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Abstract. We prove the three candidate Plurality is Stablest Conjecture of Khot-Kindler-
Mossel-O’Donnell from 2005 for correlations ρ satisfying −1/43 < ρ < 1/10: the Plurality
function is the most noise stable three candidate election method with small influences,
when the corrupted votes have correlation −1/43 < ρ < 1/10 with the original votes. The

previous best result of this type only achieved positive correlations at most 10−10
10

. Our
result follows by solving the three set Standard Simplex Conjecture of Isaksson-Mossel from
2011 for all correlations −1/43 < ρ < 1/10.

The Gaussian Double Bubble Theorem corresponds to the case ρ → 1−, so in some
sense, our result is a generalization of the Gaussian Double Bubble Theorem. Our result
is also notable since it is the first result for any ρ < 0, which is the only relevant case for
computational hardness of MAX-3-CUT. In fact, assuming the Unique Games Conjecture,
we show that MAX-3-CUT is NP-hard to approximate within a multiplicative factor of
.98937, which improves on the known (unconditional) NP-hardness of approximation within
a factor of 1− (1/102), proven in 1997. As an additional corollary, we conclude that three
candidate Borda Count is stablest for all −1/43 < ρ < 1/10.
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1. Introduction

Motivated by a result of Bourgain [Bou02] in discrete Fourier analysis and by compu-
tational hardness results for MAX-CUT [KKMO07], Mossel, O’Donnell and Oleszkiewicz
proved the Majority is Stablest Theorem 1.2 below [MOO10]. This Theorem says that the
majority function is the most noise stable voting method, such that each candidate has

Date: August 10, 2023.
Key words and phrases. social choice theory, noise stability, plurality, max-cut, max-3-cut.

1



an equal chance of winning the election, and such that each voter has a small influence
on the election’s outcome. Here we interpret a function f : {−1, 1}n → {−1, 1} as a vot-
ing method with two candidates, denoted as 1 and −1. That is, the input of f are votes
x = (x1, . . . , xn) ∈ {−1, 1}n, where the ith person’s vote is for candidate xi ∈ {−1, 1}, and
the winner of the election is f(x) when the votes are x.

The Majority is Stablest Theorem can also be motivated by social choice theory, which
seeks “optimal” voting methods. For a mathematical discussion of social choice theory, see
e.g. [O’D14, MOO10, IM12, Kal02]. Noise stability has also been investigated in percolation,
e.g. in [BKS99].

Another main motivation of Theorem 1.2 was [KKMO07] computational hardness of MAX-
CUT . The MAX-CUT problem asks for the partition of the vertices of a finite undirected
graph into two sets that maximizes the number of edges going between the two sets. The
MAX-CUT problem is NP-hard, so if P6=NP, no polynomial time algorithm can solve it.
Moreover, it was shown that it is NP-hard to find a partition of a graph that is about 94%
as much as the largest partition value [H̊as01] [TSSW00] (for every ε > 0, a multiplica-
tive approximation of 16/17 + ε is NP-hard). However, this NP-hardness result does not
quite match the best known polynomial time algorithm for MAX-CUT. For any ε > 0, the
semidefinite programming algorithm of [GW95] approximates the MAX-CUT problem in
polynomial time within a multiplicative factor of α2 − ε, where

α2 := inf
−1≤ρ≤1

2

1

1
π

arccos(ρ)

1− ρ
≈ .87856720578.

That is, it is possible to obtain in polynomial time a partition of the graph where the number
of edges going between the two partition elements is at least 87.8% as much as the largest
partition value.

Assuming the Unique Games Conjecture, the gap between the 16/17 hardness and the
.87856 . . . approximation can be closed exactly.

Theorem 1.1 (Sharp Hardness for MAX-CUT, [KKMO07, Theorem 1]). Assume that
the Unique Games Conjecture is true [Kho02, Kho10, KMS18]. Then, for any ε > 0, it is
NP-hard to approximate MAX-CUT within a multiplicative factor of α2 + ε.

Theorem 1.1 is called a sharp hardness result since the quantity α2 gives an exact barrier
between tractability (i.e. the polynomial time algorithm of [GW95]) and intractability (as
stated in Theorem 1.1).

For a statement of the Unique Games Conjecture, see [Kho02, Kho10]. For some recent
progress demonstrating that the conjecture is “half way proven,” see [KMS18].

One main ingredient in the proof of Theorem 1.1 was Theorem 1.2.

Theorem 1.2 (Majority is Stablest, [MOO10]). Let ε > 0 and let 0 < ρ < 1. Then there
exists a τ > 0 such that the following holds. Let n be a positive integer. Let f : {−1, 1}n →
{−1, 1} satisfy

∑
x∈{−1,1}n f(x) = 0 and max1≤i≤n Infi(f) ≤ τ . Then

Sρ(f) ≤ 1− 2

π
arccos(ρ) + ε.

2



For each 1 ≤ i ≤ n, we defined the ith influence of f to be

Infi(f) := 2−n
∑

x∈{−1,1}n

1

2
|f(x)− f(x1, . . . , xi−1,−xi, xi+1, . . . , xn)| ,

and we defined the noise stability of f with parameter ρ ∈ (−1, 1) to be

Sρ(f) := 2−n
∑

x∈{−1,1}n
f(x)

∑
y∈{−1,1}n

((1− ρ)/2)
‖x−y‖1

2 ((1 + ρ)/2)n−
‖x−y‖1

2 f(y).

Equivalently, Sρ(f) is the expected value E(f(X)f(Y )), where X is a uniformly random
element of {−1, 1}n, and Y = (Y1, . . . , Yn) has independent pm1 entries with EXiYi = ρ for
all 1 ≤ i ≤ n. We also used ‖x‖1 :=

∑n
i=1 |xi| for all x = (x1, . . . , xn) ∈ Rn.

In Theorem 1.2, the quantity 1− 2
π

arccos(ρ) can also be written as

lim
n→∞

Sρ(Majn), (1)

where Majn(x) := sign(x1 + · · · + xn), for all x = (x1, . . . , xn) ∈ {−1, 1}n, is the majority
function. (The value of the limit in (1) does not depend on the definition of the sign of zero.)

Note that the name “Majority is Stablest” for Theorem 1.2 is a slight misnomer, since for
any particular n, the majority function Majn is not guaranteed to exactly maximize noise
stability, due to the +ε term in the inequality of Theorem 1.2. Moreover, Sρ(−Majn) =
Sρ(Majn), i.e. anti-majority has the same noise stability as the majority function.

The full Majority is Stablest Theorem from [MOO10] is actually more general than The-
orem 1.2, since the constraint 2−n

∑
x∈{−1,1}n f(x) = 0 can be replaced with the following

constraint: for some fixed −1 < a < 1, we have 2−n
∑

x∈{−1,1}n f(x) = a. Under this
assumption, a shifted majority function is most noise stable.

1.1. From Two Sets to Three. Theorem 1.1 addresses the MAX-CUT problem, where a
graph is split into two pieces. One can consider a similar problem for splitting a graph into
k ≥ 3 pieces. This problem is called the MAX-k-CUT problem.

Definition 1.3 (MAX-k-CUT). Let w : {1, . . . , n}2 → [0,∞) be an n × n symmetric
matrix with w(i, i) = 0 for all 1 ≤ i ≤ n. Fix k ≥ 2. The goal of the MAX-k-
CUT problem is to find a partition P1, . . . , Pk of {1, . . . , n} that maximizes the quantity∑

1≤i<j≤k
∑

`∈Pi,m∈Pj w(`,m).

Choosing k = 2 shows MAX-CUT is the same as MAX-2-CUT, when w is the adjacency
matrix of an n-vertex graph.

It was conjectured in [KKMO07] that an analogue of Theorem 1.1 should be true for
MAX-k-CUT. However, this result has been open since it was formulated.

Theorem 1.2 was proven as a Corollary of the so-called invariance principle [MOO10]
(see also [Cha06, Rot79]). That is, the main insight used to prove Theorem 1.2 was that
Theorem 1.2 is equivalent to a continuous inequality for Euclidean sets equipped with the
Gaussian measure. Such a continuous inequality was proven already in 1985 [Bor85]. This
inequality says that the noise stability of a set of fixed Gaussian measure is maximized by
half spaces. (We define the noise stability of a Euclidean set in Definition 1.13 below.) The
equivalence between the discrete problem of Theorem 1.2 and Borell’s inequality in Euclidean
space [Bor85] was proven via a nonlinear generalization of the Berry-Esseén Central Limit
Theorem, called an invariance principle.
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If we try to generalize Theorem 1.2 to product domains e.g. to functions f : {1, 2, 3}n →
{1, 2, 3}, then we obtain the so-called Plurality is Stablest Conjecture [KKMO07, IM12]. As
in [MOO10], this new conjecture is equivalent to a continuous problem in Euclidean space
[IM12], which is a 3-set generalization of the inequality of Borell [Bor85].

In [IM12], the arguments of [KKMO07, MOO10] were adapted to show that sharp com-
putational hardness for the MAX-k-CUT problem would follow from a k-set generalization
of the inequality of Borell [Bor85]. Despite this equivalence, the k-set analogue of Borell’s
inequality (known as the Standard Simplex Conjecture) was not known to be true or false.
(The k = 3 case of this conjecture is stated in Theorem 1.5 below.) Moreover, previously
studied proofs of Borell’s inequality did not generalize to k ≥ 3 sets, despite the development
of many different proofs of Borell’s inequality [Bor85, Led94, Led96, Bob97, BS01, Bor03,
MN15a, MN15b, Eld15].

Recently, we have been developing calculus of variations methods in order to prove the
Conjecture of [IM12], i.e. a generalization of Theorem 1.2 to other finite product domains.
Such methods originated in [CM12] (itself inspired by e.g. [Sim68, Per02]), where a mono-
tone quantity for the mean curvature flow was created and its stable critical points were
investigated. This monotone quantity was a supremum of Gaussian surface area. It was
unclear if the methods of [CM12] could apply to the noise stability functional in Definition
1.13 until [HT21], where these methods were adapted to show that the k-set Standard Sim-
plex Conjecture in Rn reduces to the same conjecture in Rk−1, for any n ≥ k − 1. This
proof method can also prove Borell’s original inequality [HT21, Hei21]. The result of [HT21]
also circumvented a difficulty identified in [HMN16]. Although Theorem 1.2 holds when the
average value of f is fixed to be some number −1 < a < 1, the three candidate analogue of
the Majority is Stablest Theorem can only be true when the voting method takes all of its
values with equal probability. Likewise, the arguments used to prove the k = 3 set case of the
Standard Simplex Conjecture must only work when each of the Euclidean sets in question
has Gaussian measure 1/3. For other measure constraints, it may be impossible to easily
describe the optimal sets, as e.g. observed in attempts to optimize Krivine’s functional as it
relates to Grothendieck’s constant [BMMN13].

In this paper, we prove the k = 3 set analogue of Borell’s inequality (i.e. the k =
3 set Standard Simplex Conjecture) for all correlation parameters −.0234 ≤ ρ ≤ .1082,
thereby proving the 3 candidate case of the Plurality is Stablest Conjecture, i.e. the 3
candidate analogue of Theorem 1.2 for all correlation parameters −.0234 ≤ ρ ≤ .1082.
These conjectures have remained open since 2006 [KKMO07]. The current paper and the
previous results [HT21, Hei14] seem to be the only works verifying cases of the Plurality is
Stablest conjecture.

1.2. Some Notation. For any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, denote

〈x, y〉 :=
n∑
i=1

xiyi, ‖x‖ := 〈x, x〉1/2.

Denote the (n− 1)-dimensional sphere in Rn as

Sn−1 := {x ∈ Rn : ‖x‖ = 1}.
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For any integer k ≥ 2, denote the standard simplex in Rk as

∆k := {x ∈ Rk :
k∑
i=1

xi = 1, xi ≥ 0, ∀ 1 ≤ i ≤ k}.

Define the Gaussian density function in Rn as

γn(x) := (2π)−n/2e−‖x‖
2/2, ∀x ∈ Rn.

WhenA ⊆ Rn is a measurable set, denote the Gaussian measure ofA as γn(A) :=
∫
A
γn(x) dx.

Definition 1.4 (Ornstein-Uhlenbeck Operator). Let −1 < ρ < 1. Let f : Rn → [0, 1]
be measurable. Define the Ornstein-Uhlenbeck operator applied to f by

Tρf(x) :=

∫
Rn
f(ρx+ y

√
1− ρ2)γn(x) dx, ∀x ∈ Rn.

1.3. Main Results. Below, we say that Ω1,Ω2,Ω3 ⊆ Rn is a partition of Rn if Ω1,Ω2,Ω3

are measurable, Ωi ∩ Ωj = ∅ for all 1 ≤ i < j ≤ 3, and ∪3
i=1Ωi = Rn.

Below, we also let Θ1,Θ2,Θ3 ⊆ R2 be a partition of R2 into three disjoint sectors (cones)
each with cone angle 2π/3, centered at the origin.

Theorem 1.5 (Standard Simplex Conjecture, 3 Sets, [IM12, Conjecture 1.4]). Let
n ≥ 2. Let Ω1,Ω2,Ω3 be a partition of Rn.

If 0 < ρ ≤ .1082, and if γn(Ωi) = 1/3 for all 1 ≤ i ≤ 3, then

3∑
i=1

∫
Rn

1Ωi(x)Tρ1Ωi(x) γn(x) dx ≤
3∑
i=1

∫
R2

1Θi(x)Tρ1Θi(x) γ2(x) dx.

If −.0234 ≤ ρ < 0, (with no restriction on the measures γn(Ωi)), then

3∑
i=1

∫
Rn

1Ωi(x)Tρ1Ωi(x) γn(x) dx ≥
3∑
i=1

∫
R2

1Θi(x)Tρ1Θi(x) γ2(x) dx.

Theorem 1.5 should hold for all −1 < ρ < 1 [IM12]. The two main inequalities in Theorem
1.5 are equalities only when Ωi = Θi × Rn−1 for all 1 ≤ i ≤ 3 (up to measure zero changes
and rotations applied to the sets). That is, we actually prove a stronger “stability” version
of Theorem 1.5 in (53) and (65) when n = 2:

If 0 < ρ ≤ .1082, and if γn(Ωi) = 1/3 for all 1 ≤ i ≤ 3, then

3∑
i=1

∫
Rn

1Ωi(x)Tρ1Ωi(x) γn(x) dx−
3∑
i=1

∫
R2

1Θi(x)Tρ1Θi(x) γ2(x) dx

≤ (−.3 + 3(ρ+ ρ2))

∫ ∞
r=0

r(1− e−ρr/2)e−r
2/2

3∑
i=1

(σ(Ωi ∩ rS1)− 1/3)2 3

2
dr.

5



If −.0234 ≤ ρ < 0, (with no restriction on the measures γn(Ωi)), then

3∑
i=1

∫
Rn

1Ωi(x)Tρ1Ωi(x) γn(x) dx−
3∑
i=1

∫
R2

1Θi(x)Tρ1Θi(x) γ2(x) dx

≥ (2 · .75/13.2− (3
√
π/2ρ+ 8ρ2))

∫ ∞
r=0

r(1− e−ρr/2)e−r
2/2

3∑
i=1

(σ(Ωi ∩ rS1)− 1/3)2 3

2
dr.

Here σ denotes normalized (Haar) probability measure on the sphere S1. Note that the
“penalty” terms we wrote above only check how far the measure of each set is from 1/3
when restricted to sphere of radius r, though in the course of the proof we find that such
restricted sets must be circular arcs.

As demonstrated in [IM12], Theorem 1.5 has a discrete analogue, known as the Plurality
is Stablest Conjecture. This Conjecture was first formulated in [KKMO07].

Theorem 1.6 (Plurality is Stablest, 3 Candidates, Informal Statement, [KKMO07,
page 9], [IM12, Conjecture 1.9]). The Plurality function is the most noise stable three-
candidate voting method with small influences, for all correlations ρ satisfying −.0234 ≤
ρ ≤ .1082

More formally, Conjecture 1.10 below holds when m = 3 and −.0234 ≤ ρ ≤ .1082.
Theorem 1.6 should hold for all −1/2 ≤ ρ < 1 [KKMO07, IM12]. This is called the three

candidate Plurality is Stablest Conjecture. If this conjecture holds, then we would be able
to conclude sharp hardness of approximation for the MAX-3-CUT problem, assuming the
Unique Games Conjecture.

Conjecture 1.7 (Sharp Hardness for MAX-3-CUT, [IM12]). Assume that the Unique
Games Conjecture is true [Kho02, Kho10, KMS18]. Assume the Plurality is Stablest Conjec-
ture holds (for three candidates) [IM12]. Then, for any ε > 0, it is NP-hard to approximate
MAX-3-CUT within a multiplicative factor of α3 + ε.

As shown in [IM12] using the formula from [KPW04], we have

α3 := inf
− 1

2
≤ρ≤1

3

2

1−
∑3

i=1

∫
R2 1Θi(x)Tρ1Θi(x) γ2(x) dx

1− ρ

= inf
− 1

2
≤ρ≤1

3

2

1− 3
(

1
9

+ [arccos(−ρ)]2−[arccos(ρ/2)]2

4π2

)
1− ρ

=
3

2

1− 3
(

1
9

+ [arccos(1/2)]2−[arccos(−1/4)]2

4π2

)
1 + 1/2

≈ .83600811464.

The semidefinite programming algorithm of [FJ95] shows that Conjecture 1.7 is sharp,
since the polynomial time algorithm of [FJ95] approximates the MAX-3-CUT problem with
a multiplicative factor of α3 − ε, for any ε > 0.

A corollary of our main result Theorem 1.5 is a weaker version of Conjecture 1.7.

Theorem 1.8 (Unique Games Hardness for MAX-3-CUT). Assume that the Unique
Games Conjecture is true [Kho02, Kho10, KMS18]. Then it is NP-hard to approximate
MAX-3-CUT within a multiplicative factor of .98937.
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Although Theorem 1.8 does not achieve the .836 . . . hardness of approximation of Conjec-
ture 1.7, the constant in Theorem 1.8 does improve upon (to the author’s knowledge) the
best (unconditional) NP-hardness result for MAX-3-CUT [KKLP97], which says that MAX-
3-CUT is NP-hard to approximate within a multiplicative factor of 1− 1/(34(3)) ≈ .990 . . ..

Another consequence of Theorem 1.6 and the main result of [Hei22b] is that Borda Count
is the most noise stable three-candidate ranked choice voting method with small influences
satisfying the Condorcet Loser Criterion, for all correlations ρ satisfying −.0234 ≤ ρ ≤ .1082

1.4. Sketch of Proof of Main Theorem. Here we sketch the proof of Theorem 1.5 when
ρ > 0. First, the main result of [HT21] (or [Hei22a] for negative correlations) reduces
Theorem 1.5 to the case n = 2. Next, we use a spherical harmonic decomposition, as
suggested as an approach to the conjectured vector-valued Borell inequality of [HNP+21]
(though note that their inequality is presently unproven). That is, we write the noise stability
of a set Ω = Ωi ⊆ R2 as an average over spheres. Using Definition 1.4 below, we have

3∑
i=1

∫
R2

1Ωi(x)Tρ1Ωi(x)γ2(x) dx

=
3∑
i=1

1

2π(1− ρ2)

∫ ∞
r=0

∫ ∞
s=0

rse
−r2−s2
2(1−ρ2)

∫
u∈S1

∫
v∈S1

1rS1∩Ωi(ru)1sS1∩Ωi(sv)e
ρrs〈u,v〉
1−ρ2 dvdudsdr.

One might try to maximize the “spherical noise stability” by fixing r, s > 0 and then
maximizing the two inner integrals in u, v over choices of Ω1,Ω2,Ω3 constrained to the circles
rS1 and sS1. However, such a maximization would ruin the measure constraint in Theorem
1.5, since the two inner integrals are maximized when rS1∩Ω1 = rS1 and when sS1∩Ω1 = sS1

(with Ω2 = Ω3 = ∅). In order to ameliorate this issue, it is natural to add and subtract the
mean value ci(r) :=

∫
rS1∩Ωi

dv/2π of 1Ωi on the circle rS1, by writing:

3∑
i=1

∫
R2

1Ωi(x)Tρ1Ωi(x)γ2(x) dx

=
3∑
i=1

1

2π(1− ρ2)

∫ ∞
r=0

∫ ∞
s=0

rse
−r2−s2
2(1−ρ2)

(
ci(r)ci(s)

+

∫
u∈S1

∫
v∈S1

[1rS1∩Ωi(ru)− ci(r)][1sS1∩Ωi(sv)− ci(s)]e
ρrs〈u,v〉
1−ρ2 dvdu

)
dsdr.

(2)

Now, when r, s > 0 are fixed, the two inner integrals in u, v have a product of mean
subtracted terms. These terms together can be considered a “mean subtracted spherical
noise stability.” Crucially, this quantity is no longer maximized when rS1 ∩ Ω1 = rS1 and
when sS1 ∩ Ω1 = sS1. Such a mean subtraction step was also used in the earlier work
[Hei14], though using Hermite polynomials as a Fourier basis instead of spherical harmonics.
(It might be possible to use the methods of [Hei14] to prove Theorem 1.5, but we have not
tried to do so.)

The decomposition (2) is natural since the mean subtracted spherical noise stability is
exactly maximized when Ω1,Ω2,Ω3 intersected with rS1 are three disjoint spherical arcs of
angle 2π/3, for all r > 0. This statement holds without any measure constraint on the sets.
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Again, such a realization was crucial in [Hei14], in the context of Hermite polynomials, since
we can temporarily ignore the measure constraint that γ2(Ωi) = 1/3 for all 1 ≤ i ≤ 3.

However, this observation and (2) are insufficient to prove Theorem 1.5, due to the first
term (i.e. the product of the means ci(r)ci(s)) in (2). This term is instead maximized when
rS1∩Ωi = rS1 for some 1 ≤ i ≤ 3, for each r > 0. (In fact, even if we constrain γ2(Ωi) = 1/3
for all 1 ≤ i ≤ 3, the mean term in (2) seems to be maximized when Ω1,Ω2,Ω3 ⊆ R2 are
disjoint annuli.) Since the two terms of (2) have different maximizers, a näıve implementation
of (2) does not prove Theorem 1.5. However, it turns out that we can upper bound the first
ci(r)ci(s) term in (2) by the second mean subtracted noise stability term in (2), at least
when the correlation ρ > 0 is close to zero. (See Lemma 5.1, which uses both spherical
and Hermite Fourier analysis, combined with Corollary 4.2, which uses a derivative estimate
in the angular direction.) Therefore, a straightforward spherical rearrangement (see e.g.
Lemma 6.1) shows that (2) really is maximized when the intersection of each Ωi with a circle
centered at the origin is a circular arc of angle 2π/3. However, showing that the first term
is (2) is bounded by the second term relies on some estimates that only seem to hold when
ρ > 0 is small, so this is one main bottleneck in trying to solve the full problem for all
correlations ρ. Interestingly, some of these estimates (such as Lemma 5.1) hold in Rn for
any n ≥ 2, but not when n = 1, since Lemma 5.1 uses integrability of the radial function
r 7→ 1/r near r = 0 in Rn when n = 2.

Our above discussion focused on the case ρ > 0. The above strategy almost works in the
case ρ < 0. However, the case ρ < 0 presents an unexpected difficulty. When r · s is small
enough (depending on ρ < 0), the last term in (2) is minimized when Ω1,Ω2,Ω3 intersected
with rS1 are three disjoint spherical arcs of angle 2π/3. However, when r · s is large, this is
no longer true! When r · s is large, the last term in (2) is minimized when Ω1,Ω2 intersected
with rS1 are two disjoint spherical arcs of angle π (and the intersection with Ω3 is empty).
That is, a straightforward spherical rearrangement can no longer apply when ρ < 0, since
when r · s is large, the optimizing sets do not agree with what they should be in Theorem
1.5. Nevertheless, we can further split the last term of (2) into two parts, one of which is
maximized by three circular arcs with angle 2π/3 (for all r, s > 0), and the remaining term
which is “smaller” in an L2 sense, leading again to a spherical rearrangement argument.
Lastly, for technical reasons (such as proving that the optimal sets are “low-dimensional”),
when ρ < 0 we need to deal with a bilinear version of noise stability, rather than the quadratic
version used e.g. in (2). (For similar technical reasons, the bilinear noise stability was used
e.g. in [HT21, Hei22a].)

1.5. On the Difficulty of Four or More Sets. One might wonder if the results of this
paper could apply to k ≥ 4 sets, since our result only holds for k = 3 sets. At present, some
difficulties remain for k ≥ 4. The key spherical rearrangement Lemma 6.1 is false when
k ≥ 4. This can be seen as a consequence of the Propeller Conjecture in R3 [HJN13]. The
derivative of the noise stability of a partition at ρ = 0 in R3 is maximized for three congruent
flat cones with cone angle 2π/3, rather than for four regular tetrahedral cones, as observed in
e.g. [HJN13]. Consequently, Lemma 6.1 cannot hold for k = 4 sets. Put another way, if we
start with a partition of Euclidean space into 4 sets of Gaussian measure 1/4 each, and we
then restrict the sets to spheres of various radii (as in (2)), then maximizing noise stability
restricted to the spheres will result in three spherical simplices rather than four. That is,
the analogue of the final inequality (45) is false when k ≥ 4. Inequality (45) shows that the
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noise stability (minus the measures of the sets) is larger when comparing three congruent
cones to two half space of measure 1/2 each. But the analogous statement comparing four
regular tetrahedral cones to three regular sectors is false.

Our strategy for k = 3 sets relies on maximizing a mean subtracted noise stability on
circles (i.e. the last term in (2)), while ignoring any measure constraints on the sets. It may
be possible (in fact, it seems necessary) to use the measure constraints on the sets in order
to consider at least k ≥ 4 sets Ω1, . . . ,Ωk. Likewise, incorporating first or second variation
arguments (as in [HT21, Hei22a]) might further constrain the sets under consideration when
k ≥ 4, and possibly lead to progress when k ≥ 4. Our proof of Theorem 1.5 does not use
any direct measure constraints or first/second variation arguments.

One main obstacle to proving Theorem 1.5, as identified in [HMN16], is that Theorem
1.5 cannot hold for ρ > 0 if the sets satisfy (γn(Ω1), γn(Ω2), γn(Ω3)) 6= (1/3, 1/3, 1/3). More
specifically, the sets optimizing noise stability are not the affine of simplicial cones with flat
facets, unless (γn(Ω1), γn(Ω2), γn(Ω3)) = (1/3, 1/3, 1/3). Therefore, a proof of Theorem 1.5
must somehow only work in the case (γn(Ω1), γn(Ω2), γn(Ω3)) = (1/3, 1/3, 1/3). And indeed,
our proof accomplishes this task.

In this work we have also identified a new obstacle to proving Theorem 1.5 for ρ < 0 which
does not seem to have been identified before, as described above. Namely, the spherical
version of Theorem 1.5 is false for spheres of large radii when ρ < 0.

1.6. Formal Statement of Plurality is Stablest. Here we provide a formal statement of
the Plurality is Stablest Conjecture, as written e.g. in [Hei22a].

Let k ≥ 2, k ∈ Z. If g : {1, . . . , k}n → R and 1 ≤ i ≤ n, we denote

E(g) := k−n
∑

ω∈{1,...,k}n
g(ω)

Ei(g)(ω1, . . . , ωi−1, ωi+1, . . . , ωn) := k−1
∑

ωi∈{1,...,k}

g(ω1, . . . , ωn)

∀ (ω1, . . . , ωi−1, ωi+1, . . . , ωn) ∈ {1, . . . , k}n−1.

Define also the ith influence of g, i.e. the influence of the ith voter of g, as

Infi(g) := E[(g − Eig)2]. (3)

If f : {1, . . . , k}n → ∆k, we denote the coordinates of f as f = (f1, . . . , fk). For any
ω ∈ Zn, we denote ‖ω‖0 as the number of nonzero coordinates of ω. The noise stability of
g : {1, . . . , k}n → R with parameter ρ ∈ (−1/(k − 1), 1) is

Sρg := k−n
∑

ω∈{1,...,k}n
g(ω)Eρg(δ)

= k−n
∑

ω∈{1,...,k}n
g(ω)

∑
σ∈{1,...,k}n

(
1 + (k − 1)ρ

k

)n−‖σ−ω‖0 (1− ρ
k

)‖σ−ω‖0
g(σ).

Equivalently, conditional on ω, Eρg(δ) is defined so that for all 1 ≤ i ≤ n, δi = ωi with

probability 1+(k−1)ρ
k

, and δi is equal to any of the other (k − 1) elements of {1, . . . , k} each

with probability 1−ρ
k

, and so that δ1, . . . , δn are independent.
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Remark 1.9. The Plurality is Stablest Conjecture is only stated for −1/(k − 1) ≤ ρ ≤ 1,
whereas the Standard Simplex Conjecture is stated for all −1 < ρ < 1, since the discrete
noise stability Sρg only corresponds to an expected value when ρ ≥ −1/(k − 1).

The noise stability of f : {1, . . . , k}n → ∆k with parameter ρ ∈ (−1/(k − 1), 1) is

Sρf :=
k∑
i=1

Sρfi.

For each j ∈ {1, . . . , k}, let ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rk be the jth unit coordinate
vector. Define the plurality function PLURk,n : {1, . . . , k}n → ∆k for k candidates and n
voters such that for all ω ∈ {1, . . . , k}n.

PLURk,n(ω) :=


ej , if |{i ∈ {1, . . . , k} : ωi = j}| > |{i ∈ {1, . . . , k} : ωi = r}| ,

∀ r ∈ {1, . . . , k} \ {j}
1
k

∑k
i=1 ei , otherwise.

We can now state the more formal version of the Plurality is Stablest Conjecture from
[KKMO07, page 9], [IM12, Conjecture 1.9].

Conjecture 1.10 (Plurality is Stablest, Discrete Version). For any k ≥ 2, ρ ∈
[−1/(m − 1), 1], ε > 0, there exists τ > 0 such that if f : {1, . . . , k}n → ∆k satisfies
Infi(fj) ≤ τ for all 1 ≤ i ≤ n and for all 1 ≤ j ≤ k, then

• If ρ ≥ 0 and if Ef = 1
k

∑k
i=1 ei, then

Sρf ≤ lim
n→∞

SρPLURk,n + ε.

• If − 1
m−1
≤ ρ < 0, then

Sρf ≥ lim
n→∞

SρPLURk,n − ε.

We now state some remaining definitions.

Definition 1.11 (Correlated Gaussians). Let −1 < ρ < 1. Let Gρ(x, y) denote the joint
probability density function on Rn × Rn such that

Gρ(x, y) :=
1

(2π)n(1− ρ2)n/2
e
−‖x‖2−‖y‖2+2ρ〈x,y〉

2(1−ρ2) ∀x, y ∈ Rn. (4)

We denote X ∼ρ Y when (X, Y ) ∈ Rn × Rn have joint probability density function Gρ.

Definition 1.12 (Correlated Random Variables on the Sphere). Let Gr,s
ρ (u, v) denote

the probability density function on Sn−1 × Sn−1 such that the first variable is uniform on
Sn−1 and such that the second variable conditioned on the first has conditional density

Gr,s
ρ (v|u) :=

1

zρ,r,s
e
ρrs〈u,v〉
1−ρ2 , ∀ v ∈ Sn−1.

Here zρ,r,s is a normalizing constant, chosen so that
∫
Sn−1 G

r,s
ρ (v|u)dσ(v) = 1, where σ denotes

the uniform probability (Haar) measure on Sn−1.
We let N r,s

ρ denote the above distribution on Sn−1 × Sn−1 and we denote (U, V ) ∼ N r,s
ρ

when (U, V ) ∈ Sn−1 × Sn−1 have the distribution N r,s
ρ .
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Definition 1.13 (Noise Stability). Let −1 < ρ < 1. Let Ω ⊆ Rn be measurable. Define
the noise stability of Ω with correlation ρ, to be∫

Rn
1Ω(x)Tρ1Ω(x) γn(x) dx

(4)
=

∫
Rn

∫
Rn

1Ω(x)1Ω(y)Gρ(x, y) dxdy.

More generally, for any measurable f : Rn → ∆k, define its noise stability with correlation
ρ, to be ∫

Rn
〈f(x), Tρf(x)〉γn(x) dx.

1.7. Expected Value Notation.

• E with no subscript denotes expected value on a sphere with respect to the uniform
(Haar) probability measure.
• E(U,V )∼Nr,s

ρ
denotes expected value with respect to (U, V ) from Definition 1.12.

• E
X∼ρY

denotes expected value with respect to (X, Y ) from Definition 1.11.

• ER,S denotes expected value with respect to R, S where R = ‖X‖ , S = ‖Y ‖, and
X, Y are two standard ρ-correlated Gaussians, as in Definition 1.11.
• Eγ denotes expected value with respect to the Gaussian density γn.

2. Fourier analysis of Spherical Noise Stability

In this section, we derive some properties of the noise stability restricted to sets in a
sphere. Fix r, s > 0 and let 0 < ρ < 1. Define g : [−1, 1]→ R by

g(t) = gρ,r,s(t) :=
√
π

Γ((n− 1)/2)

Γ(n/2)

e
ρrst

1−ρ2∫ 1

−1
(1− a2)

n
2
− 3

2 e
ρrsa

1−ρ2 da
, ∀ t ∈ [−1, 1]. (5)

Recall that, if h : R→ R is continuous, then

1

Vol(Sn−1)

∫
Sn−1

h(y1)dy =
Vol(Sn−2)

Vol(Sn−1)

∫ 1

−1

(1− t2)
n
2
− 3

2h(t)dt

=
2π(n−1)/2/Γ((n− 1)/2)

2πn/2/Γ(n/2)

∫ 1

−1

(1− t2)
n
2
− 3

2h(t)dt

=
1√
π

Γ(n/2)

Γ((n− 1)/2)

∫ 1

−1

(1− t2)
n
2
− 3

2h(t)dt.

We have chosen the constants so that 1 = 1
Vol(Sn−1)

∫
Sn−1 h(y1)dy, when h = g. When h := 1,

we have
∫ 1

−1
(1− t2)

n
2
− 3

2 dt =
√
π Γ((n−1)/2)

Γ(n/2)
, so

g(t) = gρ,r,s(t)
(5)
= e

ρrst

1−ρ2 ·
∫ 1

−1
(1− a2)

n
2
− 3

2 da∫ 1

−1
(1− a2)

n
2
− 3

2 e
ρrsa

1−ρ2 da
, ∀ t ∈ [−1, 1]. (6)

Definition 2.1 (Spherical Noise Stability). Let ρ ∈ (−1, 1), r, s > 0. Let f : Sn−1 →
[0, 1] be measurable. Define g = gρ,r,s : [−1, 1] → R by (6). Define the smoothing operator
Ug applied to f by

Ugf(x) :=

∫
Sn−1

g(〈x, y〉)f(y) dσ(y), ∀x ∈ Sn.
11



Here σ denotes the (normalized) Haar probability measure on Sn−1. The spherical noise
stability of a set Ω ⊆ Sn−1 with parameters ρ, r, s is∫

Sn−1

1Ω(x)Ug1Ω(x) dσ(x).

When n = 2, we have, for any −1 < t < 1, using the substitution a = cos θ,

g(t)
(6)
= e

ρrst

1−ρ2 ·
∫ 1

−1
(1− a2)−1/2da∫ 1

−1
(1− a2)−1/2e

ρrsa

1−ρ2 da
= e

ρrst

1−ρ2 ·
∫ π

0
dθ∫ π

0
e
ρrs cos θ

1−ρ2 dθ
=

e
ρrst

1−ρ2

1
π

∫ π
0
e
ρrs cos θ

1−ρ2 dθ
. (7)

∫
S1

1Ω(x)Ug1Ω(x) dσ(x)
(7)
=

1
(2π)2

∫
S1

∫
S1 1Ω(x)1Ω(y)e

ρrs〈x,y〉
1−ρ2 dxdy

1
2π

∫ 2π

0
e
ρrs cos θ

1−ρ2 dθ

=

∫ a=2π

a=0

∫ b=2π

b=0
1Ω(a)1Ω(b)e

ρrs cos(a−b)
1−ρ2 dadb

2π
∫ 2π

0
e
ρrs cos a

1−ρ2 da
.

(8)

Here and below we abuse notation slightly by identifying S1 with the interval [0, 2π].
The spherical noise stability has a decomposition into Fourier series by the Funk-Hecke

Formula [HNP+21, Theorem 4.3] (see also (14) for the definition of λr,sd,2)∫
S1

1Ω(x)Ug1Ω(x) dσ(x) = [σ(Ω)]2 +
1

2π2

∞∑
d=1

λr,sd,2

((∫
Ω

cos(xd) dx
)2

+
(∫

Ω

sin(xd) dx
)2)

.

(9)
More generally, for any measurable Ω,Ω′ ⊆ S1, we have e.g. by applying a polarization
identity to (9),∫

S1

1Ω(x)Ug1Ω′(x) dσ(x) = σ(Ω)σ(Ω′)

+
1

2π2

∞∑
d=1

λr,sd,2

(∫
Ω

cos(xd) dx

∫
Ω′

cos(xd) dx+

∫
Ω

sin(xd) dx

∫
Ω′

sin(xd) dx
)
.

(10)

Below, we will obtain some bounds for the constants λr,sd,2 in e.g. (16), (19) and (21).

Roughly speaking, λr,sd,2 behaves like (ρrs)d for r · s near zero, and λr,sd,2 is close to 1 for large
r · s. We note in passing that, for any 0 < t ≤ π,∫

S1

1[−t/2,t/2](x)Ug1[−t/2,t/2](x) dσ(x)
(9)
=
( t

2π

)2

+
2

π2

∞∑
d=1

λr,sd,2
1

d2
sin2(td/2). (11)

Notation: Rising Factorial. For any x ∈ R and for any integer d ≥ 1, we denote
(x)d :=

∏d−1
j=0(x+ j).

Let C
(α)
d : [−1, 1]→ R denote the index α degree d Gegenbauer polynomial, which satisfies

a Rodrigues formula [AAR99, p. 303, 6.4.14]

(1− t2)α−1/2C
(α)
d (t) =

(−2)d(α)d
d!(d+ 2α)d

dd

dtd
(1− t2)α+d−1/2, ∀ t ∈ [−1, 1].
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Letting α := n
2
− 1, we have

(1− t2)
n
2
− 3

2C
(n
2
−1)

d (t) =
(−2)d

(
n
2
− 1
)
d

d!(d+ n− 2)d

dd

dtd
(1− t2)

n
2

+d− 3
2 , ∀ t ∈ [−1, 1]. (12)

From [AAR99, p. 302],

C
(n
2
−1)

d (1) =
(n− 2)d

d!
. (13)

Then [HNP+21, Corollary 4.6] defines

λr,sd,n :=

∫ 1

−1

C
(n2−1)

d (t)

C
(n2−1)

d (1)
(1− t2)

n
2
− 3

2 g(t)dt∫ 1

−1
(1− t2)

n
2
− 3

2 dt

(6)
=

∫ 1

−1

C
(n2−1)

d (t)

C
(n2−1)

d (1)
(1− t2)

n
2
− 3

2 e
ρrst

1−ρ2 dt∫ 1

−1
(1− t2)

n
2
− 3

2 e
ρrst

1−ρ2 dt

(12)∧(13)
=

(−2)d(n
2
− 1)d

d!(d+ n− 2)d

d!

(n− 2)d

∫ 1

−1

[
dd

dtd
(1− t2)

n
2

+d− 3
2

]
e
ρrst

1−ρ2 dt∫ 1

−1
(1− t2)

n
2
− 3

2 e
ρrst

1−ρ2 dt
.

Integrating by parts d times,

λr,sd,n =
( ρrs

1− ρ2

)d (−2)d(n
2
− 1)d

(n− 2)2d

(−1)d
∫ 1

−1
(1− t2)

n
2

+d− 3
2 e

ρrst

1−ρ2 dt∫ 1

−1
(1− t2)

n
2
− 3

2 e
ρrst

1−ρ2 dt
. (14)

We now examine the ratio of integrals∫ 1

−1
(1− t2)

n
2

+d− 3
2 e

ρrst

1−ρ2 dt∫ 1

−1
(1− t2)

n
2
− 3

2 e
ρrst

1−ρ2 dt
, (15)

which is a ratio of modified Bessel functions of the first kind. To recall their definition, first
recall the definition of the Bessel function Jα of the first kind of order α ≥ 0 [AAR99, p.
204]

Jα(x) :=
1√

πΓ(α + 1/2)
(x/2)α

∫ 1

−1

eixt(1− t2)α−1/2dt, ∀x ∈ R.

The modified Bessel function Iα of the first kind of order α ≥ 0 is then defined to be [AAR99,
p. 222]

Iα(x) := i−αJα(ix) =
1√

πΓ(α + 1/2)
(x/2)α

∫ 1

−1

e−xt(1− t2)α−1/2dt

=
1√

πΓ(α + 1/2)
(x/2)α

∫ 1

−1

ext(1− t2)α−1/2dt, ∀x ∈ R.

Iα+d(a)

Iα(a)
=

(a/2)d

(α + 1/2)d

∫ 1

−1
eat(1− t2)α+d−1/2dt∫ 1

−1
eat(1− t2)α−1/2dt

, ∀ a ∈ R, ∀α ≥ 0.

So, setting α = (n/2)− 1 here, the ratio from (15) is equal to(n− 1

2

)
d

(2(1− ρ2)

ρrs

)d
·
In/2+d−1(ρrs/[1− ρ2])

I(n/2)−1(ρrs/[1− ρ2])
.
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Combining with (14), we have

λr,sd,n =
( ρrs

1− ρ2

)d2d(n/2− 1)d
(n− 2)2d

(n− 1

2

)
d

(2(1− ρ2)

ρrs

)d In/2+d−1(ρrs/[1− ρ2])

I(n/2)−1(ρrs/[1− ρ2])

=
In/2+d−1(ρrs/[1− ρ2])

I(n/2)−1(ρrs/[1− ρ2])
=

d∏
j=1

I(n/2)+j−1(ρrs/[1− ρ2])

I(n/2)+j−2(ρrs/[1− ρ2])
.

(16)

We have [Amo74, p. 241]

a

α + 1 +
√

(α + 1)2 + a2
≤ Iα+1(a)

Iα(a)
≤ a

α +
√
α2 + a2

, ∀ a, α ≥ 0. (17)

It therefore follows from (16) that

λr,sd,n ≥ λr,sd+1,n, ∀ d ≥ 0, (18)

and

0 <
d−1∏
j=0

ρrs/[1− ρ2]

n/2 + j +
√

(n/2 + j)2 + [ρrs/[1− ρ2]]2
≤ λr,sd,n

≤
d−1∏
j=0

ρrs/[1− ρ2]

(n/2 + j − 1) +
√

(n/2 + j − 1)2 + [ρrs/[1− ρ2]]2
≤ 1, ∀ r, s > 0, ∀ ρ ∈ (0, 1).

(19)
Also, from [Amo74, p. 242]

a

α + 1/2 +
√

(α + 3/2)2 + a2
≤ Iα+1(a)

Iα(a)
≤ a

α + 1/2 +
√

(α + 1/2)2 + a2
, ∀ a, α ≥ 0.

(20)
So, for all r, s > 0 and for all ρ ∈ (0, 1),

0 <
d−1∏
j=0

ρrs/[1− ρ2]

n/2 + j − 1/2 +
√

(n/2 + j + 1/2)2 + [ρrs/[1− ρ2]]2
≤ λr,sd,n

≤
d−1∏
j=0

ρrs/[1− ρ2]

(n/2 + j − 1/2) +
√

(n/2 + j − 1/2)2 + [ρrs/[1− ρ2]]2
≤ 1.

(21)

Also, from [Amo74, p. 241]

a

1 + α +
√

(α + 1)2 + a2
≤ Iα+1(a)

Iα(a)
≤ a

α +
√

(α + 2)2 + a2
, ∀ a, α ≥ 0. (22)

3. Derivative Estimates

As demonstrated in (8), the quantity F (θ) defined below is the mean subtracted spherical
noise stability of an interval [0, θ] ⊆ R/2πZ. In this section we consider derivative properties
of the mean subtracted spherical noise stability of a partition of the circle S1, parameterized
as R/2πZ. The ultimate goal is control of the second term in (2).
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Lemma 3.1. Denote

F (θ) :=

∫ a=θ

a=0

∫ b=θ
b=0

e
ρrs cos(a−b)

1−ρ2 dadb

2π
∫ 2π

0
e
ρrs cos a

1−ρ2 da
−
( θ

2π

)2

. (23)

Suppose θ1 > θ2 > 0 and π ≤ θ1 + θ2 ≤ 2π. Then

d

dθ
|θ=0

[
F (θ1 + θ) + F (θ2 − θ)

]
< 0.

If additionally θ1 − θ2 ≤ π, then

d

dθ
|θ=0

[
F (θ1 + θ) + F (θ2 − θ)

]
≤
(
− 1 + e

− ρrs cos([θ1−θ2]/2)[θ1+θ2−π]/2
1−ρ2

)θ1 − θ2

2π2
.

Proof. We have

d

dθ
|θ=0[F (θ1 + θ) + F (θ2 − θ)] = F ′(θ1)− F ′(θ2)

= 2

∫ b=θ1
b=0

e
ρrs cos(θ1−b)

1−ρ2 db

2π
∫ 2π

0
e
ρrs cos a

1−ρ2 da
− θ1

2π2
− 2

∫ b=θ2
b=0

e
ρrs cos(θ2−b)

1−ρ2 db

2π
∫ 2π

0
e
ρrs cos a

1−ρ2 da
+

θ2

2π2

= 2

∫ b=θ1
b=0

e
ρrs cos(b)

1−ρ2 db

2π
∫ 2π

0
e
ρrs cos a

1−ρ2 da
− θ1

2π2
− 2

∫ b=θ2
b=0

e
ρrs cos(b)

1−ρ2 db

2π
∫ 2π

0
e
ρrs cos a

1−ρ2 da
+

θ2

2π2

= 2

∫ b=θ1
b=θ2

e
ρrs cos(b)

1−ρ2 db

2π
∫ 2π

0
e
ρrs cos a

1−ρ2 da
− θ1 − θ2

2π2
.

(24)

In the case θ1 − θ2 ≥ π, (24) is negative by the monotonicity of the cosine function:

2

∫ b=θ1
b=θ2

e
ρrs cos(b)

1−ρ2 db

2π
∫ 2π

0
e
ρrs cos a

1−ρ2 da
≤ 2

∫ b=θ1−θ2
b=0

e
ρrs cos(b)

1−ρ2 db

2π
∫ 2π

0
e
ρrs cos a

1−ρ2 da
<
θ1 − θ2

2π2
. (25)

So, it remains to consider the case that θ1 − θ2 < π, i.e. that [θ1 − θ2]/2 < π/2.
Using cos(x−y)−cos(x) =

∫ x
x−y sin(y) dy ≥ ymin(sin(x), sin(x−y)) ≥ yminx−y≤z≤x sin(z),

for all θ2 ≤ b ≤ θ1, we have

e
ρrs cos(b−[θ1+θ2−π]/2)

1−ρ2 − e
ρrs cos(b)

1−ρ2 = e
ρrs cos(b)

1−ρ2
[
e
ρrs(cos(b−[θ1+θ2−π]/2)−cos(b))

1−ρ2 − 1
]

= e
ρrs cos(b)

1−ρ2
[
e
ρrs

∫ b
b−[θ1+θ2−π]/2

sin(y) dy

1−ρ2 − 1
]

≥ e
ρrs cos(b)

1−ρ2
[
e
ρrs cos([θ1−θ2]/2)·[θ1+θ2−π]/2

1−ρ2 − 1
]
.

That is,

e
ρrs cos(b)

1−ρ2 ≤ e
ρrs cos(b−[θ1+θ2−π]/2)

1−ρ2 e
− ρrs cos([θ1−θ2]/2)·[θ1+θ2−π]/2

1−ρ2 , ∀ θ2 ≤ b ≤ θ1.
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Therefore, denoting c := e
− ρrs cos([θ1−θ2]/2)·[θ1+θ2−π]/2

1−ρ2 ,∫ b=θ1

b=θ2

e
ρrs cos(b)

1−ρ2 db ≤ c

∫ b=θ1

b=θ2

e
ρrs cos(b−[θ1+θ2−π]/2)

1−ρ2 db = c

∫ b=θ1− θ1+θ2−π2

b=θ2− θ1+θ2−π2

e
ρrs cos(b)

1−ρ2 db

= c

∫ b=
θ1−θ2

2
+π

2

b=
θ2−θ1

2
+π

2

e
ρrs cos(b)

1−ρ2 db = c

∫ b=
θ1−θ2

2

b=
θ2−θ1

2

e
− ρrs sin(b)

1−ρ2 db = c

∫ b=
θ1−θ2

2

b=
θ2−θ1

2

e
ρrs sin(b)

1−ρ2 db.

(26)

The Lemma then follows from Lemma 3.2 below, since Lemma 3.2 implies that

2
∫ b= θ1−θ2

2

b=
θ2−θ1

2

e
ρrs sin(b)

1−ρ2 db∫ 2π

0
e
ρrs cos a

1−ρ2 da
<
θ1 − θ2

π
,

which concludes the first part of the proof by plugging into (24).
�

Lemma 3.2.

2
∫ b=t
b=−t e

ρrs sin(b)

1−ρ2 db∫ 2π

0
e
ρrs cos a

1−ρ2 da
<

2t

π
< 0, ∀ 0 < t < π/2.

Proof. We must show that

1

2t

∫ b=t

b=−t
e
ρrs sin(b)

1−ρ2 db <
1

2π

∫ 2π

0

e
ρrs cos a

1−ρ2 da =
1

π

∫ π

0

e
ρrs cos a

1−ρ2 da, ∀ 0 < t < π/2.

The quantity on the left is monotone increasing in t, and it is equal to the right when t = π/2.
The former statement follows since

1

2t

∫ b=t

b=−t
e
ρrs sin(b)

1−ρ2 db =
1

4t

∫ b=t

b=−t

(
e
ρrs sin(b)

1−ρ2 + e
− ρrs sin(b)

1−ρ2
)

db,

and the function h(b) := e
ρrs sin(b)

1−ρ2 + e
− ρrs sin(b)

1−ρ2 is even and increasing for all 0 < b < π/2, so
its average value on the interval [−t, t] is increasing for all 0 < t < π/2, as can be seen by
taking a derivative:

d

dt

(1

t

∫ b=t

b=−t
h(b) db

)
=

1

t
2h(t)− 1

t2

∫ b=t

b=−t
h(b) db

=
1

t

(1

t

∫ b=t

b=−t
h(t)db− 1

t

∫ b=t

b=−t
h(b) db

)
=

1

t2

∫ b=t

b=−t
(h(t)− h(b))db.

�

Integrating Lemma 3.1 gives the following stability estimate, showing that three intervals
each of length 2π/3 maximize the second term of (2), at least among partitions into three
intervals. (The case that θi ≥ π for some 1 ≤ i ≤ 3 in Lemma 3.3 will be treated separately
in Lemma 4.1 below.)
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Lemma 3.3. Let θ1, θ2, θ3 ≥ 0 with θ1 + θ2 + θ3 = 2π. Define F as in (23). Assume that
θi ≤ π for all 1 ≤ i ≤ 3. Then

−3F (2π/3) +
3∑
i=1

F (θi) ≤ (.158)
(
− 1 +

(
1− 34/3

5

)
e
− ρrs

1−ρ2
π
2 · · ·

+
34/3

5
e
− ρrs

1−ρ2
π
6

) ∑
1≤i<j≤3

( θi
2π
− 1/3

)2

.

Proof. Since θi ≤ π for all 1 ≤ i ≤ 3 and θ1 + θ2 + θ3 = 2π, we have |θi − θj| ≤ π and
θi + θj ≥ π for all 1 ≤ i < j ≤ 3. We will use the latter inequalities frequently below.

We will replace θ1 ≥ θ2 with θ1 − t, θ2 + t, where 0 ≤ t ≤ (θ1 − θ2)/2. We change the first
two regions to have the same measure. From Lemma 3.1, after integrating in t, we will then
get a factor of

∫ t=[θ1−θ2]/2

t=0

(
− 1 + e

− ρrs cos((θ1−θ2−2t)/2)[θ1+θ2−π]/2
1−ρ2

)θ1 − θ2 − 2t

2π2
dt

=
1

2

∫ t=θ1−θ2

t=0

(
− 1 + e

− ρrs cos(t/2)[θ1+θ2−π]/2
1−ρ2

) t

2π2
dt.

Now, the region has angles, {[θ1 + θ2]/2, [θ1 + θ2]/2, θ3}. We will replace these angles with
{[θ1 + θ2]/2 − t, [θ1 + θ2]/2 − t, θ3 + 2t}, where 0 ≤ t ≤ [(θ1 + θ2)/2 − θ3]/3. Then, change
all three regions to have the same measure. After integrating in t, we will get an additional
factor from Lemma 3.1 of

2

∫ t=[(θ1+θ2)/2−θ3]/3

t=0

(
− 1 + e

− ρrs cos
1
2 ((θ1+θ2)/2−θ3−3t)[θ1+θ2−t+2t+2θ3−2π]/4]

1−ρ2
)(θ1 + θ2)/2− θ3 − 3t)

2 · 2π2
dt

=
2

3

∫ t=[θ1+θ2]/2−θ3

t=0

(
− 1 + e

− ρrs cos(t/2)[θ3+t]/4]
1−ρ2

) t

2π2
dt.

So, the total you get is, using −1 + e−εc ≤ (−1 + e−ε)c, when c = cos(t/2)

1

2

∫ t=θ1−θ2

t=0

(
− 1 + e

− ρrs cos(t/2)[θ1+θ2−π]/2
1−ρ2

) t

2π2
dt

+
2

3

∫ t=[θ1+θ2]/2−θ3

t=0

(
− 1 + e

− ρrs cos(t/2)θ3/4
1−ρ2

) t

2π2
dt

≤ 1

2

(
− 1 + e

− ρrs[θ1+θ2−π]/2
1−ρ2

)∫ t=θ1−θ2

t=0

cos(t/2)
t

2π2
dt

+
2

3

(
− 1 + e

− ρrsθ3/4
1−ρ2

)∫ t=[θ1+θ2]/2−θ3

t=0

cos(t/2)
t

2π2
dt.

17



Integrating and using
∫ c

0
t cos(t/2)dt = 2c sin(c/2) + 4(cos(c/2) − 1) and

∫ c
0

cos(t/2)dt =

2 sin(c/2). We have c2/2− c4/34 ≥
∫ c

0
t cos(t/2)dt ≥ c2/2− c4/32 for all 0 ≤ c ≤ π/2.

1

2

(
− 1 + e

− ρrs[θ1+θ2−π]/2
1−ρ2

)[(θ1 − θ2

2π

)2(1

2
− 1

32
(θ1 − θ2)2

)
+

2

3

(
− 1 + e

− ρrsθ3/4
1−ρ2

)( [θ1 − θ3]/2 + (θ2 − θ3)/2

2π

)2(1

2
− 1

32

(
[θ1 − θ3]/2 + (θ2 − θ3)/2

)2)
=

1

2

(
− 1 + e

− ρrs[π−θ3]/2
1−ρ2

)[(θ1 − θ2

2π

)2(1

2
− 1

32
(θ1 − θ2)2

)
+

2

3

(
− 1 + e

− ρrsθ3/4
1−ρ2

)( [θ1 − θ3]/2 + (θ2 − θ3)/2

2π

)2(1

2
− 1

32

(
[θ1 − θ3]/2 + (θ2 − θ3)/2

)2)
.

Averaging over all permutations of θ1, θ2, θ3, we arrive at the function (1/6)(e−α[π−θ3]/2 +
(2/3)e−αθ3/4), which is minimized over all 0 ≤ θ3 ≤ π at the value (1/6)31/3e−απ/6 when
2 log 3/π ≤ α, or θ3 = 0 gets the minimum value of (1/6)((2/3)+e−πα/2) when α < 2 log 3/π.
In summary,

−3F (2π/3) +
3∑
i=1

F (θi) ≤
∑

1≤i<j≤3

(
− 5/18 + (1/6)((2/3) + e

− ρrs

1−ρ2
π
2 )1{ ρrs

1−ρ2
≤ 2 log 3

π

}

+ (1/6)31/3e
− ρrs

1−ρ2
π
6 1{ ρrs

1−ρ2
> 2 log 3

π

}) · (.19)
(θi − θj

2π

)2

.

Finally, we use the elementary inequality∑
1≤i<j≤3

(θi − θj
2π

)2

≥ 3
3∑
i=1

( θi
2π
− 1/3

)2

,

(actually an equality) valid for all θ1, θ2, θ3 ≥ 0 with
∑3

i=1 θi = 2π, to get

−3F (2π/3) +
3∑
i=1

F (θi) ≤
∑

1≤i<j≤3

(
− 5/18 + (1/6)((2/3) + e

− ρrs

1−ρ2
π
2 )1{ ρrs

1−ρ2
≤ 2 log 3

π

}

+ (1/6)31/3e
− ρrs

1−ρ2
π
6 1{ ρrs

1−ρ2
> 2 log 3

π

}) · (.57)
3∑
i=1

( θi
2π
− 1/3

)2

.

A slightly larger upper bound is

−3F (2π/3) +
3∑
i=1

F (θi) ≤
5

18
· (.57)

(
− 1 +

(
1− 34/3

5

)
e
− ρrs

1−ρ2
π
2

+
34/3

5
e
− ρrs

1−ρ2
π
6

) 3∑
i=1

( θi
2π
− 1/3

)2

.

The proof is completed. �

4. Stability Estimates

In Section 3, we gave derivative estimates for the mean subtracted spherical noise stability
(23) for intervals in R/2πZ. However, these derivative estimates do not apply for intervals of
length larger than π. In this section, using more direct computations, we consider the mean
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subtracted spherical noise stability of partitions of R/2πZ into three disjoint intervals, where
one of the intervals has length larger than π. Getting good constants in Lemma 4.1 below
requires considering several different cases in a rather tedious manner. We will eventually
circumvent Lemma 4.1 with a numerical computation, but we still prove Lemma 4.1 to show
that a rigorous (non-numerical) bound can be achieved, with a constant that is worse by a
multiplicative factor of about 1/2.

Lemma 4.1. Let θ1, θ2, θ3 ≥ 0 with θ1 + θ2 + θ3 = 2π. Denote

F (θ) :=

∫ a=θ

a=0

∫ b=θ
b=0

e
ρrs cos(a−b)

1−ρ2 dadb

2π
∫ 2π

0
e
ρrs cos a

1−ρ2 da
−
( θ

2π

)2

.

If θ1 ≥ π, then

−3F (2π/3) +
3∑
i=1

F (θi) ≤ −
1

π2

13

9
λr,s1,n

3∑
i=1

( θi
2π
− 1/3

)2

.

Proof. The function F satisfies F ′(0) = F ′(π) = 0, F ′′(θ) > 0 for θ > 0 near zero, and then
F ′′(θ) < 0 for all larger θ < π. It follows that F is strictly increasing for all θ ∈ [0, π].
Also, since F ′′ is monotone decreasing, the function θ 7→ F (θ1 − θ) + F (θ) is maximized
at either the midpoint or endpoint of θ ∈ [0, θ1]. (Either this function has positive second
derivative everywhere, or it is positive except for an interval containing the midpoint, where
it is negative, and we know the midpoint is a critical point itself.)

Case 1. If 5π/3 ≥ θ1 ≥ 4π/3, then from the monotonicity properties of F ,
∑3

i=1 F (θi) is

largest when θ1 = 4π/3. To find the values of θ2, θ3 that make
∑3

i=1 F (θi) largest, we use
Lemma 3.1, (and F (a) = F (2π − a) ∀ 0 ≤ a ≤ 2π, which follows by (9)), to get

3∑
i=1

F (θi) ≤ F (4π/3) + max(F (2π/3), 2F (π/3)) = F (2π/3) + max(F (2π/3), 2F (π/3)).

We then have

−3F (2π/3) +
3∑
i=1

F (θi) ≤ max(−F (2π/3), 2(F (π/3)− F (2π/3)))

= −min(F (2π/3), 2(F (π/3)− F (2π/3))).

Using (11), we can estimate

F (2π/3) ≥ 3

2π2

(
λr,s1,n +

1

4
λr,s2,n +

1

16
λr,s4,n +

1

25
λr,s5,n

)
. (27)

2[F (2π/3)− F (π/3)] ≥ 2

π2

(7

9
λr,s1,n +

1

25
λr,s5,n

)
. (28)

Then

min(F (2π/3), 2(F (π/3)− F (2π/3))) ≥ 3

2π2

(
λr,s1,n +

1

25
λr,s5,n

)
So,

− 3F (2π/3) +
3∑
i=1

F (θi) ≤ −
3

2π2

(
λr,s1,n +

1

25
λr,s5,n

)
. (29)

19



Also, by assumption on θ1,

3∑
i=1

( θi
2π
− 1/3

)2

≤ (1/2)2 + (1/6)2 + (1/3)2 = 7/18.

In summary, combining with (29),

−3F (2π/3)+
3∑
i=1

F (θi) ≤ −
3

2π2

(
λr,s1,n+

1

25
λr,s5,n

)
≤ −18

7

3

2π2

(
λr,s1,n+

1

25
λr,s5,n

) 3∑
i=1

( θi
2π
−1/3

)2

.

(30)
Case 2. If θ1 ≥ 5π/3, then by Lemma 3.1, we have (using F (a) = F (2π − a) for all

0 ≤ a ≤ 2π, which follows by (9)),

3∑
i=1

F (θi) ≤ F (5π/3) + max(F (π/3), 2F (π/6)) = F (π/3) + max(F (π/3), 2F (π/6)).

Using (11), we then have the estimate

− 3F (2π/3) +
3∑
i=1

F (θi) ≤ −3F (2π/3) + F (π/3) + max(F (π/3), 2F (π/6))

≤ max
(
− F (2π/3)− 2[F (2π/3)− F (π/3)] ,

− F (2π/3) + F (π/3)− 2[F (2π/3)− F (π/6)]
)
.

(31)

Adding (27) and (28),

− F (2π/3)− 2[F (2π/3)− F (π/3)] ≤ − 3

π2
λr,s1,n. (32)

Using (11), we can estimate

− π2[F (2π/3)− F (π/6)]

= −1 +
√

3

2

λr,s1,n

1
−
λr,s2,n

4
+
λr,s3,n

9
− 1−

√
3

2

λr,s5,n

25
+ 2

λr,s6,n

36
− 1−

√
3

2

λr,s7,n

49
+
λr,s9,n

81
+ · · ·

≤ −1.44λr,s1,n.

Adding this to (28),

−F (2π/3) + F (π/3)− 2[F (2π/3)− F (π/6)] ≤ −2.44

π2
λr,s1,n.

Combining with (32) in (31),

−3F (2π/3) +
3∑
i=1

F (θi) ≤ −
2.44

π2
λr,s1,n.

Also,
∑3

i=1

(
θi
2π
− 1/3

)2

≤ (2/3)2 + 2(1/3)2 = 2/3. In summary,

− 3F (2π/3) +
3∑
i=1

F (θi) ≤ −
2.44

π2
λr,s1,n ≤ −

7.32

2π2
λr,s1,n

3∑
i=1

( θi
2π
− 1/3

)2

. (33)
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Case 3. If 4π/3 ≥ θ1 ≥ π and θ2 − θ3 ≥ π/2, then by Lemma 3.1, we have (using
F (a) = F (2π − a) for all 0 ≤ a ≤ 2π, which follows by (9)),

3∑
i=1

F (θi) ≤ max(2F (π), F (π) + F (π/4) + F (3π/4)).

Using (11) (or (45) below), we can estimate

−3F (2π/3) + 2F (π) ≤ − 1

2π2

(
λr,s1,n + λr,s2,n

)
.

Similarly,

− 3F (2π/3) + F (π) + F (π/4) + F (3π/4) ≤ − 1

π2

1

2
λr,s1,n. (34)

In more detail, the coefficient pattern here is 24-periodic by (11), so that

π2
(

3F (2π/3)− [F (π) + F (π/4) + F (3π/4)]
)

=
1

2

λr,s1,n

1
+

7

2

λr,s2,n

4
− 4

λr,s3,n

9
+

5

2

λr,s4,n

16
+

1

2

λr,s5,n

25
− 1

λr,s6,n

36
+

1

2

λr,s7,n

49
+

9

2

λr,s8,n

64

− 4
λr,s9,n

81
+

7

2

λr,s10,n

100
+

1

2

λr,s11,n

121
− 2

λr,s12,n

144
+

1

2

λr,s13,n

169
+

7

2

λr,s14,n

196
− 4

λr,s15,n

225
+

9

2

λr,s16,n

256

+
1

2

λr,s17,n

289
− 1

λr,s18,n

324
+

1

2

λr,s19,n

361
+

5

2

λr,s20,n

400
− 4

λr,s21,n

441
+

7

2

λr,s22,n

484
+

1

2

λr,s23,n

529
+ 0

λr,s24,n

576
+ · · ·

From the seventh term onwards, the sum of the coefficients is nonnegative by (18). Then
the sum of the first six terms is bounded as in (34), using (18) again.So,

−3F (2π/3) +
3∑
i=1

F (θi) ≤ −
1

π2

1

2
λr,s1,n.

Also,
∑3

i=1

(
θi
2π
− 1/3

)2 ≤ 2(1/3)2 = 2/9. In summary,

− 3F (2π/3) +
3∑
i=1

F (θi) ≤ −
1

π2

1

2
λr,s1,n. ≤ −

9

4π2
λr,s1,n

3∑
i=1

( θi
2π
− 1/3

)2

. (35)

Case 4. If 7π/6 ≥ θ1 ≥ π and θ2 − θ3 ≤ π/2, then arguing as before,

3∑
i=1

F (θi) ≤ max(F (π) + 2F (π/2), F (π) + F (π/4) + F (3π/4)).

The second term is bounded already in (34). For the first term, we have by (11)

− 3F (2π/3) + F (π) + F (π/4) + F (3π/4) ≤ − 1

π2

13

72
λr,s1,n. (36)
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In more detail, the coefficient pattern here is 12-periodic by (11), so that

π2
(

3F (2π/3)− [F (π) + 2F (π/2)]
)

=
1

2

λr,s1,n

1
+

1

2

λr,s2,n

4
− 4

λr,s3,n

9
+

9

2

λr,s4,n

16
+

1

2

λr,s5,n

25
− 4

λr,s6,n

36

+
1

2

λr,s7,n

49
+

9

2

λr,s8,n

64
− 4

λr,s9,n

81
+

1

2

λr,s10,n

100
+

1

2

λr,s11,n

121
+ 0

λr,s12,n

144
+ · · · .

From the fourth term onwards, the sum of the coefficients is nonnegative by(18). Then the
sum of the first three terms is bounded as in (36), using (18) again.So, combining (36) and
(34)

−3F (2π/3) +
3∑
i=1

F (θi) ≤ −
1

π2

13

72
λr,s1,n.

Also,
∑3

i=1

(
θi
2π
− 1/3

)2 ≤ 2(1/4)2 = 1/8. In summary,

− 3F (2π/3) +
3∑
i=1

F (θi) ≤ −
1

π2

13

72
λr,s1,n. ≤ −

1

π2

13

9
λr,s1,n

3∑
i=1

( θi
2π
− 1/3

)2

. (37)

Case 5. If 4π/3 ≥ θ1 ≥ 7π/6 and θ2 − θ3 ≤ π/2,

3∑
i=1

F (θi) ≤ max(F (7π/6) + 2F (5π/12), F (7π/6) + F (π/6) + F (2π/3))

= max(F (5π/6) + 2F (5π/12), F (5π/6) + F (π/6) + F (2π/3)).

For the first term, we have by (11)

− 3F (2π/3) + F (5π/6) + 2F (5π/12) ≤ − 1

π2
(.728)λr,s1,n. (38)

In more detail, the coefficient pattern here is 24-periodic by (11), so that

π2
(

3F (2π/3)− [F (5π/6) + 2F (5π/12)]
)

= 1.1516 . . .
λr,s1,n

1
+ (2−

√
3)
λr,s2,n

4
− (3 +

√
2)
λr,s3,n

9
+ 2

λr,s4,n

16

+ 4.29 . . .
λr,s5,n

25
− 4

λr,s6,n

36
+ .434 . . .

λr,s7,n

49
+ 0

λr,s8,n

64

− (3−
√

2)
λr,s9,n

81
+ (2−

√
3)
λr,s10,n

100
+ .116 . . .

λr,s11,n

121
− 4

λr,s12,n

144

+ .116 . . .
λr,s13,n

169
+ (2−

√
3)
λr,s14,n

196
− (3−

√
2)
λr,s15,n

225
+ 0

λr,s16,n

256

+ .434 . . .
λr,s17,n

289
− 4

λr,s18,n

324
+ 4.29 . . .

λr,s19,n

361
+ 2

λr,s20,n

400

− (3 +
√

2)
λr,s21,n

441
+ (2−

√
3)
λr,s22,n

484
+ 1.1516 . . .

λr,s23,n

529
+ 0

λr,s24,n

576
+ · · · .
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From the nineteenth term onwards, the sum of the coefficients is nonnegative, so (18) implies
that these terms have a nonnegative sum (over a period of 24 terms, the sum of coefficients
is 2, and terms four through eighteen have a nonnegative sum.)

For the second term, we have by (11)

− 3F (2π/3) + [F (5π/6) + F (π/6) + F (2π/3)] ≤ − 1

π2
λr,s1,n. (39)

In more detail, the coefficient pattern here is 12-periodic by (11), so that

π2
(

3F (2π/3)− [F (2π/3) + F (5π/6) + F (π/6)]
)

=
λr,s1,n

1
+ 2

λr,s2,n

4
− 2

λr,s3,n

9
+ 0

λr,s4,n

16
+ 1

λr,s5,n

25
− 4

λr,s6,n

36

+
λr,s7,n

49
+ 0

λr,s8,n

64
− 2

λr,s9,n

81
+ 2

λr,s10,n

100
+
λr,s11,n

121
+ 0

λr,s12,n

144
+ · · · .

From the tenth term onwards, the sum of the coefficients is nonnegative, so (18) implies that
these terms have a nonnegative sum (over a period of 12 terms, the sum of coefficients is 0,
and terms two through nine have a nonnegative sum.)

So, combining (38) and (39),

−3F (2π/3) +
3∑
i=1

F (θi) ≤ −
1

π2
(.728)λr,s1,n.

Also,
∑3

i=1

(
θi
2π
− 1/3

)2 ≤ (1/3)2 + 1/122 + 1/62 = 7/48. In summary,

− 3F (2π/3) +
3∑
i=1

F (θi) ≤ −
1

π2
(.728)λr,s1,n. ≤ −

1

π2
(.728)

48

7
λr,s1,n

3∑
i=1

( θi
2π
− 1/3

)2

. (40)

Combining Cases 1 through 5.
Combining (30), (33), (35), (37) and (40), we have, whenever θ1 ≥ π,

−3F (2π/3) +
3∑
i=1

F (θi) ≤ −
1

π2

13

9
λr,s1,n

3∑
i=1

( θi
2π
− 1/3

)2

.

�

Lemma 3.3 and Lemma 4.1 and the following inequality imply Corollary 4.2 below.

− x

1/2 +
√

9/4 + x2
≤ (3/4)

(
− 1 +

(
1− 34/3

5

)
e−x

π
2 +

34/3

5
e−x

π
6

)
, ∀x > 0.

Corollary 4.2. Let θ1, θ2, θ3 ≥ 0. Define F as in (23). Then

−3F (2π/3) +
3∑
i=1

F (θi) ≤ −
1

π2

13

9

3

4

(
1−
(

1− 34/3

5

)
e
− ρrs

1−ρ2
π
2 − 34/3

5
e
− ρrs

1−ρ2
π
6

) 3∑
i=1

( θi
2π
−1/3

)2

.
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5. Change of Measure

The following inequality allows us to show that the first term in (2) is smaller than the
second one. The proof amounts to an elementary truncated heat kernel bound, though with
a change of measure using the λr,s1,n term from (14).

Lemma 5.1. Let f : R2 → ∆3 be a radial function (for any r > 0, the function f |rS1 is
constant). Denote Eγf :=

∫
R2 f(x)γ2(x) dx. Let φ : R2 → (0,∞). Then∣∣∣∣∫

R2

〈f(x)− Eγf, Tρ[f − Eγf ](x)〉γ2(x) dx

∣∣∣∣
≤
∫
R2

φ(x) ‖f(x)− Eγf‖2 γ2(x) dx
∑

d≥2: d even

ρd
∑

k∈(2N)2 : ‖k‖1=d

∫
R2

∣∣∣∣∣√k!hk(x)
1√
φ(x)

∣∣∣∣∣
2

γ2(x) dx.

In particular, if φ(x) = (1− e−ρ‖x‖/2) for all x ∈ R2, and 0 < ρ < 1/7, then∣∣∣∣∫
R2

〈f(x)− Eγf, Tρ[f − Eγf ](x)〉γ2(x) dx

∣∣∣∣ ≤ 2.5(ρ+ ρ2)

∫
R2

φ(x) ‖f(x)− Eγf‖2 γ2(x)dx.

Proof. Let h0, h1, . . . : R→ R be the Hermite polynomials with hm(x) =
∑bm/2c

k=0
xm−2k(−1)k2−k

k!(m−2k)!

∀ m ≥ 0, m ∈ Z, ∀ x ∈ R. It is well known [Hei14] that {
√
m!hm}m≥0 is an orthonormal

basis of the Hilbert space of functions R → R equipped with the inner product 〈g, h〉 :=∫
R g(x)h(x)γ2(x) dx. For any k ∈ N2, define k! := k1! · k2!, and let ‖k‖1 := |k1| + |k2|. Let
αk ∈ R to be determined later. Since f is radial, the Hermite-Fourier expansion of f − Eγf
is∫

R2

〈f(x)− Eγf, Tρ[f − Eγf ](x)〉γ2(x) dx

=
∑

d≥2: d even

ρd
∑

k∈(2N)2 : ‖k‖1=d

∥∥∥∥∫
R2

√
k!hk(x)(f(x)− Eγf)γ2(x) dx

∥∥∥∥2

=
∑

d≥2: d even

ρd
∑

k∈(2N)2 : ‖k‖1=d

∥∥∥∥∫
R2

√
k![hk(x)− αk](f(x)− Eγf)γ2(x) dx

∥∥∥∥2

=
∑

d≥2: d even

ρd
∑

k∈(2N)2 : ‖k‖1=d

∥∥∥∥∥
∫
R2

√
k![hk(x)− αk]

1√
φ(x)

√
φ(x)(f(x)− Eγf)γ2(x) dx

∥∥∥∥∥
2

≤
∑
d≥2:
d even

ρd
∑

k∈(2N)2 :
‖k‖1=d

∫
R2

∣∣∣∣∣√k![hk(x)− αk]
1√
φ(x)

∣∣∣∣∣
2

γ2(x) dx ·
∫
R2

φ(x) ‖f(x)− Eγf‖2 γ2(x) dx

=

∫
R2

φ(x) ‖f(x)− Eγf‖2 γ2(x) dx ·
∑
d≥2:
d even

ρd
∑

k∈(2N)2 :
‖k‖1=d

∫
R2

∣∣∣∣∣√k![hk(x)− αk]
1√
φ(x)

∣∣∣∣∣
2

γ2(x) dx.
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To conclude, it remains to bound the last term. We use the inequality

r

1− e−ρr/2
≤ r +

2

ρ
, ∀ r > 0,

which follows from the inequality a ≤ ea − 1 for all a > 0 (where a = ρr/2), along with

r

1− e−ρr/2
≤ r/1.7 +

2

ρ
, ∀ 0 < r < 1/ρ,

we obtain (using Gρ(x, y) = γ2(x)γ2(y)
∑

d≥0 ρ
d
∑

k∈N2 : ‖k‖1=d hk(x)hk(y)k!, i.e. the expan-

sion of the Mehler kernel from (4) into Hermite polynomials), and choosing αk := α·1{k=(2,0)},

∑
d≥2: d even

ρd
∑

k∈(2N)2 : ‖k‖1=d

∫
R2

∣∣∣∣∣√k![hk(x)− αk]
1√
φ(x)

∣∣∣∣∣
2

γ2(x) dx

=

∫
R2

1

φ(x)

[
2π
Gρ(x, x) +Gρ(x,−x)

2e−‖x‖
2/2

− γ2(x)− 2ρ2α(x2
1 − 1)γ2(x) + α2ρ2γ2(x)

]
dx

=

∫
R2

1

φ(x)

[ 1

2π

1

1− ρ2
e
− ‖x‖

2

1−ρ2
e
ρ‖x‖2

1−ρ2 + e
− ρ‖x‖

2

1−ρ2

2e−r2/2
− γ2(x)− 2αρ2(x2

1 − 1)γ2(x) + α2ρ2γ2(x)
]

dx

=

∫ ∞
r=0

((r/1.7)1r<1/ρ + r1r>1/ρ + 2/ρ)
1

2(1− ρ2)

·
(
− 2(1− ρ2)(1− α2ρ2 + 2αρ2(r2/2− 1))e−r

2/2 + e
−r2 1−ρ

1−ρ2 er
2/2 + e

−r2 1+ρ

1−ρ2 er
2/2
)

dr

=

∫ ∞
r=0

((r/1.7)1r<1/ρ + r1r>1/ρ + 2/ρ)
1

2(1− ρ2)

·
(
− 2(1− ρ2)(1− α2ρ2 + 2αρ2(r2/2− 1))e−r

2/2 + e−r
2( 1

1+ρ
− 1

2) + e−r
2( 1

1−ρ−
1
2)
)

dr

=
1

2(1− ρ2)

1

1.7

(
− 2(1− ρ2)(1− α2ρ2) +

1

2[ 1
1+ρ
− 1

2
]

+
1

2[ 1
1−ρ −

1
2
]

)
+

1

2(1− ρ2)

(
1− 1

1.7

)(
− 2(1− ρ2)(1− α2ρ2 − α)(−e−1/(2ρ2))

+
1

2[ 1
1+ρ
− 1

2
]
(−e−

1
ρ2

[ 1
1+ρ
− 1

2
]
) +

1

2[ 1
1−ρ −

1
2
]
(−e−

1
ρ2

[ 1
1−ρ−

1
2

]
)
)

+
1

ρ

1

1− ρ2

√
π

2

(
− 2(1− ρ2)(1− α2ρ2 − αρ2) +

1√
2[ 1

1+ρ
− 1

2
]

+
1√

2[ 1
1−ρ −

1
2
]

)
.

When α = −1/2 and ρ < 1/7, this quantity is upper bounded by 2.5(ρ+ ρ2). �

It would be interesting to find the optimal constant in Lemma 5.1, since improving the
constants here would also improve the constants in Theorem 1.5.

For the negative correlation case of Theorem 1.5, we require a bilinear version of Lemma
5.1 above. The proof of Lemma 5.2 is similar to that of Lemma 5.1, though the constants
in Lemma 5.1 are slightly improved, hence our repetition of many of the same steps with
different results.
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Lemma 5.2. Let f̃ , g̃ : R2 → ∆3. Define

φ(x) =
ρ

1− ρ2
‖x‖ e−

(1.1ρ‖x‖)2

1−ρ2
− 1.1ρ

1−ρ2
‖x‖
, ∀x ∈ R2.

If 0 < ρ < .1, then

∑
d≥2

ρd
∑

k∈N2 : ‖k‖1=d

∣∣∣∣〈 ∫
R2

√
k!hk(x)f̃(x)γ2(x) dx,

∫
R2

√
k!hk(y)g̃(y)γ2(y) dy

〉∣∣∣∣
≤
(

5ρ+ 8ρ2
)
· 1

2

(∫
R2

φ(x)‖f̃(x)‖2γ2(x) dx+

∫
R2

φ(x)‖g̃(x)‖2γ2(x) dx
)
.

Proof. We will show that

∑
d≥2

ρd
∑

k∈N2 : ‖k‖1=d

∥∥∥∥∫
R2

√
k!hk(x)f̃(x)γ2(x) dx

∥∥∥∥2

≤ (5ρ+ 8ρ2)

∫
R2

φ(x)‖f̃(x)‖2γ2(x)dx.

(41)

The conclusion of the Lemma then follows from this inequality and the Cauchy-Schwarz
inequality. We therefore prove (41).

Let h0, h1, . . . : R → R be the Hermite polynomials with hm(x) =
∑bm/2c

k=0
xm−2k(−1)k2−k

k!(m−2k)!

for all integers m ≥ 0. It is well known [Hei14] that {
√
m!hm}m≥0 is an orthonormal ba-

sis of the Hilbert space of functions R → R equipped with the inner product 〈g, h〉 :=∫
R g(x)h(x)γ2(x) dx. For any k ∈ N2, define k! := k1! · k2!, and define ‖k‖1 := |k1|+ |k2|.

∑
d≥2

ρd
∑

k∈N2 : ‖k‖1=d

∥∥∥∥∫
R2

√
k!hk(x)f̃(x)γ2(x) dx

∥∥∥∥2

=
∑
d≥2

ρd
∑

k∈N2 : ‖k‖1=d

∥∥∥∥∥
∫
R2

√
k!hk(x)

1√
φ(x)

√
φ(x)f̃(x)γ2(x) dx

∥∥∥∥∥
2

≤
∑
d≥2

ρd
∑

k∈N2 : ‖k‖1=d

∫
R2

∣∣∣∣∣√k!hk(x)
1√
φ(x)

∣∣∣∣∣
2

γ2(x) dx ·
∫
R2

φ(x)‖f̃(x)‖2γ2(x) dx

=

∫
R2

φ(x)‖f̃(x)‖2γ2(x) dx ·
∑
d≥2

ρd
∑

k∈N2 : ‖k‖1=d

∫
R2

∣∣∣∣∣√k!hk(x)
1√
φ(x)

∣∣∣∣∣
2

γ2(x) dx.

It remains to bound the final term. Using the expansion of the Mehler kernel from (4)
into Hermite polynomials, i.e. Gρ(x, y) = γ2(x)γ2(y)

∑
d≥0 ρ

d
∑

k∈N2 : ‖k‖1=d hk(x)hk(y)k!,
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∑
d≥2

ρd
∑

k∈N2 : ‖k‖1=d

∫
R2

∣∣∣∣∣√k!hk(x)
1√
φ(x)

∣∣∣∣∣
2

γ2(x) dx

=

∫
R2

1

φ(x)

[
2π
Gρ(x, x)

e−‖x‖
2/2
− γ2(x)− ρ ‖x‖2 γ2(x)

]
dx

=
1

1− ρ2

∫
R2

1

φ(x)

[ 1

2π
e
− ‖x‖

2(1−ρ−(1−ρ2)/2)
1−ρ2 − (1− ρ2)(1 + ρ ‖x‖2)γ2(x)

]
dx

≤ 1

1− ρ2

∫ ∞
r=0

1− ρ2

ρ

r

r
e
− (1.1ρr)2

1−ρ2
− 1.1ρ

1−ρ2
r
[
e
− r

2(1/2−ρ+ρ2/2)
1−ρ2 − (1− ρ2)(1 + ρr2)e−r

2/2
]

dr

=
1

ρ

∫ ∞
r=0

e
− (1.1ρr)2

1−ρ2
− 1.1ρ

1−ρ2
r
[
e
− r

2(1/2−ρ+ρ2/2)
1−ρ2 − (1− ρ2)(1 + ρr2)e−r

2/2
]

dr

=
1

ρ

(
e

(1.1ρ)2

4((1.1ρ)2+1/2−ρ+ρ2/2)(1−ρ2)

√
1− ρ2

(1.1ρ)2 + 1/2− ρ+ ρ2/2

∫ ∞
1.1ρ
√

(1.1ρ)2+1/2−ρ+ρ2/2√
1−ρ2

e−r
2

dr

− (1− ρ2)e
(1.1ρ)2

4((1.1ρ)2+1/2)(1−ρ2)

√
1− ρ2

(1.1ρ)2 + 1/2

∫ ∞
1.1ρ
√

(1.1ρ)2+1/2√
1−ρ2

e−r
2

dr

− (1− ρ2)ρ
[2[((1.1ρ)2 + 1/2)/(1− ρ2)] + [1.1ρ/(1− ρ2)]2

4
e

(1.1ρ)2

4((1.1ρ)2+1/2)(1−ρ2)

·
( 1− ρ2

(1.1ρ)2 + 1/2

)5/2
∫ ∞

1.1ρ
√

(1.1ρ)2+1/2√
1−ρ2

e−r
2

dr +
−1.1ρ/(1− ρ2)

2[((1.1ρ)2 + 1/2)/(1− ρ2)]2

])
.

When ρ < .1, this quantity is upper bounded by 5ρ+ 8ρ2.
�

In the following Lemma, if f : R2 → [0, 1], we define Proj1(f) : R2 → R to be equal to the
degree one projection of f onto spherical harmonics of a given radius ‖x‖. That is,

Proj1(f)(x) := 2
(
Ey∈‖x‖S1f(y)

y1

‖x‖

) x1

‖x‖

+ 2
(
Ey∈‖x‖S1f(y)

y2

‖x‖

) x2

‖x‖
, ∀x = (x1, x2) ∈ R2 \ {0}.

(42)

Lemma 5.3. Let f, g : R2 → ∆3. Define

φ(x) =
ρ

1− ρ2
‖x‖ e−

(1.1ρ‖x‖)2

1−ρ2
− 1.1ρ

1−ρ2
‖x‖
, ∀x ∈ R2.

If 0 < ρ < 1/36, then∣∣∣∣∫
R2

〈Proj1(f), Tρ[Proj1(g)](x)〉γ2(x) dx

∣∣∣∣
≤
(1

2

√
π

2
+ 1.35ρ

)1

2

(∫
R2

φ(x)‖Proj1(f)(x)‖2γ2(x) dx+

∫
R2

φ(x)‖Proj1(g)(x)‖2γ2(x) dx
)
.
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Proof. We will show that

∣∣∣∣∫
R2

〈Proj1(f), Tρ[Proj1(f)](x)〉γ2(x) dx

∣∣∣∣
≤
(1

2

√
π

2
+ 1.35ρ

)∫
R2

φ(x) ‖Proj1(f)(x)‖2 γ2(x)dx.

(43)

The conclusion of the Lemma then follows from this inequality and the Cauchy-Schwarz
inequality. We therefore prove (43). We use the Hermite polynomial notation from Lemma
5.2. Since Proj1f is an odd function, its Hermite-Fourier expansion is

∫
R2

〈Proj1(f), Tρ[Proj1(f)](x)〉γ2(x) dx

=
∑

d≥1: d odd

ρd
∑

k∈N2 : ‖k‖1=d

∥∥∥∥∫
R2

√
k!hk(x)Proj1(f)γ2(x) dx

∥∥∥∥2

=
∑

d≥1: d odd

ρd
∑

k∈N2 : ‖k‖1=d

∥∥∥∥∥
∫
R2

√
k![hk(x)]

1√
φ(x)

√
φ(x)Proj1(f)γ2(x) dx

∥∥∥∥∥
2

≤
∑

d≥1: d odd

ρd
∑
k∈N2 :
‖k‖1=d

∫
R2

∣∣∣∣∣√k!hk(x)
1√
φ(x)

∣∣∣∣∣
2

γ2(x) dx ·
∫
R2

φ(x) ‖Proj1(f)‖2 γ2(x) dx

=

∫
R2

φ(x) ‖Proj1(f)(x)‖2 γ2(x) dx ·
∑

d≥1: d odd

ρd
∑
k∈N2 :
‖k‖1=d

∫
R2

∣∣∣∣∣√k!hk(x)
1√
φ(x)

∣∣∣∣∣
2

γ2(x) dx.

To conclude, it remains to bound the last term. Without loss of generality, we may restrict
the sum over k ∈ N2 to k ∈ N2 \ {(0, 1)} by rotation invariance of the Gaussian measure.
We therefore denote

α := ρ

∫
R2

x2
1

1− ρ
ρ

1

‖x‖
e

1.1ρ

1−ρ2
‖x‖+ (1.1ρ‖x‖)2

1−ρ2 γ2(x) dx,

and we estimate the last term minus α. Using the expansion of the Mehler kernel from (4)
into Hermite polynomials, i.e. Gρ(x, y) = γ2(x)γ2(y)

∑
d≥0 ρ

d
∑

k∈N2 : ‖k‖1=d hk(x)hk(y)k!,
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∑
d≥1: d odd

ρd
∑
k∈N2 :
‖k‖1=d

∫
R2

∣∣∣∣∣√k!hk(x)
1√
φ(x)

∣∣∣∣∣
2

γ2(x) dx

=

∫
R2

1

φ(x)

[
2π
Gρ(x, x)−Gρ(x,−x)

2e−‖x‖
2/2

]
dx =

∫
R2

1

φ(x)

[ 1

2π

1

1− ρ2
e
− ‖x‖

2

1−ρ2
e
ρ‖x‖2

1−ρ2 − e−
ρ‖x‖2

1−ρ2

2e−‖x‖
2/2

]
dx

=

∫ ∞
r=0

1− ρ2

ρ

1

r
e

1.1ρ

1−ρ2
r+

(1.1ρr)2

1−ρ2
[ 1

1− ρ2
e
− r2

1−ρ2
e
ρr2

1−ρ2 − e−
ρr2

1−ρ2

2e−r2/2

]
rdr

=
1

2ρ

∫ ∞
r=0

[
e
−r2 1−ρ

1−ρ2
+ r2

2
+

1.1ρr+(1.1ρ)2r2

1−ρ2 − e−r
2 1+ρ

1−ρ2
+ r2

2
+

1.1ρr+(1.1ρ)2r2

1−ρ2
]

dr

=
1

2ρ

∫ ∞
r=0

[
e
− 1

2
r2

2−2ρ−(1−ρ2)−2.42ρ2

1−ρ2
+ 1.1ρ

1−ρ2
r − e−

1
2
r2

2+2ρ−(1−ρ2)−2.42ρ2

1−ρ2
+ 1.1ρ

1−ρ2
r
]

dr

=
1

2ρ

∫ ∞
r=0

[
e
− 1

2
r2 1−2ρ−1.42ρ2

1−ρ2
+ 1.1ρ

1−ρ2
r − e−

1
2
r2 1+2ρ−1.42ρ2

1−ρ2
+ 1.1ρ

1−ρ2
r
]

dr

=
1

2ρ

∫ ∞
r=0

[
e
− 1

2
1−2ρ−1.42ρ2

1−ρ2

(
r− 1.1ρ

1−2ρ−1.42ρ2

)2
+

(1.1ρ)2

2(1−2ρ−1.42ρ2)(1−ρ2)

− e−
1
2

1+2ρ−1.42ρ2

1−ρ2

(
r− 1.1ρ

1+2ρ−1.42ρ2

)2
+

(1.1ρ)2

2(1+2ρ−1.42ρ2)(1−ρ2)

]
dr

=
1

2ρ
e

(1.1ρ)2

2(1−2ρ−1.42ρ2)(1−ρ2)

∫ ∞
r=− 1.1ρ

1−2ρ−1.42ρ2

e
− 1

2
1−2ρ−1.42ρ2

1−ρ2
r2

dr

− 1

2ρ
e

(1.1ρ)2

2(1+2ρ−1.42ρ2)(1−ρ2)

∫ ∞
r=− 1.1ρ

1+2ρ−1.42ρ2

e
− 1

2
1+2ρ−1.42ρ2

1−ρ2
r2

dr

=
1

2ρ
e

(1.1ρ)2

2(1−2ρ−1.42ρ2)(1−ρ2)

√
1− ρ2

1− 2ρ− 1.42ρ2

∫ ∞
r=− 1.1ρ√

1−2ρ−1.42ρ2
√

1−ρ2

e−
1
2
r2dr

− 1

2ρ
e

(1.1ρ)2

2(1+2ρ−1.42ρ2)(1−ρ2)

√
1− ρ2

1 + 2ρ− 1.42ρ2

∫ ∞
r=− 1.1ρ√

1+2ρ−1.42ρ2
√

1−ρ2

e−
1
2
r2dr.

When 0 < ρ < 1/36, this quantity is bounded by 2.5ρ +
√
π/2. The α term is similarly

bounded below by (1/2)[
√
π/2 + 2.3ρ], so our final bound is at most (1/2)

√
π/2 + 1.35ρ.

�

Lemma 5.4. If f |S1 consists of three circular arcs with lengths θ1, θ2, θ3, respectively, then∫
S1

‖Proj1(f − h)‖2 dσ ≤ .9555
3∑
i=1

( θi
2π
− 1/3

)2

.

As usual, σ denotes Haar measure on S1.
Lemma 5.4 is verified with the following Matlab program, where the constant .9555 is an

upper bound of the vlalue 2(4.715)/π2.
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numpts=200;

x=linspace(0 ,2*pi ,numpts);

y=linspace(0 ,2*pi ,numpts);

xv=ones(numpts,1)*x;

yv= y' * ones(1,numpts);

zv= ((sin(xv/2) - sqrt(3)/2).^2 + (sin(yv/2) - sqrt(3)/2).^2 ...

+ (sin((2*pi - xv - yv)/2) - sqrt(3)/2).^2 ).*(xv+yv<= 2*pi);

zz= ( ( (xv/(2*pi)) - 1/3).^2 + ( (yv/(2*pi)) - 1/3).^2 + ...

( ((2*pi - xv - yv)/(2*pi)) - 1/3).^2 ).*(xv+yv<= 2*pi);

hold on;

surf(x,y, zv - 4.715*zz);

if sum(sum( zv-4.715*zz >0))==0

fprintf('Verified\r'); % verify zv< 4.7 zz

end

6. Circular Rearrangement

In this section, we prove the key lemma, that the bilinear noise stability on the sphere S1

(minus the measure of the set) is uniquely maximized for a partition into three congruent
arcs. After rearranging, this follows from Corollary 4.2.

In the following Lemma, we say A1, A2, A3 ⊆ S1 is a partition of S1 if Ai ∩ Aj = ∅ for
all 1 ≤ i < j ≤ 3 and ∪3

i=1Ai = S1.

Lemma 6.1 (Circular Rearrangement, Maximization). Let 0 < ρ < 1. Let r, s > 0.
Let A1, A2, A3 be a partition of S1. Let B1, B2, B3 be a partition of S1. Let σ denote the
normalized (Haar) probability measure on S1, and define g = gρ,r,s by (7). Then

3∑
i=1

∫
S1

[1Ai(x)− σ(Ai)]Ug[1Bi − σ(Bi)](x) dσ(x)

≤
3∑
i=1

∫
S1

[1Di(x)− σ(Di)]Ug[1Di − σ(Di)](x) dσ(x)

−
(

1−
(

1− 34/3

5

)
e
− ρrs

1−ρ2
π
2 − 34/3

5
e
− ρrs

1−ρ2
π
6

)(.109)

2

3∑
i=1

(
(σ(Ai)− 1/3)2 + (σ(Bi)− 1/3)2

)
.

where D1, D2, D3 is a partition of S1 into three congruent circular arcs (each with angle
2π/3).

Proof. We first show that we may assume Ai = Bi for all 1 ≤ i ≤ 3. Since λr,sd,2 > 0 for all

d ≥ 0 by (19), we can write Ug = (
√
Ug)

2, where
√
Ug is a positive definite operator. Using
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then the Cauchy-Schwarz inequality and ab ≤ (a2 + b2)/2 for all a, b ∈ R, we have

3∑
i=1

∫
S1

[1Ai(x)− σ(Ai)]Ug[1Bi − σ(Bi)](x) dσ(x)

=
3∑
i=1

∫
S1

√
Ug[1Ai(x)− σ(Ai)](x)

√
Ug[1Bi − σ(Bi)](x) dσ(x)

≤
3∑
i=1

(∫
S1

[
√
Ug[1Ai(x)− σ(Ai)](x)]2

)1/2(∫
S1

[
√
Ug[1Bi − σ(Bi)](x)]2 dσ(x)

)1/2

≤ 1

2

3∑
i=1

∫
S1

[1Ai(x)− σ(Ai)]Ug[1Ai − σ(Ai)](x) dσ(x)

+
1

2

3∑
i=1

∫
S1

[1Bi(x)− σ(Bi)]Ug[1Bi − σ(Bi)](x) dσ(x).

So, the general case of the Lemma follows from the special case that Ai = Bi for all
1 ≤ i ≤ 3. We now proceed with this assumption. Fix 1 ≤ i ≤ 3. Spherical rearrangement
with Definition 1.12 (using e.g. [IT76, Theorem 2] and that t 7→ eρrst/(1−ρ

2) is increasing in
t) implies that

3∑
i=1

∫
S1

[1Ai(x)− σ(Ai)]Ug[1Ai − σ(Ai)](x) dσ(x)

≤
3∑
i=1

∫
S1

[1Hi(x)− σ(Hi)]Ug[1Hi − σ(Hi)](x) dσ(x).

where Hi ⊆ S1 is a spherical arc such that σ(Ai) = σ(Hi).
Corollary 4.2 therefore concludes the proof. �

Remark 6.2. We note in passing that three 120 degree arcs have larger value of

3∑
i=1

∫
S1

[1Hi(x)− σ(Hi)]Ug[1Hi − σ(Hi)](x) dσ(x)

=
3∑
i=1

[ ∫
S1

1Hi(x)Ug(1Hi)(x) dσ(x)− (σ(Hi))
2
]
.

(44)

then two 180 degree arcs, i.e. we claim

9

2π2
·

∑
d≥1: d≡1 mod 3 or

d≡2 mod 3

λr,sd,2
1

d2
>

4

π2
·
∑

d≥1: d odd

λr,sd,2
1

d2
, ∀ 0 < ρ < 1, ∀ r, s > 0. (45)

This fact follows from Corollary 4.2, but the explicit computation is still enlightening (espe-
cially when ρ < 0, in which case (45) is false for r · s large.)

Since λr,sd,2 ≥ λr,sd+1 for all d ≥ 0 by (18), (45) follows by a straightforward term-by-term
monotonicity of the terms in (45). That is, Denote N1,2 := {d ≥ 1: d ≡ 1 mod 3 or d ≡
2 mod 3} and let Nodd denote odd positive integers. Define J : N1,2 → Nodd as the order
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preserving map with J(1) = 1 and recursively, J(d) := min{y ∈ Nodd : y /∈ ∪d′∈N1,2{J(d′)}}.
For example, J(1) = 1, J(2) = 3, J(4) = 5, J(5) = 7, J(7) = 9, J(8) = 11, and so on. Since
λr,sd,2 ≥ λr,sd+1 for all d ≥ 0 by (18), since J is surjective and J(d) ≥ d for all d ∈ N1,2 each term
in the right sum of (45) has a corresponding larger or equal term on the left side of (45).
We conclude that (45) holds. The Lemma follows.

7. A Convolution Bound

Lemma 7.1. Let r > 0. Let a := ρr/(1− ρ2). Let φ(x) := 1− e−a‖x‖ for all x ∈ R2. Then

Tρφ(r) ≥ 1− e−
ρ2r2

2[1−ρ2]

∫ t=∞

t=0

γ1(t) dt− e
3
2
ρ2r2

1−ρ2

∫ t=− 2ρr√
1−ρ2

t=−∞
γ1(t) dt.

Proof. From Definition 1.4 we have

Tρφ(x) =

∫
R2

(1− e−a‖ρx+y
√

1−ρ2‖)γ2(y) dy, ∀x ∈ R2.

When y ∈ R2 is fixed, if z ∈ R2 is perpendicular to ρx + y
√

1− ρ2, then ‖ρx + (y +

z)
√

1− ρ2‖ ≥ ‖ρx+ y
√

1− ρ2‖. Therefore,

Tρφ(x) ≥
∫
R
(1− e−a‖ρx+t x

‖x‖

√
1−ρ2‖)γ1(t) dt =

∫
R
(1− e−a

∣∣∣ρ‖x‖+t√1−ρ2
∣∣∣
)γ1(t) dt

= 1−
∫ t=∞

t=− ρ‖x‖√
1−ρ2

e
−a
∣∣∣ρ‖x‖+t√1−ρ2

∣∣∣
γ1(t) dt−

∫ t=− ρ‖x‖√
1−ρ2

t=−∞
e
−a(

∣∣∣ρ‖x‖+t√1−ρ2
∣∣∣
γ1(t) dt

= 1−
∫ t=∞

t=− ρ‖x‖√
1−ρ2

e−a(‖x‖ρ+t
√

1−ρ2)γ1(t) dt−
∫ t=− ρ‖x‖√

1−ρ2

t=−∞
ea(‖x‖ρ+t

√
1−ρ2)γ1(t) dt

= 1− e−aρ‖x‖
∫ t=∞

t=− ρ‖x‖√
1−ρ2

e−at
√

1−ρ2γ1(t) dt− eaρ‖x‖
∫ t=− ρ‖x‖√

1−ρ2

t=−∞
eat
√

1−ρ2γ1(t) dt.

Then, using e−t
2/2eλt = e−(1/2)(t−λ)2eλ

2/2,

Tρφ(x) ≥ 1− e−aρ‖x‖+
1
2
a2(1−ρ2)

∫ t=∞

t=− ρ‖x‖√
1−ρ2

+a
√

1−ρ2
γ1(t) dt

− eaρ‖x‖+
1
2
a2(1−ρ2)

∫ t=− ρ‖x‖√
1−ρ2

−a
√

1−ρ2

t=−∞
γ1(t) dt.
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Plugging in the definition of a = ρr/(1− ρ2), we get

Tρφ(x) ≥ 1− e−ρ2r‖x‖/(1−ρ2)+ 1
2
ρ2r2/(1−ρ2)

∫ t=∞

t=
−ρ‖x‖+ρr√

1−ρ2

γ1(t) dt

− eρ2r‖x‖/(1−ρ2)+ 1
2
ρ2r2/(1−ρ2)

∫ t=
−ρ‖x‖−ρr√

1−ρ2

t=−∞
γ1(t) dt

≥ 1− e−
ρ2r

1−ρ2
(‖x‖−r/2)

∫ t=∞

t=− ρ(‖x‖−r)√
1−ρ2

γ1(t) dt− e
ρ2r

1−ρ2
(‖x‖+r/2)

∫ t=− ρ(‖x‖+r)√
1−ρ2

t=−∞
γ1(t) dt.

In particular, when ‖x‖ = r, we get

Tρφ(r) ≥ 1− e−
ρ2r2

2[1−ρ2]

∫ t=∞

t=0

γ1(t) dt− e
3
2
ρ2r2

1−ρ2

∫ t=− 2ρr√
1−ρ2

t=−∞
γ1(t) dt.

�

Lemma 7.2. Let r > 0 and let 0 < ρ < 1. Let f : R2 → R be defined by

f(x) :=
ρr ‖x‖
1− ρ2

e−ρr‖x‖/(1−ρ
2), ∀x ∈ R2.

For all r > 0 and for all 0 < ρ < .05,

Tρf(r, 0) ≥ 1.2
ρr

1− ρ2
e
− (1.1ρr)2

1−ρ2
−1.1 ρr

1−ρ2 .

function convolveexp

%plot the 2d convolve of the function

%f(x) = (rho r|x|/ 1-rho^2) exp(- (rho r|x|/ 1-rho^2))

% since it is a radial function, suffices to do a one-dimensional plot

rho=.05;

numpts=1000;

r=linspace(0 ,10,numpts);

for i=1:numpts

plotme(i) = comyfcn(r(i),0,rho);

end

lb = 1.2*(rho*r/(1-rho^2)) .* exp(-((1.1*rho*r).^2)/(1-rho^2) ...

- 1.1*(rho*r / (1-rho^2)));

plot(r,plotme,r, lb );

legend('orig','lb')

if sum(plotme - lb <0)==0 % then the inequality is verified

fprintf('Verified\r');

end

end

function out=comyfcn(x,y,rho)

%2d convolve the function

%f(x) = (rho r|x|/ 1-rho^2) exp(- (rho r|x|/ 1-rho^2))
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% T_rho f(z) = int f(rho z + ysqrt(1-rho^2))gamma(y)

% output is T_rho f(x,y)

r=sqrt(x.^2 + y.^2);

rhor = rho*r / (1-rho^2);

f= @(a,b) rhor*sqrt(a.^2 + b.^2) .* exp(- rhor * sqrt(a.^2 + b.^2));

myfun = @(a,b) (f(rho*x + a*sqrt(1-rho^2), rho*y + b*sqrt(1-rho^2)))...

.*exp(-(a.^2 + b.^2)/2) ;

out = (1/(2*pi))* integral2(myfun, -10, 10, -10, 10);

end

8. Proof of Main Theorem: Positive Correlation

Proof of Theorem 1.5 when ρ > 0. The main result of [HT21] implies that, since k = 3, we
can and will assume that Ω1,Ω2,Ω3 ⊆ R2. That is, the case n = 2 is sufficient to prove the
case n > 2 in Theorem 1.5.

Denote f : R2 → {(1, 0, 0), (0, 1, 0), (0, 0, 1)} by (f(x))i := 1Ωi(x) for all 1 ≤ i ≤ 3. Denote
also fr : R2 → ∆2 by fr(x) := f |rS1 , i.e. fr is f restricted to the sphere rS1, and denote Efr
as the average value of fr on rS1 (with respect to the normalized Haar probability measure
σ on S1.) Using Definitions 1.13 and 1.11 we then write (recalling notation from Section
1.7)

3∑
i=1

∫
R2

1Ωi(x)Tρ1Ωi(x)γ2(x) dx = EX∼ρY 〈f(X), f(Y )〉 = ER,SE(U,V )∼NR,S
ρ
〈fR(U), fS(V )〉

= ER,SE(U,V )∼NR,S
ρ
〈fR(U)− EfR + EfR, fS(V )− EfS + EfS〉

= ER,S
(
〈EfR,EfS〉+ E(U,V )∼NR,S

ρ
〈fR(U)− EfR, fS(V )− EfS〉

)
.

(46)
Let Θ1,Θ2,Θ3 ⊆ R2 be three disjoint cones centered at the origin, each with cone angle

2π/3. Define then h : R2 → ∆3 by h(x) := (1Θ1(x), 1Θ3(x), 1Θ3(x)) for all x ∈ R2.
We first upper bound the rightmost term in (46). From Corollary 4.2 we have, ∀ r, s > 0,

E
(U,V )∼Nr,s

ρ

〈fr(U)− Efr, fs(V )− Efs〉 ≤ E
(U,V )∼Nr,s

ρ

〈hr(U)− Ehr, hs(V )− Ehs〉

−
(
− 1 +

(
1− 34/3

5

)
e
− ρrs

1−ρ2
π
2 +

34/3

5
e
− ρrs

1−ρ2
π
6

)
· (.109)

2

3∑
i=1

(
(σ(Ωi ∩ rS1)− 1/3)2 + (σ(Ωi ∩ sS1)− 1/3)2

)
.

(47)
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Then, using Lemma 7.1, we get

E
R,S

E
(U,V )∼NR,S

ρ

〈fR(U)− EfR, fS(V )− EfS〉 ≤ E
R,S

E
(U,V )∼NR,S

ρ

〈hR(U)− EhR, hS(V )− EhS〉

− E
R

[
1−

(
1− 34/3

5

)
e
− ρ

2R2(π/2)2

2[1−ρ2]

∫ t=∞

t=0

γ1(t) dt−
(

1− 34/3

5

)
e

3
2
ρ2R2(π/2)2

1−ρ2

∫ t=− 2ρR(π/2)√
1−ρ2

t=−∞
γ1(t) dt

− 34/3

5
e
− ρ

2R2(π/6)2

2[1−ρ2]

∫ t=∞

t=0

γ1(t) dt− 34/3

5
e

3
2
ρ2R2(π/6)2

1−ρ2

∫ t=− 2ρR(π/6)√
1−ρ2

t=−∞
γ1(t) dt

]
· (.109)

3∑
i=1

(σ(Ωi ∩R · S1)− 1/3)2.

(48)
Using Matlab, we simplify this bound to (1− e−ρR/2), i.e.

rho=.1;

r=linspace(0,150,10000);

y=.109 - (.109)*(1- (3^(4/3))/5)*( (exp(-(rho^2)*(r.^2)*(pi/2)^2 ...

/(2*(1-rho^2))))*(.5) + .5*(exp((3/2)*(rho^2)*(r.^2)*(pi/2)^2 ...

/(1-rho^2))).*erfc( 2*rho*r*(pi/2)/sqrt(2*(1-rho^2)))) ...

-(.109)*((3^(4/3))/5)*( (exp(-(rho^2) *(r.^2)*(pi/6)^2 ...

/(2*(1-rho^2))))*(.5) + .5*(exp((3/2)*(rho^2)*(r.^2)*(pi/6)^2 ...

/(1-rho^2))).*erfc( 2*rho*r*(pi/6)/sqrt(2*(1-rho^2))));

plot(r, y, r, .109*(1-exp(-r*rho/2)) );

axis([0 150 0 .109]);

legend('original','lower bound');

if sum((y - .109*(1-exp(-r*rho/2))<0))==0, fprintf('Verified\r'), end;

E
R,S

E
(U,V )∼NR,S

ρ

〈fR(U)− EfR, fS(V )− EfS〉 ≤ E
R,S

E
(U,V )∼NR,S

ρ

〈hR(U)− EhR, hS(V )− EhS〉

− .109 · E
R

(1− e−Rρ/2)
3∑
i=1

(σ(Ωi ∩R · S1)− 1/3)2.

(49)
Or, rewriting using our notation for f ,

E
R,S

E
(U,V )∼NR,S

ρ

〈fR(U)− EfR, fS(V )− EfS〉 ≤ E
R,S

E
(U,V )∼NR,S

ρ

〈hR(U)− EhR, hS(V )− EhS〉

− (.109) · E
R

(1− e−Rρ/2)
3∑
i=1

‖fR − 1/3‖2 .

(50)
Here we denote 1 := (1, 1, 1) ∈ R3. We now bound the 〈EfR,EfS〉 term in (46). Using

the assumption that ER,SfR = ERfR = 1/3, we have

E
R,S
〈EfR,EfS〉 = E

R,S
〈EfR − 1/3 + 1/3,EfS − 1/3 + 1/3〉

= 1/3 + E
R,S
〈EfR − 1/3,EfS − 1/3〉

= 1/3 + E
X∼ρY

〈Ef‖X‖ − 1/3,Ef‖Y ‖ − 1/3〉.
(51)
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Combining (51) and (50) into (46), we get

3∑
i=1

∫
R2

1Ωi(x)Tρ1Ωi(x)γ2(x) dx−
3∑
i=1

∫
R2

1Θi(x)Tρ1Θi(x)γ2(x) dx

≤ E
X∼ρY

〈Ef‖X‖ − 1/3,Ef‖Y ‖ − 1/3〉 − (.109) · E
R

(1− e−Rρ/2)
3∑
i=1

‖fR − 1/3‖2 .

(52)

Lemma 5.1 with Eγf = 1/3 then bounds the penultimate term, yielding

3∑
i=1

∫
R2

1Ωi(x)Tρ1Ωi(x)γ2(x) dx−
3∑
i=1

∫
R2

1Θi(x)Tρ1Θi(x)γ2(x) dx

≤ (2.5(ρ+ ρ2)− .109)E
R

(1− e−Rρ/2)
3∑
i=1

‖fR − 1/3‖2 .

(53)

When 0 < ρ < .0418, we have (2.5ρ + 2.5ρ2 − .109) < 0, so the right side of (53) is
nonpositive, with equality only when fR = 1/3. The proof is therefore concluded by (53),
when ρ satisfies 0 < ρ < .0418. �

Remark 8.1. Using computer assistance, we can replace the constant .109 above with .3,
so, with computer assistance, the main theorem holds for all 0 < ρ such that 2.5(ρ+ρ2) < .3,
i.e. 0 < ρ < 1

10
(
√

37− 5) = .108 . . .. In particular, Theorem 1.5 holds for all 0 < ρ < 1/10.

function surfplotfcn

rho=.01;

numpts=100;

x=linspace(0 ,2*pi ,numpts);

y=linspace(0 ,2*pi ,numpts);

xv=ones(numpts,1)*x;

yv= y' * ones(1,numpts);

zv= (-3*myfun(2*pi/3,rho)+ myfun(xv,rho) + myfun(yv,rho) ...

+ myfun(2*pi-xv-yv,rho)).*(xv+yv<= 2*pi);

hold on;

pv=(1/3- xv/(2*pi)).^2 + (1/3- yv/(2*pi)).^2 + (2/3 - (xv+yv)/(2*pi)).^2;

surf(x,y, zv +.3*pv.*(xv+yv <=2*pi)*(besseli(1,rho))/besseli(0,rho));

%%% this surface being nonpositive demonstrates that a constant

%%% .3 can be used in

end

function out=myfun(th,rho)

%output is mean subtracted noise stability of an interval [0,th]

% with positive correlation
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k=30; % number of terms in expansion to use

out=zeros(size(th));

for i=1:k

out=out + (1/i)^2 *(besseli(i,rho)/besseli(0,rho))*(sin(th*i/2)).^2;

end

out = out*2/pi^2;

end

Likewise, we check the inequality (49) with the constant .3 instead of .109.

rho=.04;

r=linspace(0,150,10000);

y=.3 - (.3)*(1- (3^(4/3))/5)*( (exp(-(rho^2)*(r.^2)*(pi/2)^2 ...

/(2*(1-rho^2))))*(.5) + .5*(exp((3/2)*(rho^2)*(r.^2)*(pi/2)^2 ...

/(1-rho^2))).*erfc( 2*rho*r*(pi/2)/sqrt(2*(1-rho^2)))) ...

-(.3)*((3^(4/3))/5)*( (exp(-(rho^2) *(r.^2)*(pi/6)^2 ...

/(2*(1-rho^2))))*(.5) + .5*(exp((3/2)*(rho^2)*(r.^2)*(pi/6)^2 ...

/(1-rho^2))).*erfc( 2*rho*r*(pi/6)/sqrt(2*(1-rho^2))));

plot(r, y, r, .3*(1-exp(-r*rho/2)) );

axis([0 150 0 .3]);

legend('original','lower bound');

if sum((y - .109*(1-exp(-r*rho/2))<0))==0, fprintf('Verified\r'), end;

9. Proof of Main Theorem: Negative Correlation

Proof of Theorem 1.5 when ρ < 0. Let 0 < ρ < 1. In this proof, we will minimize the
quantity

3∑
i=1

∫
Rn

1Ωi(x)Tρ1Ω′i
(x)γn(x) dx

over all (measurable) partitions Ω1,Ω2,Ω3 ⊆ Rn and Ω′1,Ω
′
2,Ω

′
3 ⊆ Rn (so e.g. ∪3

i=1Ωi = Rn

and ∪3
i=1Ω′i = Rn) subject to the constraint that

γn(Ωi) = γn(Ω′i), ∀ 1 ≤ i ≤ 3. (54)

The main result of [HT21] (as adapted in [Hei22a]) implies that, since k = 3, we can and
will assume that Ω1,Ω2,Ω3,Ω

′
1,Ω

′
2,Ω

′
3 ⊆ R2.

We will demonstrate that Ωi = −Ω′i = Θi for all 1 ≤ i ≤ 3, where Θ1,Θ2,Θ3 are three
disjoint sectors (cones) each with cone angle 2π/3 centered at the origin. Since T−ρf(x) =
Tρf(−x), this result proves the negative correlation case of Theorem 1.5, i.e. the case
−.0234 ≤ ρ < 0 of Theorem 1.5. Within the current proof, we assume that 0 < ρ ≤ .0234.

Denote f, g : R2 → {(1, 0, 0), (0, 1, 0), (0, 0, 1)} by (f(x))i := 1Ωi(x) and (g(x))i := 1Ω′i
(x)

for all 1 ≤ i ≤ 3. Define also h : R2 → ∆3 by h(x) := (1Θ1(x), 1Θ3(x), 1Θ3(x)) for all x ∈ R2.
Denote also fr : R2 → ∆2 by fr(x) := f |rS1 , i.e. fr is f restricted to the sphere rS1, and

denote Ef as the average value of fr on rS1 (with respect to the normalized Haar probability
measure on S1.) Using Definitions 1.13 and 1.11, and also (10), (recalling notation from
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Section 1.7)

3∑
i=1

∫
R2

1Ωi(x)Tρ1Ω′i
(x)γ2(x) dx = EX∼ρY 〈f(X), f(Y )〉 = ER,SE(U,V )∼NR,S

ρ
〈fR(U), gS(V )〉

= ER,S
(
〈EfR,EgS〉+ λR,S1,n

1

2π2

〈∫
S1

fR(x) cos(x) dx,

∫
S1

gS(y) cos(y) dy
〉

+ λR,S1,n

1

2π2

〈∫
S1

fR(x) sin(x) dx,

∫
S1

gS(y) sin(y) dy
〉

+
∞∑
d=2

λR,Sd,n

1

2π2

(〈∫
S1

fR(x) cos(xd) dx,

∫
S1

gS(y) cos(yd) dy
〉

+
〈∫

S1

fR(x) sin(xd) dx,

∫
S1

gS(y) sin(yd) dy
〉)
.

(55)
We introduce a notation for each of the forms on the right. We rewrite (55) as

Q(f, g) = Q0(f, g) +Q1(f, g) +Q2(f, g). (56)

That is, Q(f, g) := ER,SE(U,V )∼NR,S
ρ
〈fR(U), gS(V )〉, Q0(f, g) := ER,S〈EfR,EgS〉,

Q1(f, g) := ER,S
(
λR,S1,n

1

2π2

〈∫
S1

fR(x) cos(x) dx,

∫
S1

gS(y) cos(y) dy
〉

+ λR,S1,n

1

2π2

〈∫
S1

fR(x) sin(x) dx,

∫
S1

gS(y) sin(y) dy
〉)
,

and Q2(f, g) denotes the remaining d ≥ 2 terms in (55).
Denote h−(·) := h(−·). Since Q1 is bilinear, we have

Q1(f, g) = Q1(f − h+ h, g − h− + h−)

= Q1(f − h, g − h−) +Q1(f − h, h−) +Q1(h, g − h−) +Q1(h, h−)

= Q1(f − h, g − h−) +Q1(f, h−) +Q1(g, h)−Q1(h, h−)

= Q1(f − h, g − h−) +Q1(f, h−) +Q1(g, h)−Q1(h, h−).

And similarly for Q0 and Q2. Using this identity in (56), we therefore have

Q(f, g)−Q(h, h−)

(56)
=

2∑
i=0

(
Qi(f − h, g − h−) +Qi(f, h−)−Qi(h, h−) +Qi(g, h)−Qi(h−, h)

)
=

2∑
i=0

(
Qi(f − h, g − h−) +Qi(f − h, h−) +Qi(g − h−, h)

)
.

(57)

Plan of the Proof. We will bound the terms in (57) separately. We begin with the
last two terms when i = 1, 2, which we bound from below. Then, we will bound the first
term in (57) with i = 1, demonstrating this term is smaller than the previously mentioned
terms. Finally, after subtracting a mean term, the remaining terms in (57) will be shown to
be small, i.e. O(ρ) (whereas the previously mentioned terms are O(1), as ρ→ 0.)
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Step 1. We bound the last two i = 1, 2 terms from below in (41). We numerically verify
the following inequality with the subsequent Matlab program.

2∑
i=1

(
Qi(f − h, h−) +Qi(g − h−, h)

)
≥ .3133 · ER,S

( ρRS

1− ρ2
· e−

ρRS

1−ρ2
) 3∑
i=1

(
(σ(Ωi ∩RS1)− 1/3)2 + σ(Ω′i ∩ SS1)− 1/3)2

)
.

(58)

function surfplotfcnnegcorlinear

rho=10;

numpts=140;

x=linspace(0 ,2*pi ,numpts);

y=linspace(0 ,2*pi ,numpts);

xv=ones(numpts,1)*x;

yv= y' * ones(1,numpts);

%%%% mean subtracted noise stability, linear

zv= (-3*nmyfun(2*pi/3,-rho)+nmyfun(xv,-rho) + nmyfun(yv,-rho) ...

+nmyfun((2*pi - xv - yv),-rho)).*(xv+yv<= 2*pi);

surf(xv,yv,zv);

hold on;

con=rho*exp(-rho) / 125.3;

surf(xv,yv,(con)*( (xv- 2*pi/3).^2 + (yv- 2*pi/3).^2 +...

(2*pi - xv - yv - 2*pi/3).^2).*(xv+yv<= 2*pi))

if sum(sum( ( zv>0 & zv < (con)*( (xv- 2*pi/3).^2 +...

(yv- 2*pi/3).^2 + (2*pi - xv - yv - 2*pi/3).^2).*(xv+yv<= 2*pi) )))==0

fprintf('Verified\r')

end

end

function out=nmyfun(th,rho)

%output is bilinear mean subtracted noise stability of an interval [0,th]

% against an interval [-pi/3 pi/3]

k=30; % number of terms in expansion to use

out=zeros(size(th));

for i=1:k

out=out + (1/i)^2 *(besseli(i,rho)/besseli(0,rho))...

*(sin(th*i/2)).*sin(i*pi/3);

end

out = out*2/pi^2;

end
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Then, using Lemma 7.2 in (58), we have

2∑
i=1

(
Qi(f − h, h−) +Qi(g − h−, h)

)
≥ .3133(1.2) · ERφ(R)

3∑
i=1

(
(σ(Ωi ∩RS1)− 1/3)2 + σ(Ω′i ∩RS1)− 1/3)2

)
,

(59)

where

φ(r) :=
ρ

1− ρ2
re
− (1.1ρr)2

1−ρ2
− 1.1ρ

1−ρ2
r
, ∀ r > 0.

Step 2. We bound the first i = 1 term in (41), using Lemmas 5.3 and 5.4 to get

|Q1(f − h, g − h−)|

≤ 1

2
(.9555)(

1

2

√
π

2
+ 1.35ρ) · ERφ(R)

3∑
i=1

(
(σ(Ωi ∩RS1)− 1/3)2 + σ(Ω′i ∩RS1)− 1/3)2

)
.

(60)
Step 3. We bound the remaining terms in (57), i.e. the last i = 0 term, and the first

i = 0, 2 terms.
The last i = 0 terms in (57) are zero, since h and h− have Haar measure 1/3 assigned to

each partition element, on a sphere of any radius centered at the origin. The first i = 0 term
in (57) is equal to a nonnegative term plus a term that is bounded by Lemma 5.2. Finally,
the first i = 2 term in (57) is also bounded via Lemma 5.2. In fact, we can combine the first
i = 0, 2 terms in (57) and estimate them as a single term. Using the notation of Lemma 5.3
(i.e. (42)), Let Proj(f) : R2 → R2 denote f minus its degree one projection onto spherical
harmonics, i.e.

Proj(f)
(42)
:= f − Proj1(f). (61)

We then have∑
i=0,2

Qi(f − h, g − h−) = EX∼ρY 〈Proj(f − h),Proj(g − h−)〉

= ‖Eγ(f − h)‖2 +
∑
d≥2

ρd
∑

k∈N2 : ‖k‖1=d〈∫
R2

√
k!hk(x)Proj(f − h)(x)γ2(x) dx,

∫
R2

√
k!hk(x)Proj(g − h−)(x)γ2(x) dx

〉
.

(62)

Applying Lemma 5.2 to (62), we then get

∣∣∣∣∣∑
i=0,2

Qi(f − h, g − h−) − ‖Eγ(f − h)‖2

∣∣∣∣∣
≤ (5ρ+ 8ρ2)

1

2
· EX∼γφ(‖X‖)

(
‖Proj(f − h)(X)‖2 + ‖Proj(g − h−)(X)‖2

)
.

(63)

Since Proj is a contraction on each sphere centered at the origin, (63) implies that
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∣∣∣∣∣∑
i=0,2

Qi(f − h, g − h−) − ‖Eγ(f − h)‖2

∣∣∣∣∣
≤ (5ρ+ 8ρ2)

1

2
· EX∼γφ(‖X‖)

(
‖f(X)− h(X)‖2 + ‖g(X)− h−(X)‖2

)
.

(64)

Combining (57), (59) and (64),

3∑
i=1

∫
R2

1Ωi(x)Tρ1Ω′i
(x)γ2(x) dx−

3∑
i=1

∫
R2

1Θi(x)Tρ1Θ′i
(x)γ2(x) dx

(55)∧(57)

≥ ‖Eγ(f − h)‖2 + (.3133)(1.2)ERφ(R) · (‖EfR − 1/3‖2 + ‖EgR − 1/3‖2)

− 1

2
(.9555)

(1

2

√
π

2
+ 1.35ρ

)
· (ERφ(R)(‖EfR − EhR‖2 + ‖EgR − EhR‖2)

− 1

2
(5ρ+ 8ρ2) · (EX∼γφ(‖X‖)(‖f(X)− h(X)‖2 + ‖g(X)− h−(X)‖2).

Spherical rearrangement with Definition 1.12 (using e.g. [IT76, Theorem 2] and that t 7→
eρrst/(1−ρ

2) is increasing in t) implies that we may assume that Ωi ∩ rS1 and Ω′i ∩ rS1 are
opposing circular arcs for all r > 0. (After this rearrangement, Ωi and Ωj might have an

intersection with positive measure for some i, j, but we still have
∑3

i=1 σ(Ωi ∩ rS1) = 1 for
all r > 0. Also, after this rearrangement, we may assume that Ωi ∩ rS1 and Θi ∩ rS1 are
circular arcs with the same center of mass in rS1.) So, if we write the last EX∼γ term in
polar coordinates, fix ‖X‖, and first average in the angular direction, we find the average of

‖f(X)− h(X)‖2 on a sphere of radius ‖X‖ is equal to
∥∥Ef‖X‖ − Eh‖X‖

∥∥2
. Also, EhR = 1/3

by definition of h, so that all of the terms involving f − h and g − h can be written in the
same way, i.e.

3∑
i=1

∫
R2

1Ωi(x)Tρ1Ω′i
(x)γ2(x) dx−

3∑
i=1

∫
R2

1Θi(x)Tρ1Θ′i
(x)γ2(x) dx ≥ ‖Eγ(f − h)‖2

+ ER
(
φ(R) · (‖EfR − 1/3‖2 + ‖EgR − 1/3‖2) ·

[
.3759− .3− .645ρ− 2.5ρ− 4ρ2

])
.

(65)
The right side is nonnegative for all 0 < ρ < .0234 . . ., with equality only when f = h and
g = −h.

�

10. Proof of Unique Games Hardness

Proof of Theorem 1.8. From [IM12, Theorem A.9]: assuming the Unique Games Conjecture,
for any ε > 0, it is NP-hard to approximate MAX-3-CUT within a multiplicative factor of
β3 + ε where

β3 := lim
n→∞

inf
− 1

2
≤ρ≤1

sup
f : Rn→∆3

3

2

1−
∑3

i=1

∫
Rn〈f(x), Tρf(x)〉 γn(x) dx

1− ρ
.
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The main result of [HT21] (as adapted in [Hei22a]) implies that, since k = 3, the quantity
β3 does not depend on n ≥ 4, i.e. we can write

β3 = inf
− 1

2
≤ρ≤1

sup
f : R4→∆3

3

2

1−
∑3

i=1

∫
R4〈f(x), Tρf(x)〉 γ4(x) dx

1− ρ
.

Also, [IM12, Lemma A.4] implies that the infimum is attained when ρ ≤ 0, i.e.

β3 = inf
− 1

2
≤ρ≤0

sup
f : R4→∆3

3

2

1−
∑3

i=1

∫
R4〈f(x), Tρf(x)〉 γ4(x) dx

1− ρ
.

Since this is an infimum, we have an upper bound by taking an infimum over a smaller set:

β3 ≤ inf
−.0234≤ρ≤1

sup
f : R4→∆3

3

2

1−
∑3

i=1

∫
R4〈f(x), Tρf(x)〉 γ4(x) dx

1− ρ
.

Now our main result Theorem 1.5 together with an explicit formula for the noise stability of
the Plurality function from [KPW04] implies that

β3 ≤ inf
−.0234≤ρ≤0

sup
f : R2→∆3

3

2

1−
∑3

i=1

∫
R2〈f(x), Tρf(x)〉 γ2(x) dx

1− ρ

= inf
−.0234≤ρ≤0

3

2
·

1− 3((1/9) + [arccos(−ρ)]2−[arccos(ρ/2)]2

4π2 )

1− ρ

=
3

2
·

1− 3((1/9) + [arccos(.0234)]2−[arccos((−.0234)/2)]2

4π2 )

1− (−.0234)
≈ .98937199597 . . . .

The above function of ρ is monotone. It attains its minimum at the endpoint ρ = −.0234.
�
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