitions are the same, note that
/ La(2) T (&) Lada(z) = / 1a(@) / La(@p+ y/T— P2 )d(y)don (
:Rn/ La(z)la(zp +y\/1 — p?)dya(y)dya(x) = P((X,Y) € A x A).

Remark 1.6. Theorem can be proven by symmetrization [Bor85|, by heat flow methods
[Led94], [MNI5], and by stochastic calculus methods [EId15]. The latter two papers are
prove stability estimates for Theorem [I.4] That is, [MNI5] and [EId15] show that A is close
to a half space if and only if the noise stability of A is close to the maximum possible.

F1cURE 1. Classical Symmetrization

FIGURE 2. Depiction of heat evolution of the indicator function of a set

Remark 1.7. As p — 1, noise stability (appropriately normalized) converges to Gaussian
surface area [Led96l Proposition 8.5].
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1.1. Applications of Theorem Theorem [1.4] has a few important consequences. For
example, it can be used to prove the following result from social choice theory

Theorem 1.8 (Majority is Stablest Theorem, Informal, Probabilistic, [MOO10]).
Among all voting methods for two candidates where each candidate has an equal chance of
winning, and every person has a small influence over the outcome of the election, the majority
function is the most noise stable.

Here a set of votes between two candidates is a vector z = (z1,...,x,) € {—1,1}", so
that x; is the vote of person i for candidate x; € {—1,1}, for every i € {1,...,n}. And a
voting method is a function f: {—1,1}" — {—1, 1}, whose input is the set of votes x. And
the output f(z) is the winner of the election.

One of the two main ingredients in Theorem is Theorem [1.4]

Another consequence of Theorem is sharp computational hardness for the MAX-CUT
problem, assuming the Unique Games Conjecture [KKMOQT7]. The MAX-CUT problem asks
for the partition of the vertices of an undirected graph into two sets S and S¢ that maximizes
the number of edges that go from S to S¢. This problem is N P-hard, but we know how to
find a cut of a graph which cuts about .878567 times the maximum possible number of cut
edges in polynomial time. This number .878567 is the best possible approximation we can
get in polynomial time, assuming the Unique Games Conjecture. The proof of this result
uses Theorem [[.4

2. NOISE STABILITY FOR MULTIPLE SETS
Theorem [T.4] can be restated in the following way.

Theorem 2.1 ([Bor85, Led94, IMNT15| [EId15]). Among all partitions Ay, Ay of FEuclidean
space R™ of fixed Gaussian measure, two opposing half spaces mazximize the sum of the noise
stabilities of A1 and As.

To see that Theorem [2.1] is equivalent to Theorem [I.4] note that if A; U Ay = R" and
A;NAy =0, then Ay = AS, 50 14, =1 —14,, 80

> [ @ Tia@dne = [ tn@Tia@dn + [ 0= 1@ - Ly @) )

n

= 2/ La, ()T, 14, (2)dyn(z) — 27, (A) + 1.
Theorem then has a natural generalization to more than two sets. For simplicity, we

only mention the case of three sets of equal measure

Conjecture 1 (Standard Simplex Conjecture for Three Sets, [IM12]). Letn > 2. Let
(A1, Ag, A3) be a partition of R™. Suppose v,(A1) = vn(A2) = v (As) = 1/3. Let By, Bs, Bs
be a partition of R™ into three 120 degree sectors. Then for all p € (0,1),

> [ L@hi@dn@ <Y [ 1n @ s @),

Remark 2.2. For applications, the most interesting case occurs when p < 0.

Theorem 2.3. [Heild] Congjecture (1| holds for 0 < p < p(n).
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Remark 2.4. The proof proceeds roughly as follows. The case p = 0 is relatively easy to
understand. We can relate noise stability for p near zero to p = 0 using geometry, Hermite-
Fourier, and fairly precise estimates for the Gaussian (Mehler) heat kernel. In particular,
analytic methods are emphasized.

2.1. Applications. One consequence of Conjecture[1}is the following statement from social
choice theorem.

Conjecture 2 (Plurality is Stablest Conjecture, 3 Candidates, Informal, [IM12]).
Among all voting methods where each of three candidates has an equal chance of winning,
and every person has a small influence over the outcome of the election, the plurality function
18 the most noise stable voting method.

Another consequence of Conjecture(I]is sharp computational hardness for the MAX-3-CUT
problem, assuming the Unique Games Conjecture [KKMOQ7|. The MAX-3-CUT problem
asks for the partition of the vertices of an undirected graph into three sets that maximizes
the number of edges that go between the sets. This problem is N P-hard, but we know how
to find a cut of a graph which cuts a constant fraction times the maximum possible number
of cut edges in polynomial time. This fraction is the best possible approximation we can get
for MAX-3-CUT in polynomial time, assuming the Unique Games Conjecture. The proof of
this result uses Conjecture [I}

3. NOISE STABILITY OF SYMMETRIC SETS

Another way to modify Theorem is to add the restriction that the Eucliean set A in
question is symmetric. We say that a set A C R" is symmetric if A = —A.

Conjecture 3 (Symmetric Gaussian Problem, Informal, [Bar01l, [CR11), [O’D12]). Among
all symmetric subsets of R™ of fired Gaussian measure, the ball centered at the origin or its
complement maximizes noise stability.

Theorem 3.1. [Heilf] 3 py > 0 such that, ¥V p € (—po, po) and n =1, Conjecture [3 holds.

Theorem 3.2. [Heil5| For any n > 2, there exists a measure restriction 0 < a < 1 such
that the ball centered at the origin and the complement of a ball centered at the origin, both
of Gaussian measure a, do not mazimize noise stability. That is, Conjecture [ is false when
n > 2.

Remark 3.3. The proof of the first result proceeds along the same lines as Theorem [2.3]
though the present result ends up being much simpler. The second result uses a second vari-
ation formula from [CS07]. In particular, analytic and variational methods are emphasized.

Remark 3.4. In Theorem [I.4] note that when a half space is translated, then the translated
set still maximizes noise stability (for a different measure constraint). This property is crucial
for the proofs of Theorem [I.4, On the other hand, Conjecture [3] has no such translation
invariance property. And it turns out that Conjecture [I]also does not have such a translation
invariance property [HMN15]. So, proofs of Conjecture [I| and Conjecture [3{ must proceed in
a different way than proofs of Theorem

3.1. Applications. Conjecture [3 and weaker variants of it, are used in studying the com-
munication complexity of the Gap-Hamming-Distance problem [CR11]. This analysis then

leads to memory lower bounds for various algorithms.
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