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Abstract. We prove a vector-valued inequality for the Gaussian noise stability (i.e. we
prove a vector-valued Borell inequality) for Euclidean functions taking values in the two-
dimensional sphere, for all correlation parameters at most 1/10 in absolute value. This
inequality was conjectured (for all correlation parameters at most 1 in absolute value) by
Hwang, Neeman, Parekh, Thompson and Wright. Such an inequality is needed to prove
sharp computational hardness of the product state Quantum MAX-CUT problem, assum-
ing the Unique Games Conjecture. In fact, assuming the Unique Games Conjecture, we
show that the product state of Quantum MAX-CUT is NP-hard to approximate within
a multiplicative factor of .9859. In contrast, a polynomial time algorithm is known with
approximation factor .956 . . ..

1. Introduction

The noise stability of a measurable Euclidean set A with correlation ρ is the probability
that (X,Y ) ∈ A × A, where X,Y are standard Gaussian random vectors with correlation
ρ ∈ (−1, 1). Borell’s inequality asserts that half spaces have the largest noise stability
among all Euclidean sets of fixed Gaussian measure. Borell’s inequality [Bor85] generalizes
the Gaussian isoperimetric inequality, since letting ρ → 1− in Borell’s inequality recovers
the Gaussian isoperimetric inequality [Led94]. The Gaussian isoperimetric inequality says
that a half space has the smallest Gaussian surface area among all Euclidean sets of fixed
Gaussian volume.

Besides its intrinsic interest, Borell’s inequality has been applied to social choice theory
[MOO10], the Unique Games Conjecture [KKMO07, MOO10, KM16], to semidefinite pro-
gramming algorithms such as MAX-CUT [KKMO07, IM12], to learning theory [FGRW12],
etc. For some surveys on this and related topics, see [O’D, Kho, Hei21].

A Corollary of Borell’s inequality is the Majority is Stablest Theorem [MOO10]. Moreover,
Borell’s inequality was the main technical ingredient used to prove sharp computational
hardness of the MAX-CUT problem, assuming the Unique Games Conjecture [KKMO07].

The MAX-CUT problem asks for the partition of the vertices of an undirected finite graph
into two disjoint sets that maximizes the number of edges going between the two sets. The
MAX-CUT problem is a well-studied NP-complete constraint satisfaction problem with well-
understood hardness of approximation [GW95, KKMO07]. The Unique Games Conjecture
implies that the Goemans-Williamson semidefinite program is the best quality polynomial
time algorithm for approximately solving MAX-CUT.

The quantum analogue of a constraint satisfaction problem is a local Hamiltonian problem,
which is QMA-complete [GK12]. The Quantum MAX-CUT problem is a special case of the
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local Hamiltonian problem, that in some sense generalizes the usual MAX-CUT problem. As
with MAX-CUT, it is natural to ask for approximation algorithms for Quantum MAX-CUT,
and to try to prove sharp computational hardness of those algorithms [HNP+21, Kin22].
Below, we only discuss classical algorithms for Quantum MAX-CUT, i.e. we do not discuss
quantum algorithms for Quantum MAX-CUT.

For the product state Quantum MAX-CUT problem, there is a conjecturally optimal
approximation algorithm. Assuming the Unique Games Conjecture and Conjecture 1.3 below
(a vector-valued Borell inequality), we would then have a sharp hardness of approximation for
the product state of Quantum MAX-CUT. The vector-valued Borell inequality, Conjecture
1.3 [HNP+21] is a sphere-valued generalization of the Borell inequality [Bor85].

The main result of this paper is a proof the vector-valued Borell Inequality (Conjecture
1.3) for all correlations ρ satisfying |ρ| < .104. It remains a challenge to prove Conjecture
1.3 for all |ρ| < 1.

Our focus in this paper is proving the inequality conjectured in [HNP+21] for functions
f : Rn → S2. Our methods work equally well for functions taking values in Sk for any k ≥ 2,
but the values of ρ for which our proof works would then depend on k. Since the case k = 2 is
the only one needed for the product state Quantum MAX-CUT problem, we have therefore
only focused on the case k = 2 in this paper.

1.1. Quantum MAX-CUT. Below we describe the Quantum MAX-CUT problem by anal-
ogy with MAX-CUT. When M is a 2× 2 matrix and j is a positive integer, we denote

M⊗j :=M ⊗ · · · ⊗M︸ ︷︷ ︸
j times

.

If n is a positive integer and 1 ≤ j ≤ n, denote

Zj := I
⊗(j−1)
2 ⊗

(
1 0
0 −1

)
⊗ I

⊗(n−j)
2 , ∀ 1 ≤ j ≤ n, I2 :=

(
1 0
0 1

)
.

The (weighted) MAX-CUT problem can be equivalently stated as [GP19, HNP+21]: given
w : {1, . . . , n}2 → [0,∞) satisfying wij = wji and wii = 0 for all 1 ≤ i, j ≤ n, compute the
following quantity

max
u∈(C2)⊗n : ‖u‖≤1

u∗
( n∑

i,j=1

wij(I
⊗n
2 − ZiZj)

)
u.

Define now

Xj := I
⊗(j−1)
2 ⊗

(
0 1
1 0

)
⊗ I

⊗(n−j)
2 , ∀ 1 ≤ j ≤ n,

Yj := I
⊗(j−1)
2 ⊗

(
0 −

√
−1√

−1 0

)
⊗ I

⊗(n−j)
2 , ∀ 1 ≤ j ≤ n.

The Quantum MAX-CUT problem is [GP19, Kin22, HNP+21]: given w : {1, . . . , n}2 →
[0,∞) satisfying wij = wji and wii = 0 for all 1 ≤ i, j ≤ n, compute the following quantity

max
u∈C2n : ‖u‖≤1

u∗
( n∑

i,j=1

wij(I
⊗n
2 −XiXj − YiYj − ZiZj)

)
u.
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The product state of Quantum MAX-CUT is the more restricted optimization problem
of computing

max
u=u1⊗···⊗un :

ui∈C2, ‖ui‖≤1, ∀ 1≤i≤n

u∗
( n∑

i,j=1

wij(I
⊗n
2 −XiXj − YiYj − ZiZj)

)
u.

1.2. Some Notation. For any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Cn, denote

〈x, y〉 :=
n∑

i=1

xiyi, ‖x‖ := 〈x, x〉1/2.

Denote the (n− 1)-dimensional sphere in Rn as
Sn−1 := {x ∈ Rn : ‖x‖ = 1}.

Define the Gaussian density function in Rn as

γn(x) := (2π)−n/2e−‖x‖2/2, ∀x ∈ Rn.

WhenA ⊆ Rn is a measurable set, denote the Gaussian measure ofA as γn(A) :=
∫
A
γn(x) dx.

Definition 1.1 (Ornstein-Uhlenbeck Operator). Let −1 < ρ < 1. Let f : Rn → [0, 1]
be measurable. Define the Ornstein-Uhlenbeck operator applied to f by

Tρf(x) :=

∫
Rn

f(ρx+ y
√
1− ρ2)γn(x) dx, ∀x ∈ Rn.

Definition 1.2 (Noise Stability). Let −1 < ρ < 1. Let Ω ⊆ Rn be measurable. Define
the noise stability of Ω with correlation ρ, to be∫

Rn

1Ω(x)Tρ1Ω(x) γn(x) dx.

More generally, for any bounded measurable f : Rn → Rk, define its noise stability with
correlation ρ, to be ∫

Rn

〈f(x), Tρf(x)〉γn(x) dx.

1.3. Vector-Valued Borell Inequality. For any positive integer k, denote

fopt(x) :=
x

‖x‖
, ∀x ∈ Rk \ {0}. (1)

Conjecture 1.3 ([HNP+21]). Let n ≥ k be positive integers. Let f : Rn → Sk−1 be measur-
able. Then

• If 0 < ρ < 1 and if
∫
Rn f(x)γn(x) dx = 0, then∫

Rn

〈f(x), Tρf(x)〉γn(x) dx ≤
∫
Rk

〈fopt(x), Tρfopt(x)〉γk(x) dx.

• If −1 < ρ < 0, then∫
Rn

〈f(x), Tρf(x)〉γn(x) dx ≥
∫
Rk

〈fopt(x), Tρfopt(x)〉γk(x) dx.

Moreover, equality holds only when there exists a real orthogonal k×n matrix M (MMT = I)
such that f(x) = fopt(Mx) for a.e. x ∈ Rn.
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Remark 1.4. The case k = 1 of Conjecture 1.3 is known to be true, since it is Borell’s
inequality [Bor85].

1.4. Our Result.

Theorem 1.5 (Main). Conjecture 1.3 holds for all n ≥ k = 3 and for all −.104 < ρ < .104.

In fact, we prove a stronger “stable” version of Conjecture 1.3 when n = k = 3, in (22),
(29) below:

• If 0 < ρ < .104 and if
∫
Rk f(x)γk(x) dx = 0, then∫

Rk

〈f(x), Tρf(x)〉γk(x) dx ≤
∫
Rk

〈fopt(x), Tρfopt(x)〉γk(x) dx

+ (9.4ρ− .98)

∫
Rk

φ(x)

∥∥∥∥∫
y∈‖x‖Sk−1

f(y) dσ(y)

∥∥∥∥2

γk(x) dx.

• If −.104 < ρ < 0, then∫
Rk

〈f(x), Tρf(x)〉γk(x) dx ≥
∫
Rk

〈fopt(x), Tρfopt(x)〉γk(x) dx

+ (.98− 9.4 |ρ|)
∫
Rk

φ(x)

∥∥∥∥∫
y∈‖x‖Sk−1

f(y) dσ(y)

∥∥∥∥2

γk(x) dx.

Here φ(x) = 1− 1
ρ‖x‖+

2
e2ρ‖x‖−1

for all x ∈ Rk\{0} and dσ denotes normalized (Haar) measure
on the sphere.

We can also prove Theorem 1.5 when k > 3, but with different dependence on ρ. Since
the k = 3 case is the only relevant case for computational hardness of the product state of
Quantum MAX-CUT, we only state a result for k = 3.

As shown in [HNP+21, Theorem 6.11] by adapting the argument of [HT21], the case
n = k = 3 of Theorem 1.5 (when ρ > 0) implies the case n > k = 3 of Theorem 1.5
(when ρ > 0). That is, the dimension of the domain can be a priori reduced to the case
n = k, at least when ρ > 0. In this paper, we show that a similar statement holds in
the case ρ < 0. This “dimension reduction” argument works differently in the case ρ < 0.
For technical reasons, we need to instead deal with a bilinear version of the noise stability.
With this change, we show that the bilinear noise stability has a similar dimension reduction
argument. That is, we verify that the case n = k = 3 of Theorem 1.5 (when ρ < 0) implies
the case n > k = 3 of Theorem 1.5 (when ρ < 0). The bilinear inequality we prove in the
case n = k = 3 is the following. Suppose 0 < ρ < .104 and n = k = 3. We then show in (29)
below that ∫

Rk

〈f(x), Tρg(x)〉γk(x) dx ≥ −
∫
Rk

〈fopt(x), Tρfopt(x)〉γk(x) dx,

∀ f, g : Rk → Sk−1 when k = 3, if
∫
Rk f(x)γk(x) dx =

∫
Rk g(x)γk(x) dx, or more generally,∫

Rk

〈f(x), Tρg(x)〉γk(x) dx ≥ −
∫
Rk

〈fopt(x), Tρfopt(x)〉γk(x) dx

+ (.98− 9.4ρ)

∫
Rk

φ(x)
1

2

(∥∥∥∥∫
y∈‖x‖Sk−1

f(y) dσ(y)

∥∥∥∥2

+

∥∥∥∥∫
y∈‖x‖Sk−1

g(y) dσ(y)

∥∥∥∥2 )
γk(x) dx.
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Without considering this bilinear noise stability, [HNP+21, Theorem 5.1] proved only the
case n = k of Conjecture 1.3 when ρ < 0. The case n = k in Conjecture 1.3 does not imply
the cases n > k, and this is why we considered the more general bilinear noise stability
inequality above. (Although one can e.g. regard a function f : R4 → S2 as a function
f : R4 → S3 by considering S2 as a subset of S3, the inequality satisfied by f proven in
[HNP+21, Theorem 5.1] is not a sharp inequality for f .)

Applications to Quantum MAX-CUT require Conjecture 1.3 to hold for all n ≥ k. So, we
have managed to prove a result that is independent of the dimension of the domain, since
it holds for any n ≥ k when k = 3, though not for the full range of ρ parameters. Also,
the proof method of [HNP+21] does not directly apply in the case ρ > 0, and attempting to
prove Conjecture 1.3 in that case led us towards Theorem 1.5, although the case ρ > 0 is
irrelevant for applications to Quantum MAX-CUT.

Conjecture 1.3 should hold for all −1 < ρ < 1 and for all functions n ≥ k = 3. If such a
conjecture holds, then we would be able to conclude sharp hardness of approximation for the
product state of Quantum MAX-CUT problem, assuming the Unique Games Conjecture.

Conjecture 1.6 (Sharp Hardness for Quantum MAX-CUT, [HNP+21]). Assume that
the Unique Games Conjecture is true [Kho02, Kho10, KMS18]. Assume Conjecture 1.3 holds
for all n ≥ k = 3. Then, for any ε > 0, it is NP-hard to approximate the product state of
Quantum MAX-CUT within a multiplicative factor of αBOV + ε.

As shown in [BdOFV10, HNP+21], we have

αBOV := inf
−1≤ρ≤1

1− F ∗(3, ρ)

1− ρ
≈ .956. (2)

F ∗(3, ρ) :=
2

3

(Γ((3 + 1)/2)

Γ(3/2)

)2

ρ · 2F1(1/2, 1/2, 3/2 + 1, ρ2), ∀ − 1 < ρ < 1. (3)

Here 2F1(·, ·, ·, ·) is the Gaussian hypergeometric function.
The semidefinite programming algorithm of [BdOFV10] shows that Conjecture 1.6 is sharp,

since the polynomial time algorithm of [BdOFV10] approximates the product state Quantum
MAX-CUT problem with a multiplicative factor of αBOV − ε, for any ε > 0.

A corollary of our main result Theorem 1.5 is a weaker version of Conjecture 1.6 that
replaces the sharp constant .956 . . . with a larger constant.

Theorem 1.7 (Unique Games Hardness for Product State Quantum MAX-CUT).
Assume that the Unique Games Conjecture is true. Then it is NP-hard to approximate the
product state of Quantum MAX-CUT within a multiplicative factor of .9859.

To the author’s knowledge, Theorem 1.7 is the only computational hardness result for the
product state of Quantum MAX-CUT besides Conjecture 1.6.

1.5. Some Notation and Definitions.

Definition 1.8 (Correlated Gaussians). Let −1 < ρ < 1. Let Gρ(x, y) denote the joint
probability density function on Rn × Rn such that

Gρ(x, y) :=
1

(2π)n(1− ρ2)n/2
e

−‖x‖2−‖y‖2+2ρ〈x,y〉
2(1−ρ2) , ∀x, y ∈ Rn. (4)

We denote X ∼ρ Y when (X,Y ) ∈ Rn × Rn have joint probability density function Gρ.
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Definition 1.9 (Correlated Random Variables on the Sphere). Let −1 < ρ < 1 and
let r, s > 0. Let Gr,s

ρ (u, v) denote the probability density function on Sn−1 × Sn−1 such that
the first variable is uniform on Sn−1 and such that the second variable conditioned on the
first has conditional density

Gr,s
ρ (v|u) := 1

zρ,r,s
e

ρrs〈u,v〉
1−ρ2 , ∀ v ∈ Sn−1.

Here zρ,r,s is a normalizing constant, chosen so that
∫
Sn−1 G

r,s
ρ (v|u)dσ(v) = 1, where σ denotes

the uniform probability (Haar) measure on Sn−1.
We let N r,s

ρ denote the above distribution on Sn−1 × Sn−1 and we denote (U, V ) ∼ N r,s
ρ

when (U, V ) ∈ Sn−1 × Sn−1 have the distribution N r,s
ρ .

Definition 1.10 (Spherical Noise Stability). Let ρ ∈ (−1, 1), r, s > 0. Let f : Sn−1 →
[0, 1] be measurable. Define g = gρ,r,s : [−1, 1] → R by (7). Define the smoothing operator
Ug applied to f by

Ugf(x) :=

∫
Sn−1

g(〈x, y〉)f(y) dσ(y), ∀x ∈ Sn.

Here σ denotes the (normalized) Haar probability measure on Sn−1. The spherical noise
stability of a set Ω ⊆ Sn−1 with parameters ρ, r, s is∫

Sn−1

1Ω(x)Ug1Ω(x) dσ(x).

The spherical noise stability has a decomposition into spherical harmonics by the Funk-
Hecke Formula [HNP+21, Theorem 4.3]∫

Sn−1

f(x)Ugf(x) dσ(x) =
∥∥∥∫

Sn−1

f(x)dσ(x)
∥∥∥2

+
∞∑
d=1

λr,sd,n‖Projd(f)‖
2. (5)

Here Projd(f) is the L2(dσ) projection of f onto spherical harmonics of degree d, and λr,sd,n
are specified in (10)

Fix r, s > 0 and let 0 < ρ < 1. Define g : [−1, 1] → R by

g(t) = gρ,r,s(t) :=
√
π
Γ((n− 1)/2)

Γ(n/2)

e
ρrst

1−ρ2∫ 1

−1
(1− a2)

n
2
− 3

2 e
ρrsa

1−ρ2 da
, ∀ t ∈ [−1, 1]. (6)

Recall that, if h : R → R is continuous, then

1

Vol(Sn−1)

∫
Sn−1

h(y1)dy =
Vol(Sn−2)

Vol(Sn−1)

∫ 1

−1

(1− t2)
n
2
− 3

2h(t)dt

=
2π(n−1)/2/Γ((n− 1)/2)

2πn/2/Γ(n/2)

∫ 1

−1

(1− t2)
n
2
− 3

2h(t)dt

=
1√
π

Γ(n/2)

Γ((n− 1)/2)

∫ 1

−1

(1− t2)
n
2
− 3

2h(t)dt.
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We have chosen the constants so that 1 = 1
Vol(Sn−1)

∫
Sn−1 h(y1)dy, when h = g. When h := 1,

we have
∫ 1

−1
(1− t2)

n
2
− 3

2dt =
√
π Γ((n−1)/2)

Γ(n/2)
, so

g(t) = gρ,r,s(t)
(6)
= e

ρrst

1−ρ2 ·
∫ 1

−1
(1− a2)

n
2
− 3

2da∫ 1

−1
(1− a2)

n
2
− 3

2 e
ρrsa

1−ρ2 da
, ∀ t ∈ [−1, 1]. (7)

Notation: Rising Factorial. For any x ∈ R and for any integer d ≥ 1, we denote
(x)d :=

∏d−1
j=0(x+ j).

Let C(α)
d : [−1, 1] → R denote the index α degree d Gegenbauer polynomial, which satisfies

a Rodrigues formula [AAR99, p. 303, 6.4.14]

(1− t2)α−1/2C
(α)
d (t) =

(−2)d(α)d
d!(d+ 2α)d

dd

dtd
(1− t2)α+d−1/2, ∀ t ∈ [−1, 1].

Letting α := n
2
− 1, we have

(1− t2)
n
2
− 3

2C
(n
2
−1)

d (t) =
(−2)d

(
n
2
− 1

)
d

d!(d+ n− 2)d

dd

dtd
(1− t2)

n
2
+d− 3

2 , ∀ t ∈ [−1, 1]. (8)

From [AAR99, p. 302],

C
(n
2
−1)

d (1) =
(n− 2)d

d!
. (9)

Then [HNP+21, Corollary 4.6] defines

λr,sd,n :=

∫ 1

−1

C
(n2 −1)

d (t)

C
(n2 −1)

d (1)
(1− t2)

n
2
− 3

2 g(t)dt∫ 1

−1
(1− t2)

n
2
− 3

2dt

(7)
=

∫ 1

−1

C
(n2 −1)

d (t)

C
(n2 −1)

d (1)
(1− t2)

n
2
− 3

2 e
ρrst

1−ρ2 dt∫ 1

−1
(1− t2)

n
2
− 3

2 e
ρrst

1−ρ2 dt

(8)∧(9)
=

(−2)d(n
2
− 1)d

d!(d+ n− 2)d

d!

(n− 2)d

∫ 1

−1

[
dd

dtd
(1− t2)

n
2
+d− 3

2

]
e

ρrst

1−ρ2 dt∫ 1

−1
(1− t2)

n
2
− 3

2 e
ρrst

1−ρ2 dt
.

(10)

Integrating by parts d times,

λr,sd,n =
( ρrs

1− ρ2

)d (−2)d(n
2
− 1)d

(n− 2)2d

(−1)d
∫ 1

−1
(1− t2)

n
2
+d− 3

2 e
ρrst

1−ρ2 dt∫ 1

−1
(1− t2)

n
2
− 3

2 e
ρrst

1−ρ2 dt
.

In the case d = 1 we have

λr,s1,n =
( ρrs

1− ρ2

)(2)(n
2
− 1)

(n− 1)

1

(n− 2)

∫ 1

−1
(1− t2)

n
2
− 1

2 e
ρrst

1−ρ2 dt∫ 1

−1
(1− t2)

n
2
− 3

2 e
ρrst

1−ρ2 dt

=
( ρrs

1− ρ2

)( 1

n− 1

)∫ 1

−1
(1− t2)

n
2
− 1

2 e
ρrst

1−ρ2 dt∫ 1

−1
(1− t2)

n
2
− 3

2 e
ρrst

1−ρ2 dt
.

(11)

The following Lemma follows from the Cauchy-Schwarz inequality, and from the spherical
harmonic decomposition (5).
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Lemma 1.11 ([HNP+21, Lemma 5.4]). Let r, s > 0. Let ρ > 0. Let fr, fs : Sn−1 → Sn−1.
Then

E(U,V )∼Nr,s
ρ
〈fr(U), fs(V )〉 ≤ 〈Efr,Efs〉+ λr,s1,n

√
E ‖fr − Efr‖2

√
E ‖fs − Efs‖2.

Equality holds only when fr(x) = fs(x) = Mx for all x ∈ Sn−1, where M is an n × n real
orthogonal matrix.

E(U,V )∼Nr,s
ρ
〈fr(U), fs(V )〉 ≥ 〈Efr,Efs〉 − λr,s1,n

√
E ‖fr − Efr‖2

√
E ‖fs − Efs‖2.

Equality holds only when fr(x) = −fs(x) = Mx for all x ∈ Sn−1, where M is an n× n real
orthogonal matrix.

1.6. Expected Value Notation.

• E with no subscript denotes expected value on a sphere with respect to the uniform
(Haar) probability measure.

• E(U,V )∼Nr,s
ρ

denotes expected value with respect to (U, V ) from Definition 1.9.
• E

X∼ρY
denotes expected value with respect to (X,Y ) from Definition 1.8.

• ER,S denotes expected value with respect to R,S where R = ‖X‖ , S = ‖Y ‖, and
X,Y are two standard ρ-correlated Gaussians, as in Definition 1.8.

• Eγ denotes expected value with respect to the Gaussian density γn.

2. Preliminaries: Quadratic Case

Our first step towards proving Theorem 1.5 with ρ > 0 will be modifying Lemma 1.11.
Lemmas 2.1 and 2.2 below demonstrate that optimizing the noise stability E

X∼ρY
〈f(X), f(Y )〉

involves an interplay between Ef‖X‖ having norm 0 or norm 1.

Lemma 2.1. Let f : Rn → Sn−1 be continuous. For any r > 0, denote fr := f |rSn−1 and
denote Efr as the expected value of fr on rSn−1 with respect to the uniform probability (Haar)
measure on Sn−1. Then

E
X∼ρY

〈f(X), f(Y )〉 ≤ E
X∼ρY

(
〈Ef‖X‖,Ef‖Y ‖〉+ λ

‖X‖,‖Y ‖
1,n

√
1−

∥∥Ef‖X‖
∥∥2
√
1−

∥∥Ef‖Y ‖
∥∥2
)
.

Equality holds only when f(x) = Mx/ ‖Mx‖ for a.e. x ∈ Sn−1, where M is an n × n real
orthogonal matrix.

Proof. We first write (recalling the notation of Section 1.6)

EX∼ρY 〈f(X), f(Y )〉 = ER,SE(U,V )∼NR,S
ρ

〈fR(U), fS(V )〉.
8



Applying Lemma 1.11 and averaging over R,S, and also using that f takes values in Sn−1,
so E ‖fS − EfS‖2 = 1 + ‖EfS‖2 − 2〈EfS,EfS〉 = 1− ‖EfS‖2,

E
R,S

E
(U,V )∼NR,S

ρ

〈fR(U), fS(V )〉

≤ E
R,S

〈EfR,EfS〉+ E
R,S
λR,S
1,n

√
E ‖fR − EfR‖2

√
E ‖fS − EfS‖2

= E
R,S

〈EfR,EfS〉+ E
R,S
λR,S
1,n

√
E(1− ‖EfR‖2)

√
E(1− ‖EfS‖2)

= E
X∼ρY

(
〈Ef‖X‖,Ef‖Y ‖〉+ λ

‖X‖,‖Y ‖
1,n

√
1−

∥∥Ef‖X‖
∥∥2
√
1−

∥∥Ef‖Y ‖
∥∥2
)
.

The equality case follows from the equality case of Lemma 1.11 �

Using again the notation of Lemma 2.1, we have

Lemma 2.2. Let f : Rn → Sn−1. Then

E
X∼ρY

〈f(X), f(Y )〉 ≤ E
X∼ρY

(
λ
‖X‖,‖Y ‖
1,n + 〈Ef‖X‖,Ef‖Y ‖〉 −

∥∥Ef‖X‖
∥∥2
λ
‖X‖,‖Y ‖
1,n

)
.

Equality holds only when f(x) = Mx/ ‖Mx‖ for a.e. x ∈ Sn−1, where M is an n × n real
orthogonal matrix.

Proof. Applying the inequality |ab| ≤ (1/2)(a2 + b2) ∀ a, b ∈ R, we have

E
X∼ρY

λ
‖X‖,‖Y ‖
1,n

√
1−

∥∥Ef‖X‖
∥∥2
√
1−

∥∥Ef‖Y ‖
∥∥2

≤ E
X∼ρY

λ
‖X‖,‖Y ‖
1,n (1−

∥∥Ef‖X‖
∥∥2
)

= E
X∼ρY

λ
‖X‖,‖Y ‖
1,n − E

X∼ρY
λ
‖X‖,‖Y ‖
1,n

∥∥Ef‖X‖
∥∥2
.

Combining with Lemma 2.1 concludes the proof. �

3. Preliminaries: Bilinear Case

As in the previous section, our first step towards proving Theorem 1.5 with ρ < 0 will be
modifying Lemma 1.11. Lemmas 3.1 and 3.2 below demonstrate that optimizing the bilinear
noise stability E

X∼ρY
〈f(X), g(Y )〉 involves an interplay between Ef‖X‖ having norm 0 or norm

1, and similarly for Eg‖Y ‖.

Lemma 3.1. Let f, g : Rn → Sn−1 be continuous. For any r > 0, denote fr := f |rSn−1

and denote Efr as the expected value of fr on rSn−1 with respect to the uniform probability
(Haar) measure on Sn−1. Then

E
X∼ρY

〈f(X), g(Y )〉 ≥ E
X∼ρY

(
〈Ef‖X‖,Eg‖Y ‖〉 − λ

‖X‖,‖Y ‖
1,n

√
1−

∥∥Ef‖X‖
∥∥2
√
1−

∥∥Eg‖Y ‖
∥∥2
)
.

Equality holds only when f(x) = −g(x) = Mx/ ‖Mx‖ for a.e. x ∈ Sn−1, where M is an
n× n real orthogonal matrix.

9



Proof. We first write (recalling the notation of Section 1.6)
EX∼ρY 〈f(X), g(Y )〉 = ER,SE(U,V )∼NR,S

ρ
〈fR(U), gS(V )〉.

Applying Lemma 1.11 and averaging over R,S, and also using that f takes values in Sn−1,
so E ‖fS − EfS‖2 = 1 + ‖EfS‖2 − 2〈EfS,EfS〉 = 1− ‖EfS‖2, and similarly for g,

E
R,S

E
(U,V )∼NR,S

ρ

〈fR(U), gS(V )〉

≥ E
R,S

〈EfR,EgS〉 − E
R,S
λR,S
1,n

√
E ‖fR − EfR‖2

√
E ‖gS − EgS‖2

= E
R,S

〈EfR,EgS〉 − E
R,S
λR,S
1,n

√
E(1− ‖EfR‖2)

√
E(1− ‖EgS‖2)

= E
X∼ρY

(
〈Ef‖X‖,Eg‖Y ‖〉+ λ

‖X‖,‖Y ‖
1,n

√
1−

∥∥Ef‖X‖
∥∥2
√
1−

∥∥Eg‖Y ‖
∥∥2
)
.

The equality case follows from the equality case of Lemma 1.11. �

Using again the notation of Lemma 3.1. Then

Lemma 3.2. Let f, g : Rn → Sn−1. Then

E
X∼ρY

〈f(X), g(Y )〉 ≥ E
X∼ρY

(
−λ‖X‖,‖Y ‖

1,n + 〈Ef‖X‖,Eg‖Y ‖〉+
1

2
(
∥∥Ef‖X‖

∥∥2
+
∥∥Eg‖X‖

∥∥2
)λ

‖X‖,‖Y ‖
1,n

)
.

Equality holds only when f(x) = −g(x) = Mx/ ‖Mx‖ for a.e. x ∈ Sn−1, where M is an
n× n real orthogonal matrix.

Proof. Applying the inequality |ab| ≤ (1/2)(a2 + b2) ∀ a, b ∈ R, we have

− E
X∼ρY

λ
‖X‖,‖Y ‖
1,n

√
1−

∥∥Ef‖X‖
∥∥2
√

1−
∥∥Eg‖Y ‖

∥∥2

≥ − E
X∼ρY

λ
‖X‖,‖Y ‖
1,n (1− [

∥∥Ef‖X‖
∥∥2

+
∥∥Eg‖X‖

∥∥2
]/2)

= − E
X∼ρY

λ
‖X‖,‖Y ‖
1,n + E

X∼ρY
λ
‖X‖,‖Y ‖
1,n (

∥∥Ef‖X‖
∥∥2

+
∥∥Eg‖X‖

∥∥2
)/2.

Combining with Lemma 3.1 concludes the proof. �

4. Eigenvalue Bounds

In this section, we derive some bounds on the first eigenvalue λr,s1,n as defined in (5). From
(11), we therefore need to control the function∫ 1

−1
(1− t2)

n
2
− 1

2 e
ρrst

1−ρ2 dt∫ 1

−1
(1− t2)

n
2
− 3

2 e
ρrst

1−ρ2 dt
. (12)

This is a ratio of modified Bessel functions of the first kind. To recall their definition, first
recall the Bessel function Jα of the first kind of order α ≥ 0 is [AAR99, p. 204]

Jα(x) :=
1√

πΓ(α + 1/2)
(x/2)α

∫ 1

−1

eixt(1− t2)α−1/2dt, ∀x ∈ R.
10



The modified Bessel function Iα of the first kind of order α ≥ 0 is then [AAR99, p. 222]

Iα(x) := i−αJα(ix) =
1√

πΓ(α + 1/2)
(x/2)α

∫ 1

−1

e−xt(1− t2)α−1/2dt

=
1√

πΓ(α + 1/2)
(x/2)α

∫ 1

−1

ext(1− t2)α−1/2dt, ∀x ∈ R.

Iα+1(a)

Iα(a)
=

(a/2)

α + 1/2

∫ 1

−1
eat(1− t2)α+1/2dt∫ 1

−1
eat(1− t2)α−1/2dt

, ∀ a ∈ R, ∀α ≥ 0.

So, setting α = (n/2)− 1 here, the ratio from (12) is equal to

n− 1

2

(2(1− ρ2)

ρrs

) In/2(ρrs/[1− ρ2])

I(n/2)−1(ρrs/[1− ρ2])
.

Combining with (11), we have

λr,s1,n =
ρrs

1− ρ2
1

n− 1

n− 1

2

(2(1− ρ2)

ρrs

) In/2(ρrs/[1− ρ2])

I(n/2)−1(ρrs/[1− ρ2])
=

In/2(ρrs/[1− ρ2])

I(n/2)−1(ρrs/[1− ρ2])
. (13)

We have [Amo74, p. 241]

a

α + 1 +
√

(α + 1)2 + a2
≤ Iα+1(a)

Iα(a)
≤ a

α +
√
α2 + a2

, ∀ a, α ≥ 0. (14)

Therefore,

λr,s1,n ≥ ρrs/[1− ρ2]

n/2 +
√

(n/2)2 + [ρrs/[1− ρ2]]2
, ∀ r, s > 0, ∀ ρ ∈ (0, 1). (15)

In order to use our lower bounds on λr,s1,n in Lemma 2.2, we must average λr,s1,n over r > 0.
Let a > 0. Then ∫ ∞

0

r3e−r2/2a2

1 +
√
1 + r2

dr = e1/2a
2

a3
∫ ∞

1/a

e−t2/2dt.

Setting n = 3 in (13), we get

∫ ∞

0

rn−1 In/2(ar)

I(n/2)−1(ar)
e−r2/2dr

(14)
≥

∫ ∞

0

rn−1 ar

n/2 +
√

(n/2)2 + a2r2
e−r2/2dr

=

∫ ∞

0

rn−1 2ar/n

1 +
√

1 + 4a2r2/n2
e−r2/2dr = (n/2a)

∫ ∞

0

(nr/[2a])n−1 r

1 +
√
1 + r2

e−n2r2/8a2dr

= (3/2a)3
∫ ∞

0

r3

1 +
√
1 + r2

e−n2r2/8a2dr = (3/2a)3e9/8a
2

(2/3)3a3
∫ ∞

3/2a

e−t2/2dt

= e9/8a
2

∫ ∞

3/2a

e−t2/2dt.

(16)
11



4.1. First Eigenvalue, Dimension 3. When d = 1 and n = 3, we have an explicit expres-
sion for λr,s1,n.

λr,s1,n
(13)
=

( ρrs

1− ρ2

)(1
2

)∫ 1

−1
(1− t2)e

ρrst

1−ρ2 dt∫ 1

−1
e

ρrst

1−ρ2 dt
= 1− 1(

ρrs
1−ρ2

) +
2

e
2ρrs

1−ρ2 − 1
, (17)

for all r, s > 0, and for all 0 < ρ < 1. Here we used, with a = ρrs/(1− ρ2),∫ 1

−1

eatdt =
1

a
[ea − e−a].

∫ 1

−1

(1− t2)eatdt =
1

a

∫ 1

−1

(1− t2)
d

dt
eatdt =

1

a

∫ 1

−1

2teatdt

=
1

a2

∫ 1

−1

2t
d

dt
eatdt =

1

a2

[
2teat|t=1

t=−1 −
∫ 1

−1

2eatdt
]

=
1

a2

[
2(ea + e−a)− 2

a
[ea − e−a]

]
.

∫ 1

−1
(1− t2)eatdt∫ 1

−1
eatdt

=
1

a

(
2
ea + e−a

ea − e−a
− 2

a

)
=

1

a

(
2 + 4

e−a

ea − e−a
− 2

a

)
=

1

a

(
2 + 4

1

e2a − 1
− 2

a

)
.

5. Change of Measure

The following inequality allows us to show that the second term in Lemma 2.2 is smaller
than the last term. The proof amounts to an elementary truncated heat kernel bound,
though with a change of measure using the λr,s1,n term from (11) (i.e. (17)).

Lemma 5.1. Let f : R3 → S2 be a radial function (for any r > 0, the function f |rS2 is
constant). Let φ : R3 → (0,∞). Then∣∣∣∣∫

R3

〈f(x)− Eγf, Tρ[f − Eγf ](x)〉γ3(x) dx
∣∣∣∣

≤
∫
R3

φ(x) ‖f(x)‖2 γ3(x) dx
∑

d≥2: d even

ρd
∑

k∈(2N)2 : ‖k‖1=d

∫
R3

∣∣∣∣∣√k!hk(x) 1√
φ(x)

∣∣∣∣∣
2

γ3(x) dx.

In particular, if φ(x) = 1− 1
ρ‖x‖ +

2
e2ρ‖x‖−1

for all x ∈ R3, and if 0 < ρ < 1/9, then∣∣∣∣∫
R3

〈f(x)− Eγf, Tρ[f − Eγf ](x)〉γ3(x) dx
∣∣∣∣ ≤ (9.4ρ)

∫
R3

φ(x) ‖f(x)‖2 γ3(x)dx.

Proof. Let h0, h1, . . . : R → R be the Hermite polynomials with hm(x) =
∑bm/2c

k=0
xm−2k(−1)k2−k

k!(m−2k)!

for all integers m ≥ 0. It is well known [Hei14] that {
√
m!hm}m≥0 is an orthonormal ba-

sis of the Hilbert space of functions R → R equipped with the inner product 〈g, h〉 :=
12



∫
R g(x)h(x)γ3(x) dx. For any k ∈ N2, define k! := k1! · k2!, and define ‖k‖1 := |k1|+ |k2|.

∫
R3

〈f(x)− Eγf, Tρ[f − Eγf ](x)〉γ3(x) dx

=
∑

d≥2: d even

ρd
∑

k∈(2N)2 : ‖k‖1=d

∥∥∥∥∫
R3

√
k!hk(x)(f(x)− Eγf)γ3(x) dx

∥∥∥∥2

=
∑

d≥2: d even

ρd
∑

k∈(2N)2 : ‖k‖1=d

∥∥∥∥∫
R3

√
k!hk(x)f(x)γ3(x) dx

∥∥∥∥2

=
∑

d≥2: d even

ρd
∑

k∈(2N)2 : ‖k‖1=d

∥∥∥∥∥
∫
R3

√
k!hk(x)

1√
φ(x)

√
φ(x)f(x)γ3(x) dx

∥∥∥∥∥
2

≤
∑

d≥2: d even

ρd
∑

k∈(2N)2 :
‖k‖1=d

∫
R3

∣∣∣∣∣√k!hk(x) 1√
φ(x)

∣∣∣∣∣
2

γ3(x) dx ·
∫
R3

φ(x) ‖f(x)‖2 γ3(x) dx

=

∫
R3

φ(x) ‖f(x)‖2 γ3(x) dx ·
∑

d≥2: d even

ρd
∑

k∈(2N)2 :
‖k‖1=d

∫
R3

∣∣∣∣∣√k!hk(x) 1√
φ(x)

∣∣∣∣∣
2

γ3(x) dx.

Using the inequality

r2

φ(r)
≤ 3

ρ
r + r2, ∀ r > 0,

which can e.g. be verified in Matlab

rho=.1;
r=linspace(.1,20,1000);
rsqphi = r.^2 ./ (1 - 1./(rho*r) + 2./(exp(2*rho*r) -1));
plot(r, rsqphi , r, 3*r/rho + r.^2);
legend('r^2 / phi','upper bound');
if sum( rsqphi - (3*r/rho + r.^2)>0)==0, fprintf('Verified\r'), end
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∑
d≥2: d even

ρd
∑

k∈(2N)2 : ‖k‖1=d

∫
R3

∣∣∣∣∣√k!hk(x) 1√
φ(x)

∣∣∣∣∣
2

γ3(x) dx

=

∫
R3

1

φ(x)

[
(2π)3/2

Gρ(x, x) +Gρ(x,−x)
2e−‖x‖2/2

− γ3(x)
]
dx

=

∫
R3

1

φ(x)

[ 1

(2π)3/2
1

(1− ρ2)3/2
e
− ‖x‖2

1−ρ2
e

ρ‖x‖2

1−ρ2 + e
− ρ‖x‖2

1−ρ2

2e−r2/2
− γ3(x)

]
dx

=

√
2

π

∫ ∞

r=0

(3
ρ
r + r2

) 1

2(1− ρ2)3/2

·
(
− 2(1− ρ2)3/2e−r2/2 + e

−r2 1−ρ

1−ρ2 er
2/2 + e

−r2 1+ρ

1−ρ2 er
2/2

)
dr

=

√
2

π

∫ ∞

r=0

(3
ρ
r + r2

) 1

2(1− ρ2)3/2

·
(
− 2(1− ρ2)3/2e−r2/2 + e

−r2
(

1
1+ρ

− 1
2

)
+ e

−r2
(

1
1−ρ

− 1
2

))
dr

=

√
2

π

1

2(1− ρ2)3/2
3

ρ

(
− 2(1− ρ2)3/2 +

1

2[ 1
1+ρ

− 1
2
]
+

1

2[ 1
1−ρ

− 1
2
]

)
+

√
2

π

1

(1− ρ2)3/2

√
π

8

(
− 2 · 23/2(1− ρ2)3/2 +

1

[ 1
1+ρ

− 1
2
]3/2

+
1

[ 1
1−ρ

− 1
2
]3/2

)
.

When ρ < 1/9, this quantity is upper bounded by 9.4ρ.
�

For the negative correlation case of the main result, we require a bilinear version of Lemma
5.1 above. Lemma 5.2 follows from Lemma 5.1 and the Cauchy-Schwarz inequality.

Lemma 5.2. Let f, g : R3 → S2 be radial functions (for any r > 0, the function f |rS2 is
constant). Let φ(x) = 1− 1

ρ‖x‖ +
2

e2ρ‖x‖−1
for all x ∈ R3. If 0 < ρ < 1/9, then∣∣∣∣∫

R3

〈f(x)− Eγf, Tρ[g − Eγg](x)〉γ3(x) dx
∣∣∣∣ ≤ (9.4ρ)

∫
R3

φ(x)
1

2
[‖f(x)‖2 + ‖g(x)‖2]γ3(x)dx.

6. Proof of Main Theorem: Quadratic Case

Proof of Theorem 1.5 when ρ > 0. The dimension reduction Theorem [HNP+21, Theorem
6.11] implies that we may assume n = k = 3. From Lemma 2.2

E
X∼ρY

〈f(X), f(Y )〉 − E
X∼ρY

λ
‖X‖,‖Y ‖
1,n ≤ E

X∼ρY

(
〈Ef‖X‖,Ef‖Y ‖〉 −

∥∥Ef‖X‖
∥∥2
λ
‖X‖,‖Y ‖
1,n

)
. (18)
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It remains to show that the right side is nonpositive. Since Eγf :=
∫
Rn f(x)γn(x) dx = 0, we

have by Lemma 5.1 that
E

X∼ρY
〈Ef‖X‖,Ef‖Y ‖〉 = E

X∼ρY
〈Ef‖X‖ − Eγf,Ef‖Y ‖ − Eγf〉

≤ 9.4ρ

∫
Rn

φ(x)
∥∥Ef‖x‖∥∥2

γn(x) dx.
(19)

Here φ(x) := 1− 1
ρ‖x‖ +

2
exp2ρ‖x‖ −1

(17)
= λ

‖x‖,1
1,n . Meanwhile, the last term in (18) satisfies

E
X∼ρY

∥∥Ef‖X‖
∥∥2
λ
‖X‖,‖Y ‖
1,n

(1.1)
=

∫
R3

∥∥Ef‖x‖∥∥2
(∫

R3

λ
‖ρx+y

√
1−ρ2‖,‖x‖

1,n γn(y) dy
)
γn(x) dx

=

∫
R3

∥∥Ef‖x‖∥∥2
(√ 2

π

1

4π

∫
u∈S2

∫ ∞

r=0

r2λ
‖ρx+ru

√
1−ρ2‖,‖x‖

1,n e−‖r‖2/2 drdu
)
γn(x) dx

(17)
≥

∫
R3

∥∥Ef‖x‖∥∥2
(√ 2

π

1

4π

∫
u∈S2

∫ ∞

r=0

r2λ
‖ru

√
1−ρ2‖,‖x‖

1,n e−‖r‖2/2 drdu
)
γn(x) dx

=

∫
R3

∥∥Ef‖x‖∥∥2
(√ 2

π

∫ ∞

r=0

λ
r
√

1−ρ2,‖x‖
1,n e−‖r‖2/2 dr

)
γn(x) dx.

(20)

The inequality used that λa,b1,2 is an increasing function of a > 0 by (17), so the average over
r, u is smallest when ρx = 0.

From (16) when n = 3 and a = ρrs/(1− ρ2) with (13), if s > 0 and 0 < ρ < 1/5, then√
2

π

∫ ∞

r=0

r2λ
r
√

1−ρ2,s
1,n e−‖r‖2/2 dr

(16)∧(13)
≥

√
2

π
e

9(1−ρ2)

8s2ρ2

∫ ∞

3

√
1−ρ2

2ρs

e−t2/2dt

≥ (.98)
(
1− 1

ρs
+

2

e2ρs − 1

)
.

The last inequality can be verified e.g. with Matlab

rho=.03;
r=linspace(0,1000,1000);
phi=.98*(1 - 1./(rho * r ) +2./(exp(2* rho *r ) -1));
y=exp( 9*(1-rho^2) ./ (8* r.^2 * rho^2)) ...
.* erfc( 3*sqrt(1-rho^2) ./ (2*sqrt(2) * rho *r));

plot(r, phi, r, y);
legend('lambda lower bd','integral quant (larger)');
if sum(y-phi<0)==0, fprintf('Verified\r'), end

Substituting this into (20), we get

E
X∼ρY

∥∥Ef‖X‖
∥∥2
λ
‖X‖,‖Y ‖
1,n ≥ .98

∫
R3

φ(x)
∥∥Ef‖x‖∥∥2

γn(x) dx. (21)

Combining (18), (21) and (19), we have

E
X∼ρY

〈f(X), f(Y )〉 − E
X∼ρY

λ
‖X‖,‖Y ‖
1,n ≤ (9.4ρ− .98)

∫
Rn

φ(x)
∥∥Ef‖x‖∥∥2

γn(x) dx. (22)
15



If ρ < .104, the right side is nonpositive, and it is equal to zero only when Ef‖x‖ = 0 for a.e.
x ∈ R3. That is,

E
X∼ρY

〈f(X), f(Y )〉
(22)
≤ E

X∼ρY
λ
‖X‖,‖Y ‖
1,n

(1)∧(5)
= E

X∼ρY
〈fopt(X), fopt(Y )〉.

with equality only when Ef‖x‖ = 0 for a.e. x ∈ R3. Finally, if Ef‖x‖ = 0 for a.e. x ∈ R3, then
Lemma 2.1 implies that we must have f = fopt(M ·) for some real 3 × 3 orthogonal matrix
M . �

7. Proof of Main Theorem: Bilinear Case

Proof of Theorem 1.5 when ρ < 0. In order to prove Theorem 1.5 for negative ρ, we consider
instead ρ > 0 but with a bilinear variant of the noise stability over functions f, g : Rn → S2

under the constraint that Eγf = Eγg = 0.
So, within the proof below, we have ρ > 0, and we will show that

E
X∼ρY

〈f(X), g(Y )〉 ≥ − E
X∼ρY

〈fopt(X), fopt(Y )〉. (23)

Dimension Reduction (Theorem 9.1 below) implies that we may assume n = k = 3 in order
to prove (23). Equation (23) proves Theorem 1.5 for negative correlations, since

E
X∼(−ρ)Y

〈f(X), f(Y )〉 (4)
= E

X∼ρY
〈f(X), f(−(Y ))〉

(23)
≥ − E

X∼ρY
〈fopt(X), fopt(Y )〉

(4)
= E

X∼(−ρ)Y
〈fopt(X), fopt(−Y )〉 (1)

= E
X∼(−ρ)Y

〈fopt(X),−fopt(Y )〉.

So, it remains to prove (23). From Lemma 3.2

E
X∼ρY

(
〈f(X), g(Y )〉+λ‖X‖,‖Y ‖

1,n

)
≥ E

X∼ρY

(
〈Ef‖X‖,Eg‖Y ‖〉+

1

2
(
∥∥Ef‖X‖

∥∥2
+
∥∥Eg‖X‖

∥∥2
)λ

‖X‖,‖Y ‖
1,n

)
.

(24)
It remains to show that the right side is nonnegative. Since Eγf = Eγg by assumption,

E
X∼ρY

〈Ef‖X‖,Eg‖Y ‖〉 = ‖Eγf‖2 + E
X∼ρY

〈Ef‖X‖ − Eγf,Eg‖Y ‖ − Eγg〉

≥ E
X∼ρY

〈Ef‖X‖ − Eγf,Eg‖Y ‖ − Eγg〉.

So, by Lemma 5.2,
E

X∼ρY
〈Ef‖X‖,Eg‖Y ‖〉 ≥ E

X∼ρY
〈Ef‖X‖ − Eγf,Eg‖Y ‖ − Eγg〉

≥ −9.4ρ

∫
Rn

φ(x)
1

2
(
∥∥Ef‖x‖∥∥2

+
∥∥Eg‖x‖∥∥2

)γn(x) dx.
(25)

Here φ(x) := 1− 1
ρ‖x‖ +

2
exp2ρ‖x‖ −1

(17)
= λ

‖x‖,1
1,n . Meanwhile, (21) says that

E
X∼ρY

∥∥Ef‖X‖
∥∥2
λ
‖X‖,‖Y ‖
1,n ≥ .98

∫
R3

φ(x)
∥∥Ef‖x‖∥∥2

γn(x) dx. (26)

E
X∼ρY

∥∥Eg‖X‖
∥∥2
λ
‖X‖,‖Y ‖
1,n ≥ .98

∫
R3

φ(x)
∥∥Eg‖x‖∥∥2

γn(x) dx. (27)
16



Adding these together, we get

E
X∼ρY

1

2
(
∥∥Ef‖X‖

∥∥2
+
∥∥Eg‖X‖

∥∥2
)λ

‖X‖,‖Y ‖
1,n ≥ .98

∫
R3

φ(x)
1

2
(
∥∥Ef‖x‖∥∥2

+
∥∥Eg‖x‖∥∥2

)γn(x) dx. (28)

Combining (24), (28) and (25), we have

E
X∼ρY

〈f(X), g(Y )〉+ E
X∼ρY

λ
‖X‖,‖Y ‖
1,n

≥ (.98− 9.4ρ)

∫
Rn

φ(x)
1

2
(
∥∥Ef‖x‖(x)∥∥2

+
∥∥Eg‖x‖(x)∥∥2

)γn(x) dx.
(29)

If ρ < .104, the right side is nonnegative, and it is equal to zero only when Ef‖x‖ = Eg‖x‖ = 0
for a.e. x ∈ R3. That is,

E
X∼ρY

〈f(X), g(Y )〉
(29)
≥ − E

X∼ρY
λ
‖X‖,‖Y ‖
1,n

(1)∧(5)
= − E

X∼ρY
〈fopt(X), fopt(Y )〉.

with equality only when Ef‖x‖ = Eg‖x‖ = 0 for a.e. x ∈ R3.
If Ef‖x‖ = Eg‖x‖ = 0 for all x ∈ R3, then Lemma 3.1 implies that we must have f = −g =

fopt(M ·) almost surely, for some real 3× 3 orthogonal matrix M . So, (23) is proven, and the
negative correlation case of Theorem 1.5 follows. �

8. Proof of Unique Games Hardness

Proof of Theorem 1.7. From [HNP+21, Theorem 11.3]: assuming the Unique Games Con-
jecture, for any −1 < ρ < 0 and for any ε > 0, it is NP-hard to approximate the product
state of Quantum MAX-CUT within a multiplicative factor of αρ,BOV + ε, where

αρ,BOV := lim
n→∞

sup
f : Rn→S2

1−
∫
Rn〈f(x), Tρf(x)〉 γn(x) dx

1− ρ
.

Theorem 1.5 says, if −.104 < ρ < 0, then

αρ,BOV =
1−

∫
R3〈fopt(x), Tρfopt(x)〉 γ3(x) dx

1− ρ
. (30)

An explicit formula for the noise stability of fopt from [HNP+21, Proposition 7.17] implies

αρ,BOV
(1)∧(30)
=

1− F ∗(3, ρ)

1− ρ

(3)
=

1− 2
3

(
Γ((3+1)/2)

Γ(3/2)

)2

ρ · 2F1(1/2, 1/2, 3/2 + 1, ρ2)

1− ρ
.

Since NP hardness then applies from [HNP+21, Theorem 11.3] for any −.104 < ρ < 0, we
then have NP-hardness for the infimum of αρ,BOV over all −.104 < ρ < 0. That is, it is
NP-hard to approximate the product state of Quantum MAX-CUT within a multiplicative
factor of

inf
−.104<ρ<0

αρ,BOV = α(−.104),BOV =
1− 2

3

(
Γ((3+1)/2)

Γ(3/2)

)2

(−.104) · 2F1(1/2, 1/2, 3/2 + 1, (.104)2)

1− (−.104)
= .98584579 . . . .

The above function of ρ is monotone, with minimum at the endpoint ρ = −.104. �
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9. Appendix: Dimension Reduction

Theorem 9.1 (Bilinear Dimension Reduction). Let ρ > 0. Define

sn := inf
f,g : Rn→Sk−1

Eγf=Eγg=0

E
X∼ρY

〈f(X), g(Y )〉.

Then
sn = sk, ∀n ≥ k.

The inequality sn ≤ sk easily holds for all n ≥ k, so the content of Theorem 9.1 is that
sn ≥ sk for all n ≥ k.

Theorem 9.1 is a fairly straightforward adaptation of [HNP+21, Theorem 6.11] to the
bilinear setting (itself an adaptation of [HT21] to the sphere-valued setting). In order to
emphasize the relation between the argument below and that of [HNP+21, Theorem 6.11],
we will match the notation from [HNP+21], where appropriate.

We say a vector field W : Rn → Rk is a tame vector field if W is bounded and C∞, and
all of the partial derivatives of W of any order exists and are bounded.

For any f : Rn → Rk, for any t ∈ R, denote

Vt,Wf(x) :=
f(x) + tW (x)

max(1, ‖f(x) + tW (x)‖)
, ∀x ∈ Rn. (31)

Denote also
Bk := {x ∈ Rk : ‖x‖ ≤ 1}.

Definition 9.2. Let f, g : Rn → Bk satisfy Eγf = Eγg = 0. Fix 0 < ρ < 1. We say that f, g
are optimally stable with correlation ρ if, for all h, k : Rn → Bk with Eγh = Eγk = 0,∫

Rk

〈f(x), Tρg(x)〉γk(x) dx ≤
∫
Rk

〈h(x), Tρk(x)〉γk(x) dx.

Lemma 9.3. If f, g are optimally stable with correlation ρ, then g = −f .

Proof. Since f = g = 0 has Eγ〈f, Tρg〉 = 0, if f, g are optimally stable, then Eγ〈f, Tρg〉 ≤ 0.
So, the Cauchy-Schwarz inequality implies that

Eγ〈f, Tρg〉 = − |Eγ〈f, Tρg〉| ≥ − |Eγ〈f, Tρf〉|1/2 |Eγ〈g, Tρg〉|1/2

≥ −max
(
|Eγ〈f, Tρf〉| , |Eγ〈g, Tρg〉|

)
.

All of these inequalities become equalities when g = −f , since Eγ〈f, Tρf〉 ≥ 0, so

Eγ〈f, Tρ(−f)〉 = −Eγ〈f, Tρf〉 = − |Eγ〈f, Tρf〉| .

�

Lemma 9.4 (Lemma 6.8, [HNP+21]). Let f : Rn → Rk be measurable. Then there exists
vectors fields W1, . . . ,Wk : Rn → Rk such that

span
{ d

dt

∣∣∣
t=0

Eγ[Vt,Wf ] : 1 ≤ i ≤ k
}
= Rk.

18



Lemma 9.5 (Lemma 6.9, [HNP+21]). Let f, g : Rn → Rk be optimally stable. Then, for any
bounded measurable vector fields W,Z : Rn → Rk such that d

dt
|t=0EγVt,Wf = d

dt
|t=0EγVt,Zg =

0, we have
d

dt

∣∣∣
t=0

E
X∼ρY

〈Vt,Wf(X), Vt,Zg(Y )〉 = 0.

Proof.

fα,β :=
f(x) + βW (x) +

∑k
i=1 αiWi(x)

max
(
1, ‖f(x) + βW (x) +

∑k
i=1 αiWi(x)‖

) .

gα,β :=
g(x) + βZ(x) +

∑k
i=1 αiWi(x)

max
(
1, ‖g(x) + βZ(x) +

∑k
i=1 αiWi(x)‖

) .
Define L : R2k+1 → R2k by

L(α, θ, β) := (Eγfα,β, Eγgθβ) , ∀α, θ ∈ Rk, ∀ β ∈ R.

Then by assumption, we have

∂L

∂β
(0, 0)

(31)
=

(
d

dt

∣∣∣
t=0

EγVt,Wf,
d

dt

∣∣∣
t=0

EγVt,Zg

)
= 0. (32)

And by definition of L, we have, for all 1 ≤ i ≤ k,

∂L

∂αi

(0, 0) =

(
d

dt

∣∣∣
t=0

EγVt,Wi
f, 0

)
.

∂L

∂θi
(0, 0) =

(
0,

d

dt

∣∣∣
t=0

EγVt,Wi
g

)
.

(33)

From Lemma 9.4, we conclude that the matrix of partial derivatives DL of L is a (2k +
1) × 2k matrix of rank 2k. So, by the Implicit Function Theorem, there exists ε > 0 and
a differentiable curve η : (−ε, ε) → R2k+1 with η(0) = 0, η′(0) 6= 0 and L(η(t)) = 0 for all
t ∈ (−ε, ε). The last property implies, by the Chain Rule, that

0 =
d

dt

∣∣∣
t=0
L(η(t)) =

k∑
i=1

∂L

∂αi

(0, 0)η′i(0) +
k∑

i=1

∂L

∂θi
(0, 0)η′k+i(0) +

∂L

∂β
(0, 0)η′2k+1(0). (34)

The last term is zero by (32). Lemma 9.4 and (33) imply that set
{

∂L
∂αi

(0, 0), ∂L
∂θi

(0, 0)
}k

i=1
consists of 2k linearly independent vectors. We conclude from (34) that η′i(0) = η′i+k(0) =
0 for all 1 ≤ i ≤ k. Since η′(0) 6= 0, we conclude that η′2k+1(0) 6= 0. Let J(t) :=
E

X∼ρY
〈f(ηi(t))ki=1,η2k+1(t)

(X), g(ηi+k(t))
k
i=1,η2k+1(t)

(Y )〉 for all t ∈ (−ε, ε). Since L(η(t)) = 0 for

all t ∈ (−ε, ε), (f, g) satisfy Eγf = Eγg = 0 for all t ∈ (−ε, ε). Since (f, g) are optimally
19



stable, we therefore have (d/dt)J(t) = 0. Using the previous facts and the chain rule,

0 =
d

dt

∣∣∣
t=0
J(t) =

k∑
i=1

η′i(t)
∂

∂αi

E
X∼ρY

〈fα,β(X), gθ,β(Y )〉+
k∑

i=1

η′i+k(t)
∂

∂θi
E

X∼ρY
〈fα,β(X), gθ,β(Y )〉

+ η′2k+1(0)
d

dt

∣∣∣
t=0

E
X∼ρY

〈fα,η2k+1(t)(X), gθ,η2k+1(t)(Y )〉

= η′2k+1(0)
d

dt

∣∣∣
t=0

E
X∼ρY

〈fα,η2k+1(t)(X), gθ,η2k+1(t)(Y )〉

(31)
= η′2k+1(0)

d

dt

∣∣∣
t=0

E
X∼ρY

〈Vt,Wf(X), Vt,Zg(Y )〉.

Since η′2k+1(0) 6= 0, the last term is zero, i.e. the proof is concluded. �

Lemma 9.6 ([HNP+21, Lemma 6.10]). Let f, g be optimally stable. ∃ λ ∈ R2k such that
d

dt

∣∣∣
t=0

E
X∼ρY

〈Vt,Wf(X), Vt,Zg(Y )〉 =
〈( d

dt

∣∣∣
t=0

EγVt,Wf,
d

dt

∣∣∣
t=0

EγVt,Zg
)
, λ

〉
.

Proof. Let W,Z : Rn → Rn, and define φ1, φ2, ψ by

φ1(W ) :=
d

dt

∣∣∣
t=0

EγVt,Wf.

φ2(Z) :=
d

dt

∣∣∣
t=0

EγVt,Zg.

ψ(W,Z) :=
d

dt

∣∣∣
t=0

E
X∼ρY

〈Vt,Wf(X), Vt,Zg(Y )〉.

Note that φ1, φ2, ψ are linear functions of (W,Z). Let X be a finite-dimensional subspace of
bounded measurable vectors fields such that {(φ1(W ), φ2(Z)) : W,Z ∈ X} spans R2k. Define
L : X → R2k+1 by

L(W,Z) :=
(
φ1(W ), φ2(Z), ψ(W,Z)

)
.

From Lemma 9.4, (0, . . . , 0, 1) is not in the range of L. So, there exists λ = λ(X ) ∈
R2k such that (−λ, 1) is orthogonal to the range of L (with respect to the standard inner
product in R2k+1.) That is, 〈L(W,Z), (−λ, 1)〉 = 0 for all W,Z ∈ X . That is, ψ(W,Z) =
〈(φ1(W ), φ2(Z)), λ〉. As in [HNP+21, Lemma 6.10], λ does not depend on X . �

For any t ∈ R, denote t+ := max(t, 0).

Lemma 9.7 (Lemma 6.7, [HNP+21]). Let f : Rn → Bk be measurable. Let W : Rn → Rk be
a bounded measurable vector field. For any x ∈ Rn,

Vt,Wf(x) = f(x) + tW (x)− t〈W (x), f(x)〉+f(x) +O(t2),

where the O(t2) term is uniform in x. Also,
d

dt
|t=0EγVt,Wf = Eγ[W − 〈f,W 〉+f1{‖f‖=1}].

We write λ from Lemma 9.5 as λ = (λ(1), λ(2)) ∈ R2k so that λ(i) ∈ Rk for i = 1, 2.
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Lemma 9.8 (First Variation, Lemma 6.11, [HNP+21]). Let f, g be optimally stable. Then

‖Tρf − λ(1)‖g = Tρf − λ(1), ‖Tρg − λ(2)‖f = Tρg − λ(2). a.s.

Proof. Combining Lemmas 9.7 and 9.6, Definition 1.1, Lemma 9.7 again, and Definition 1.8,〈(
Eγ[W − 〈f,W 〉+f1{‖f‖=1}], Eγ[Z − 〈g, Z〉+g1{‖g‖=1}]

)
, λ

〉
=

〈( d

dt

∣∣∣
t=0

EγVt,Wf,
d

dt

∣∣∣
t=0

EγVt,Zg
)
, λ

〉
=

d

dt

∣∣∣
t=0

E
X∼ρY

〈Vt,Wf(X), Vt,Zg(Y )〉

= E
X∼ρY

〈f(X), Z(Y )− 〈Z(Y ), g(Y )〉+g(Y )〉+ E
X∼ρY

〈W (X)− 〈W (X), f(X)〉+f(X), g(Y )〉

= Eγ〈Tρf, Z − 〈Z, g〉+g〉+ Eγ〈W − 〈W, f〉+f, Tρg〉.

The above equality can be rearranged to be

Eγ〈Tρf − λ(1), Z − 〈Z, g〉+g〉+ Eγ〈Tρg − λ(2), W − 〈W, f〉+f〉 = 0.

The proof then concludes as in [HNP+21, Lemma 6.11]. �

Let W : Rn → Rn be a tame vector field. Define

F0(x) := x,
d

dt
Ft(x) = W (Ft(x)), ∀ t ∈ R, ∀x ∈ Rn.

Denote Ft = Ft,W , where appropriate.

St,Wf(x) := f(F−1
t (x)), ∀ t ∈ R, ∀x ∈ Rn. (35)

divγW (x) := divW (x)− 〈W (x), x〉.

Lemma 9.9 (First Variation, Lemma 6.13, [HNP+21]). Let f, g : Rn → Rk and let
W,Z : Rn → Rn be tame vector fields. Then

d

dt

∣∣∣
t=0

E
X∼ρY

〈St,Wf(X), St,Zg(Y )〉 = Eγ[〈f, Tρf〉divγW + 〈f,DWTρf〉]

+ Eγ[〈g, Tρg〉divγZ + 〈g,DZTρg〉].

Let λ ∈ R2k from Lemma 9.6. Define

Q(W,Z) :=
d2

dt2

∣∣∣
t=0

E
X∼ρY

〈St,Wf(X), St,Zg(Y )〉 −
〈
λ,

( d2

dt2

∣∣∣
t=0

EγSt,Wf,
d2

dt2

∣∣∣
t=0

EγSt,Zg
)〉
.

(36)

Lemma 9.10 (Second Variation, Lemma 6.15, [HNP+21]). Let W,Z : Rn → Rn be tame
vector fields such that

d

dt

∣∣∣
t=0

EγSt,Wf =
d

dt

∣∣∣
t=0

EγSt,Zg = 0.

Let f, g be optimally stable. Then
Q(W,Z) ≥ 0.
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Proof. Similar to Lemma 9.5, for any α ∈ Rk and β ∈ R, define

fα,β :=
f(Fβ,W (x)) +

∑k
i=1 αiWi(x)

max
(
1, ‖f(Fβ,W (x)) +

∑k
i=1 αiWi(x)‖

) .
gα,β :=

g(Fβ,Z(x)) +
∑k

i=1 αiWi(x)

max
(
1, ‖g(Fβ,Z(x)) +

∑k
i=1 αiWi(x)‖

) .
Define L : R2k+1 → R2k by

L(α, θ, β) := (Eγfα,β, Eγgθβ) , ∀α, θ ∈ Rk, ∀ β ∈ R.

Then by assumption, we have

∂L

∂β
(0, 0) =

(
d

dt

∣∣∣
t=0

EγSt,Wf,
d

dt

∣∣∣
t=0

EγSt,Zg

)
= 0. (37)

And by definition of L, we have, for all 1 ≤ i ≤ k,

∂L

∂αi

(0, 0) =

(
d

dt

∣∣∣
t=0

EγSt,Wi
f, 0

)
.

∂L

∂θi
(0, 0) =

(
0,

d

dt

∣∣∣
t=0

EγSt,Wi
g

)
.

(38)

From Lemma 9.4, we conclude that the matrix of partial derivatives DL of L is a (2k +
1) × 2k matrix of rank 2k. So, by the Implicit Function Theorem, there exists ε > 0 and
a differentiable curve η : (−ε, ε) → R2k+1 with η(0) = 0, η′(0) 6= 0 and L(η(t)) = 0 for all
t ∈ (−ε, ε). The last property implies, by the Chain Rule, that

0 =
d

dt

∣∣∣
t=0
L(η(t)) =

k∑
i=1

∂L

∂αi

(0, 0)η′i(0) +
k∑

i=1

∂L

∂θi
(0, 0)η′k+i(0) +

∂L

∂β
(0, 0)η′2k+1(0). (39)

The last term is zero by (37). Lemma 9.4 and (38) imply that set
{

∂L
∂αi

(0, 0), ∂L
∂θi

(0, 0)
}k

i=1
consists of 2k linearly independent vectors. We conclude from (39) that η′i(0) = η′i+k(0) = 0
for all 1 ≤ i ≤ k. Since η′(0) 6= 0, we conclude that η′2k+1(0) 6= 0. (Observe L(η(t)) = 0 for
all t ∈ (−ε, ε), i.e. Eγf = Eγg = 0 for all t ∈ (−ε, ε), so the desired constraints hold for f, g
for all t ∈ (−ε, ε).)

Taking another derivative of (39) and using η′i(0) = η′i+k(0) = 0 for all 1 ≤ i ≤ k along
with L(η(t)) = 0 for all t ∈ (−ε, ε) and (37),

0 =
d2

dt2

∣∣∣
t=0
L(η(t)) =

k∑
i=1

∂L

∂αi

(0, 0)η′′i (0) +
k∑

i=1

∂L

∂θi
(0, 0)η′′k+i(0) +

∂2L

∂β2
(0, 0)(η′2k+1(0))

2.

(40)
Define J0(α, θ, β) := E

X∼ρY
〈fα,β(X), gθ,β(Y )〉 and J1(t) := J0(η(t)). Then, since f, g are

optinally stable and L(η(t)) = 0 for all t ∈ (−ε, ε), we have J ′
1(0) = 0. Since η′i(0) =
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η′i+k(0) = 0 for all 1 ≤ i ≤ k, we have 0 = J ′
1(0) = η′2k+1(0)

∂J0
∂β

(0, 0). Since η′2k+1(0) 6= 0, we
have ∂J0

∂β
(0, 0) = 0. Taking another derivative of J1 and using optimality of f, g, we have

0 ≤ J ′′
1 (0) =

k∑
i=1

∂J0
∂αi

(0, 0)η′′i (0) +
k∑

i=1

∂J0
∂θi

(0, 0)η′′k+i(0) +
∂2J0
∂β2

(0, 0)(η′2k+1(0))
2. (41)

Here we again used η′i(0) = η′i+k(0) = 0 for all 1 ≤ i ≤ k. Lemma 9.9 says ∂
∂αi
J0 = 〈λ, ∂

∂αi
L〉

for all 1 ≤ i ≤ k and ∂
∂θi
J0 = 〈λ, ∂

∂θi
L〉 for all 1 ≤ i ≤ k. So, we can rewrite (41) as

0 ≤ J ′′
1 (0) =

k∑
i=1

η′′i (0)〈λ,
∂

∂αi

L〉+
k∑

i=1

η′′k+i(0)〈λ,
∂

∂θi
L〉 +

∂2J0
∂β2

(0, 0)(η′2k+1(0))
2

(40)
= −(η′2k+1(0))

2
〈
λ,
∂2L

∂β2
(0, 0)

〉
+
∂2J0
∂β2

(0, 0)(η′2k+1(0))
2.

(42)

Since (η′2k+1(0))
2 > 0, we can factor it out of (42) to get

0 ≤ −
〈
λ,
∂2L

∂β2
(0, 0)

〉
+
∂2J0
∂β2

(0, 0).

This inequality concludes the proof, since the right side is Q(W,Z). �

Lemma 9.11 (Second Variation of Translations, adapted from Lemma 6.17, [HNP+21]).
Fix w ∈ Rn. Let W : Rn → Rn be the constant vector field W := w. Let f, g be optimally
stable. Assume that

d

dt

∣∣∣
t=0

EγSt,Wf =
d

dt

∣∣∣
t=0

EγSt,Zg = 0.

Then
Q(W,W ) = 2(1− 1/ρ)Eγ‖DwT√ρf‖2.

Proof. Let z ∈ Rn. Let Z : Rn → Rn be the constant vector field Z := z. From (35),
St,Wf(x) = f(x− tw) for all t ∈ R, x ∈ Rn. So,

d2

dt2

∣∣∣
t=0

EγSt,Wf = E[Dw(Dwf)],
d2

dt2

∣∣∣
t=0

EγSt,Zg = E[Dz(Dzg)]. (43)

Using the product rule and Definition 1.1,

d2

dt2

∣∣∣
t=0

E
X∼ρY

〈St,Wf(X), St,Zg(Y )〉

= E
X∼ρY

〈D2
w,wf(X), g(Y )〉+ E

X∼ρY
〈f(X), D2

z,zg(Y )〉+ 2 E
X∼ρY

〈Dwf(X), Dzg(Y )〉

= Eγ〈D2
w,wf, Tρg〉+ Eγ〈Tρf,D2

z,zg〉+ 2Eγ〈Dwf, TρDzg〉

= Eγ〈D2
w,wf, Tρg〉+ Eγ〈Tρf,D2

z,zg〉+
2

ρ
Eγ〈Dwf,DzTρg〉.
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Substituting the definition of Q (36), using (43), then integrating by parts twice,

Q(W,Z) = Eγ〈D2
w,wf, Tρg − λ(2)〉+ Eγ〈Tρf − λ(1), D2

z,zg〉+
2

ρ
Eγ〈Dwf,DzTρg〉

= −
k∑

i=1

EγDwfidivγ(w(Tρgi − λ
(2)
i ))−

k∑
i=1

EγDzgidivγ(z(Tρfi − λ
(1)
i ))

− 2

ρ

k∑
i=1

Eγfidivγ(wDzTρgi)〉

=
k∑

i=1

Eγfidivγ(wdivγ(w(Tρgi − λ
(2)
i ))) +

k∑
i=1

Eγgidivγ(zdivγ(z(Tρfi − λ
(1)
i )))

− 2

ρ

k∑
i=1

Eγfidivγ(wDzTρgi)〉.

(44)

We examine the penultimate terms. From the First Variation Lemma 9.8, a.s.

‖Tρf − λ(1)‖g = Tρf − λ(1), ‖Tρg − λ(2)‖f = Tρg − λ(2).

So, using first the product rule then Lemma 9.8,
k∑

i=1

Eγfidivγ(wdivγ(w(Tρgi − λ
(2)
i ))) =

k∑
i=1

Eγfidivγ((Tρgi − λ
(2)
i )wdivγ(w) + wDwTρgi)

=
k∑

i=1

Eγfidivγ(‖Tρgi − λ
(2)
i ‖fiwdivγ(w) + wDwTρgi).

The penultimate term here is zero by [HNP+21, Lemma 6.4], and a similar calculation for
the other term in (44) allows us to rewrite (44) as

Q(W,Z) =
k∑

i=1

Eγfidivγ(wDwTρgi) +
k∑

i=1

Eγgidivγ(zDzTρfi)

− 2

ρ

k∑
i=1

Eγfidivγ(wDzTρgi)〉.

Lemma 9.12, rewrites this as

Q(W,Z) = −Eγ〈DwT√ρf, DwT√ρg〉 − Eγ〈DzT√ρf, DzT√ρg〉+
2

ρ
Eγ〈DwT√ρf, DzT√ρg〉.

Using now Lemma 9.3, we may assume that g = −f , so that

Q(W,Z) = Eγ〈DwT√ρf, DwT√ρf〉+ Eγ〈DzT√ρf, DzT√ρf〉 −
2

ρ
Eγ〈DwT√ρf, DzT√ρf〉.

Choosing w = z, we get

Q(W,W ) = 2(1− 1/ρ)Eγ‖DwT√ρf‖2.

�
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Lemma 9.12 (Lemma 6.6, [HNP+21]). Let w ∈ Rn. Then
k∑

i=1

Eγfidivγ(wDzTρgi) = −Eγ〈DwT√ρg, DzT√ρf〉.

Proof of Theorem 9.1. Let f, g : Rn → Sk−1 be optimally stable. Let w ∈ Rn. Define
W : Rn → Rn so that W (x) := w for all x ∈ Rn. Let W satisfy

d

dt

∣∣∣
t=0

EγSt,Wf =
d

dt

∣∣∣
t=0

EγSt,Wg = 0. (45)

Since f = −g by Lemma 9.3, (45) is equivalent to
d

dt

∣∣∣
t=0

EγSt,Wf = 0. (46)

Define L : Rn → Rk by L(w) := d
dt
|t=0EγSt,Wf . Let ker(L) := {w ∈ Rn : L(w) = 0} denote

the kernel of L. Since L is a linear map, the rank-nullity theorem implies that ker(L) has
dimension at least n− k.

Let w ∈ ker(L). Then Lemma 9.10 says Q(W,W ) ≥ 0, while Lemma 9.11 says
Q(W,W ) = 2(1− 1/ρ)Eγ‖DwT√ρf‖2 ≤ 0.

We conclude that there exists a linear subspace ker(L) ⊆ Rn of dimension at least n−k with
Eγ‖DwT√ρf‖2 = 0, ∀w ∈ ker(L).

That is, we may assume that f is constant on ker(L), as noted e.g. in [HNP+21, Lemma
6.6]. That is, we may assume a priori that f : Rk → Rk−1. Theorem 9.1 follows. �
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