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Abstract. We consider Lionel Levine’s notorious hat puzzle with two
players. Each player has a stack of hats on their head, and each hat is
chosen independently to be either black or white. After observing only
the other player’s hats, players simultaneously choose one of their own
hats. The players win if both chosen hats are black. In this note, we
observe an upper bound on the probability of success, using Chang’s
lemma, a result in Boolean harmonic analysis.

1. Introduction

Fix n ≥ 1, and let X1, . . . , Xn, Y1, . . . , Yn be independent identically dis-
tributed random variables with P[X1 = 1] = P[X1 = −1] = 1/2. Denote
X = (X1, . . . , Xn), Y = (Y1, . . . , Yn). The two player version of Lionel
Levine’s notorious hat puzzle is to find f, g : {−1, 1}n → {1, . . . , n} that
maximize

Uf,g := P
[
Xf(Y ) = Yg(X) = 1

]
.(1.1)

The interpretation is that f, g are the players’ strategies, and Xi = 1 if the
first player’s ith hat is black, and Yi = 1 if the second player’s ith hat is
black. Hence the expression in (1.1) is the probability that both players
choose a black hat.

We would like to understand how high this probability can be. Let [n] =
{1, . . . , n}, let

Un = max{Uf,g : f, g : {−1, 1}n → [n]},

and observe that Un+1 ≥ Un for all n ≥ 1. We would like to know U :=
limn→∞ Un = supn≥1 Un.

It was conjectured in [BFG+22, AFKK23] that U = 7/20 = 0.35. In
[BFG+22] it was shown that U ≥ 7/20, and, using a simple argument, that
U ≤ 3/8 = 0.375. Using a computer assisted proof, they improved this
upper bound to U ≤ 81/224 ≈ 0.3616. As far as we know, this is the best
known upper bound.

In this note we take a Fourier approach to this question. While we do
not improve the best known upper bound, our technique yields that U ≤
0.37406, without computer assistance (Theorem 1). A longer, additional
argument leads to the slightly improve bound U ≤ .37193.
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We can write (1.1) as

Uf,g = E
[
1

2
(Xf(Y ) + 1) · 1

2
(Yg(X) + 1)

]
,

and since X and Y are independent, E
[
Xf(Y )

]
= 0, and so Uf,g can be

rewritten as

Uf,g =
1

4
E
[
Xf(Y ) · Yg(X)

]
+

1

4
.

Maximizing this expression over f, g is of course equivalent to maximizing

Wf,g := E
[
Xf(Y ) · Yg(X)

]
.(1.2)

This corresponds to a game in which the two players win a dollar if the
colors of their chosen hats match, and lose a dollar if they mismatch. This
equivalent form will be more convenient for our purposes.

To see the connection to boolean harmonic analysis, given f, g : {−1, 1}n →
[n] and 1 ≤ i, j ≤ n, denote

Fij = E
[
Yi · 1{f(Y )=j}

]
Gij = E

[
Xi · 1{g(X)=j}

]
.(1.3)

A first observation (Lemma 3.1) is that

E
[
Xf(Y )Yg(X)

]
=

n∑
i,j=1

FijGji.(1.4)

The advantage of this representation is that Fij depends only on f , and Gij

depends only on g. Moreover, these are simply the level one Fourier coeffi-
cients of the level sets of f and g. Indeed, given a function φ : {−1, 1}n → R,
its Fourier transform φ̂ : 2[n] → R is given by

φ̂(S) = E

[
φ(Y ) ·

∏
i∈S

Yi

]
.(1.5)

When S = {i} is a singleton we write φ̂(i) := φ̂({i}). Then Fij
(1.3)
= φ̂j(i),

where φj = 1{f=j}.
A useful consequence of (1.4), which we will exploit, is that it implies

that Wf,g can be upper bounded using the Cauchy-Schwarz inequality, given
estimates of Fij and Gij :

E
[
Xf(Y )Yg(X)

]
≤

√√√√ n∑
i,j=1

F 2
ij

n∑
i′,j′=1

G2
i′j′ .
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2. Boolean harmonic analysis

Fix n ≥ 1, and consider the vector space R{−1,1}n of functions h : {−1, 1}n →
R. Define an inner product on our vector space by

⟨h, u⟩ := E[h(X) · u(X)], for allh, u ∈ R{−1,1}n .

We will use two important results. The first is Plancherel’s Theorem,
which states that given h, u : {−1, 1}n → R,

⟨h, u⟩ =
∑
S⊆[n]

ĥ(S)û(S).(2.1)

The second (and less trivial) result is Chang’s inequality.

Lemma 2.1 (Chang’s Inequality, [IMR14],[O’D14, page 126]).
Let h : {−1, 1}n → {0, 1}, and denote α := P[h(X) = 1]. Then

n∑
k=1

|ĥ(k)|2 ≤ 2α2 log(1/α).(2.2)

Here log denotes the natural logarithm.
The bound of (2.2) is tight for small α tending to zero. Another bound

is useful for large α:

Lemma 2.2. Let h : {−1, 1}n → {0, 1}, and denote α := P[h(X) = 1]. Then
n∑

k=1

|ĥ(k)|2 ≤ α/2.

Proof. Let u(x) = h(−x), and note that û(S) = (−1)|S|ĥ(S). Hence, by
Plancherel (2.1),

⟨h, u⟩ =
∑
S⊆[n]

(−1)|S||ĥ(S)|2.

It follows (again by Plancherel) that

⟨h, h− u⟩ = 2
∑

S⊆[n] : |S| odd

|ĥ(S)|2.(2.3)

Since |h|2 = h,

α = E[h(X)] = E[h(X) · h(X)] = ⟨h, h⟩.
Additionally, ⟨h, u⟩ ≥ 0 since h, u ≥ 0. Thus,∑

S⊆[n] : |S| odd

|ĥ(S)|2
(2.3)

≤ 1

2

(
⟨h, h⟩ − ⟨h, u⟩

)
≤ ⟨h, h⟩/2 ≤ α/2.

Finally, since S = {k} is of odd size, we have that
n∑

k=1

|ĥ(k)|2 ≤
∑

S⊆[n] : |S| odd

|ĥ(S)|2 ≤ α/2.
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□

Putting these lemmas together we have that for any h : {−1, 1}n → {0, 1}
and α = P[h(X) = 1] it holds that

n∑
k=1

|ĥ(k)|2 ≤ min{2α2 log(1/α), α/2}.(2.4)

3. Proofs

Recall that

U = sup
n≥1

max
f,g : {−1,1}n→[n]

E
[
1

2
(Xf(Y ) + 1) · 1

2
(Yg(X) + 1)

]
.

Our main result is the following.

Theorem 1. U ≤ 0.37406.

In fact, with some additional effort we improve this bound to U ≤ .37193
in Section 4.

It will be more convenient to study

W = 4U − 1 = sup
n≥1

max
f,g : {−1,1}n→[n]

E
[
Xf(Y ) · Yg(X)

]
.

In terms of W , Theorem 1 states that W ≤ 0.496235. We prove this theorem
in the remainder of this note.

We begin by showing (1.4).

Lemma 3.1. For any f, g : {−1, 1}n → {1, . . . , n} we have

E
[
Xf(Y )Yg(X)

]
=

n∑
i,j=1

FijGji.

Proof. Using the independence of X and Y ,

E
[
Xf(Y ) · Yg(X)

]
=

n∑
i,j=1

E
[
Xj · Yi · 1{g(X)=i} · 1{f(Y )=j}

]
=

n∑
i,j=1

E
[
Xj · 1{g(X)=i}

]
· E

[
Yi · 1{f(Y )=j}

]
(1.3)
=

n∑
i,j=1

FijGji.

□

In the next lemma we show that W ≤ 1/2 (corresponding to U ≤ 3/8, as
in [BFG+22]), and that this bound can be furthermore improved if we can
restrict the probability that f (or g) is large.



5

Lemma 3.2. Let k > 0 and let 0 < ϵ < 1/4. Assume that

(3.1) P[g(X) ≥ k] ≤ ϵ.

Then

E
[
Xf(Y )Yg(X)

]
≤ 1

2
− (1− 4ϵ)2−k+1.

Proof. Recall our notation Wf,g = E
[
Xf(Y )Yg(X)

]
. Since X is independent

of Y , since X and −X have the same distribution, and since Y and −Y have
the same distribution, (X,Y ) has the same joint distribution as (X,−Y ),
(−X,Y ) or (−X,−Y ). Hence

Wf,g = E
[
−Xf(−Y )Yg(X)

]
= E

[
−Xf(Y )Yg(−X)

]
= E

[
Xf(−Y )Yg(−X)

]
.

Summing these and rearranging yields

4Wf,g = E
[
(Xf(Y ) −Xf(−Y ))(Yg(X) − Yg(−X))

]
.

Let BY be the event that Y1 = Y2 = · · · = Yk−1, and note that P[BY ] =

2−(k−2). Write

4Wf,g =E
[
(Xf(Y ) −Xf(−Y ))(Yg(X) − Yg(−X))1{BY }

]
+ E

[
(Xf(Y ) −Xf(−Y ))(Yg(X) − Yg(−X))1{Bc

Y }
]
.(3.2)

Consider the first term on the right hand side. Since P[g(−X) ≥ k] =
P[g(X) ≥ k] ≤ ϵ, we have that P[g(X) ≥ k or g(−X) ≥ k] ≤ 2ϵ, by the
union bound. Now, if g(X) < k and g(−X) < k then, under the event BY ,
Yg(X) = Yg(−X). Hence

(Yg(X) − Yg(−X)) · 1{BY } = (Yg(X) − Yg(−X)) · 1{g(X)≥k or g(−X)≥k} · 1{BY }.

We thus have by independence of X and Y that

E
[
(Xf(Y ) −Xf(−Y ))(Yg(X) − Yg(−X))1{BY }

]
= E

[
(Xf(Y ) −Xf(−Y )) · (Yg(X) − Yg(−X)) · 1{g(X)≥k or g(−X)≥k} · 1{BY }

]
≤ E

[
4 · 1{g(X)≥k or g(−X)≥k} · 1{BY }

]
= 4P[g(X) ≥ k or g(−X) ≥ k,BY ]

= 4P[g(X) ≥ k or g(−X) ≥ k]P[BY ]

≤ 8ϵ2−(k−2).

Consider now the second term on the right hand side of (3.2). Noting
that P

[
Xf(Y ) = Xf(−Y )

∣∣Y = y
]
≥ 1/2 for any y, we get that

E
[
(Xf(Y ) −Xf(−Y ))(Yg(X) − Yg(−X))1{Bc

Y }
]
≤ 2P[Bc

Y ] = 2(1− 2−(k−2)).

Substituting these two bounds back into (3.2) and diving by 4, we get

Wf,g ≤ 1

4

(
8ϵ2−(k−2) + 2(1− 2−(k−2))

)
=

1

2
− (1− 4ϵ)2−k+1.

□
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Finally, let us apply the upper bound (2.4) to the case not covered by
Lemma 3.2.

Lemma 3.3. Let Ωf ⊆ [n] be 8 indices (or n indices if n < 8) i ∈ [n] with
the largest values of P[f(X) = i]. Similarly define Ωg ⊆ [n]. Assume that

P[f(X) /∈ Ωf ] ≥ .009079 and P[g(X) /∈ Ωg] ≥ .009079.

Then

E
[
Xg(Y )Yf(X)

]
< .4962357.

Proof. For any j ∈ [n], define αj := P[f(X) = j], and recall that Fij :=

1̂{f=j}(i). We prove the claim by bounding the quantity

(3.3) ∥F∥ :=

√√√√ n∑
j=1

n∑
i=1

|Fij |2.

Indeed, by (1.4) and the Cauchy-Schwarz inequality we have that

E
[
Xg(Y )Yf(X)

]
≤ ∥F∥ · ∥G∥,

and so it suffices to show that ∥F∥2, ∥G∥2 ≤ 0.4962357.
Without loss of generality, we can apply a permutation to [n] so that

P[f(X) = 1] ≥ P[f(X) = 2] ≥ · · · ≥ P[f(X) = n], and the assumption on f
becomes

P[f(X) > 8] ≥ .009079.

Since we have already applied the Cauchy-Schwarz inequality, we can apply
another permutation to [n] to similarly get this conclusion for the function
g. Below we will only bound ∥F∥, the case of g being identical.

Denote α′ ≈ .116101 as the unique 0 < α < 1/2 such that 2α2 log(1/α) =
α/2. Since (Fij)

n
i=1 are the first level Fourier coefficients of 1{f=j}, we can

use (2.4) to upper bound ∥F∥2 by

(3.4)

n∑
j=1

(
2α2

j log(1/αj)1{αj<α′} +
αj

2
1{αj≥α′}

)
.

Subsequently, and given the lemma hypotheses, we can bound ∥F∥2 by the
maximum of (3.4) subject to the constraints:

(3.5)

n∑
j=9

αj ≥ .009, α1 ≥ α2 ≥ · · · ≥ αn,

n∑
j=1

αj = 1.

These constraints imply α9 ≤ 1/9. Note also that 1/9 < α′. The function
z(α) = 2α2 log(1/α)1{α<α′} + (α/2)1{α≥α′} is convex for 0 < α < α′ and
linear for α′ ≤ α < 1. So, if α1, α2, . . . is a maximum of (3.4) subject to
the constraints (3.5), we may assume that α1, . . . , α8 ≥ α′, αj = 0 for all
j > 9, and therefore α9 ≤ 1 − 8α′ ≤ .0712, since z(α) is strictly convex
for 0 < α < 1/9, and all αj with j ≥ 9 are in this region. The function
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α 7→ (1 − α)/2 + 2α2 log(1/α) is convex for 0 < α < .0712, so (3.4) is at
most 4α′ + 2(1− 8α′)2 log(1/(1− 8α′)) ≤ .4912, or

2α2
9 log(1/α9) +

8∑
j=1

αj

2

= 2(.009079)2 log(1/.009079) + (1− .009079)/2 ≈ .49626356.

□

Combining with Lemma 3.3 then gives an unconditional upper bound
which is worse than that of [BFG+22], albeit without computer assistance.

Proof of Theorem 1. Let f, g : {−1, 1}n → [n]. Let Ωf ⊆ [n] be 8 indices (or
n indices if n < 8) i ∈ [n] with the largest values of P[f(X) = i]. Similarly
define Ωg ⊆ [n].

Suppose for now that P[g(X) /∈ Ωg] < .009079. After applying a permu-
tation to [n], we may assume that P[g(X) > 8] < .009079. Then we can
apply Lemma 3.2 with k = 9 and ϵ = .009079 to get

E
[
Xg(Y )Yf(X)

]
≤ 1

2
− (1− 4(.009079))2−8 ≈ 0.4962356.

As discussed after the statement of Theorem 1, this proves Theorem 1, since
(1 + .4962357)/4 ≤ .37406. We get the same conclusion from Lemma 3.2 if
P[f(X) /∈ Ωf ] < .009079. The only remaining case to consider is:

P[f(X) /∈ Ωf ] ≥ .009079 and P[g(X) /∈ Ωg] ≥ .009079.

In this case, Lemma 3.3 concludes the proof. □

4. A Small Improvement

.
The proof of Lemma 2.2 gives a stronger inequality than the statement of

Lemma 2.2, namely: if h : {−1, 1}n → {0, 1}, and if α := P[h(X) = 1], then

(4.1)
n∑

k=1

|ĥ(k)|2 ≤ α

2
−

∑
|S|≥3 odd

|ĥ(S)|2.

So, lower bounding the last quantity leads to an improved bound in Lemma
2.2, which then leads to better constants in Chang’s inequality and the proof
of the Main Theorem 1. This lower bound is stated in Lemma 4.1 below.

There are exactly two cases where the last term in (4.1) is zero, namely
when h = 1 on a subcube of measure 1/2 or 1/4. This follows since this
term is zero when (h + h(−·))3 = h + h(−·), which implies that h + h(−·)
has at most two nonzero terms in its first order coefficients. The restriction
that h ∈ {0, 1} can then be used to show that these nonzero coefficients have
value either 1 or 1/2. One can “add epsilons” to this argument to obtain
a worse version of Lemma 4.1. We instead prove Lemma 4.1 using other
elementary methods.
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1/4.1161 1/2

2x2 log(x)

x/2

x

Figure 1. The solid line shows the upper bound on squared
first order Fourier coefficients from (2.4). The dotted line
shows the better (smaller) upper bound from Lemma 4.1.
No improvement to (2.4) is possible when x = P[A] ∈
{1/4, 1/2}.

.

In this section we denote ∥f∥ := (E[f ]2)1/2 for any f : {−1, 1}n → R.

Lemma 4.1. Let A ⊂ {−1, 1}n with A ∩ (−A) = ∅. If∑
S⊆[n] : |S|≥3 odd

|1̂{A}(S)|2 < .000422,

then ∑
S⊆[n] : |S|≥3 odd

|1̂{A}(S)|2 ≥
1

4
min

(
(2P[A])1/.6938−1/.69,

[√4 + 4(34)(1/2− 2P[A])− 2

68

]2/.69
1{P[A]<1/4}

+
[√4− 4(40)(1/2− 2P[A])− 2

80

]2/.69
1{P[A]≥1/4},[√16 + 4(32)(1− 2P[A])− 4

64

]2/.69
1P[A]<1/2

)
Proof. Let A ⊂ {−1, 1}n such that A∩(−A) = ∅ and let g := (1{A}−1{−A})
so that g : {−1, 1}n → {−1, 0, 1}. Let f : {−1, 1}n → R be a linear function
that minimizes

∥g − ℓ∥2

over all linear functions ℓ : {−1, 1}n → R. That is, f is the closest possible
linear approximation to g. Write

(4.2) f(x) =

n∑
i=1

aixi, ∀x ∈ {−1, 1}n.
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for some a1, . . . , an ∈ R. Define

(4.3) ϵ := ∥f − g∥ .
For any 1 ≤ i ≤ n, define

fi(x) := f(x1, . . . , xi−1,−xi, xi+1, . . . , xn), ∀x ∈ {−1, 1}n.
Fix 0 < c < 1 to be chosen later. Since g ∈ {−1, 0, 1},

(4.4)
P[f /∈ ({−1, 0, 1}+ [−ϵc, ϵc])]

≤ P[|f − g| > ϵc] ≤ ∥f − g∥2 /ϵ2c (4.3)
= ϵ2(1−c).

Similarly, ∀ 1 ≤ i ≤ n, gi(x) := g(x1, . . . , xi−1,−xi, xi+1, . . . , xn) satisfies

∥fi − gi∥
(4.3)
= ϵ, and

P[fi /∈ ({−1, 0, 1}+ [−ϵc, ϵc])] ≤ ϵ2(1−c).

Combining with (4.4), we get

P[f + fi /∈ {−2,−1, 0, 1, 2}+ [−2ϵc, 2ϵc]] ≤ 2ϵ2(1−c).

By (4.2), f + fi = 2aixi, so

P[aixi /∈ {−1,−1/2, 0, 1/2, 1}+ [−ϵc, ϵc]] ≤ 2ϵ2(1−c), ∀ 1 ≤ i ≤ n.

That is, if ϵ < (1/2)
1

2(1−c) , we have

(4.5) ai ∈ {−1,−1/2, 0, 1/2, 1}+ [−ϵc, ϵc], ∀ 1 ≤ i ≤ n.

We split into cases by how many indices i satisfy |ai| > ϵc in (4.5).
Case 1. ∃ 1 ≤ i ≤ n with |ai| ∈ 1 + [−ϵc, ϵc].
Case 2. All 1 ≤ i ≤ n satisfy

ai ∈ [−ϵc, ϵc].

Fix 1 ≤ i ≤ n. From the Berry-Esseen CLT [JH24, Equation (2)], if G is a
mean zero Gaussian random variable with variance 1, then

sup
t∈R

∣∣∣P[ n∑
i=1

aiXi < t

]
− P

G
√√√√ n∑

i=1

a2i < t

∣∣∣ ≤ .56

∑n
i=1 |ai|3

(
∑n

i=1 a
2
i )

3/2
.

In particular, choosing t = ϵc and t = 1 − ϵc, and using |ai| ≤ ϵc for all
1 ≤ i ≤ n,∣∣∣P[ϵc < f(X) < 1− ϵc]− P

ϵc < G

√√√√ n∑
i=1

a2i < 1− ϵc

∣∣∣ ≤ 1.12ϵc√∑n
i=1 a

2
i

.

If ϵ < (1/2)1/[2(1−c)], then (4.4) (and that f, f(−·) have the same distribution
to get an extra 1/2 factor on the right) imply that

(4.6)

∫ (1−ϵc)/
√∑n

i=1 a
2
i

ϵc/
√∑n

i=1 a
2
i

e−z2/2dz√
2π

≤ ϵ2(1−c)/2 +
1.12ϵc√∑n

i=1 a
2
i

.
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If ϵc/
√∑n

i=1 a
2
i < 1/6, then we get∫ 1−1/6

1/6

e−z2/2dz√
2π

≤ ϵ2(1−c)/2 + 1.12/6.

That is,

.231488 ≤ ϵ2(1−c)/2 + .18666,

which implies that ϵ2(1−c) > .089656.

In other words, if ϵ < .0896561/[2(1−c)], we have shown that ϵc/
√∑n

i=1 a
2
i <

1/6 does not occur, i.e.
n∑

i=1

a2i < 36ϵ2c.

That is,

∥f∥2
(4.2)

≤ 36ϵ2c.

Case 3. Case 1 does not occur, and ∃ exactly two 1 ≤ i < j ≤ n
with |ai| , |aj | ∈ 1/2 + [−ϵc, ϵc]. Then all other coefficients are at most ϵc in
absolute value, so applying Case 2 to the function f − (aixi + ajxj) gives

∥f − (aixi + ajxj)∥2 < 36ϵ2c.

Compared to Case 2, instead of using (4.4) in (4.6) we use

P[f − (aixi + ajxj) /∈ ({−2,−1, 0, 1, 2}+ [−ϵc, ϵc])]

≤ P[|f − (aixi + ajxj)− [g − (aixi + ajxj)]| > ϵc]

≤ ∥f − g∥2 /ϵ2c (4.3)
= ϵ2(1−c).

Case 4. Case 1 does not occur, and ∃ exactly one, three or four indices
1 ≤ i ≤ n with |ai| ∈ 1/2+ [−ϵc, ϵc]. This case is similar to Case 3, but (e.g.
in the case of exactly one index) we get

∥f − aixi∥2 < 36ϵ2c,

which then implies that, for any t > 0,

P[f /∈ {−1/2, 1/2}+ t[−ϵc, ϵc]]

≤ P[|f − aixi| > tϵc] ≤ ∥f − aixi∥2/[t2ϵ2c] ≤ 36/t2.

But this violates (4.4) when t = 7, so that ϵ2(1−c) < 13/49 (and (t+1)ϵc < 1,
i.e. ϵc < 1/8), i.e. this cannot occur for small ϵ. Similarly, with exactly three
indices ai, aj , ak near 1/2, we have ℓ(x) := aixi + ajxj + akxk and

P[f /∈ {−3/2,−1/2, 1/2, 3/2}+ t[−3ϵc, 3ϵc]]

≤ P[|f − ℓ(x)| > 3tϵc] ≤ ∥f − ℓ(x)∥2/[ϵ2c9t2] = 4/t2.

But this violates (4.4) when t = 2.1, so that ϵ2(1−c) < .41/4.41 (and (3t +
1)ϵc < 1/2, i.e. ϵc < 1/(2 · 7.3)), i.e. we cannot have exactly three indices of
this form.
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The remaining case of exactly four indices satisfying |ai| ∈ 1/2 + [−ϵc, ϵc]
cannot occur for ϵ small, but we do not need to rule this out, since it will
not improve our bounds later on.

Combining all cases
From the Pythagorean Theorem in the form ∥f∥2 = ∥f − ℓ∥2 + ∥ℓ∥2,

where ℓ is a linear function containing some coefficients of f (depending on

the above case under consideration), if ϵ < (1/2)1/(2(1−c)), then

(1) ∥f∥2 ≥ (1− ϵc)2 = 1− 2ϵc + ϵ2c, or

(2) ∥f∥2 ≤ ϵ2 + 36ϵ2c, if ϵ < .0896561/[2(1−c)], or

(3) ∥f∥2 ≥ 2(1/2 − ϵc)2 − 36ϵ2c = 1/2 − 2ϵc + 2ϵ2c − 36ϵ2c, if ϵ <

.0896561/[2(1−c)], or ∥f∥2 ≤ 1/2− 2ϵc + 38ϵ2c, or

(4) ∥f∥2 ≥ 4(1/2− ϵc)2 − 36ϵ2c = 1− 4ϵc + 4ϵ2c − 36ϵ2c, if ϵc < 1/14.6.

Then, from the Pythagorean Theorem in the form ∥g∥2 = ∥f − g∥2+∥f∥2,
we have: if ϵ < .0896561/[2(1−c)], and if ϵc < 1/14.6, then

(1) ∥g∥2 ≥ (1− ϵc)2 = 1− 2ϵc + ϵ2c ≥ 1− 2ϵc, or

(2) ∥g∥2 ≤ 2ϵ2 + 36ϵ2c ≤ 38ϵ2c, or

(3) ∥g∥2 ≥ 2(1/2− ϵc)2 − 36ϵ2c + ϵ2 ≥ 1/2− 2ϵc − 34ϵ2c, or

∥g∥2 ≤ 1/2− 2ϵc + 40ϵ2c, or

(4) ∥g∥2 ≥ 4(1/2− ϵc)2 − 36ϵ2c + ϵ2 ≥ 1− 4ϵc − 32ϵ2c.

Substituting the definition of ϵ from (4.3), and solving for ϵ2 or ϵc,

(1) ∥f − g∥2 ≥ 2−2/c(1− ∥g∥2)2/c, if ∥g∥2 ≤ 1.

(2) ∥f − g∥2 ≥ ∥g∥2/c 38−1/c.

(3) ∥f − g∥c ≥
√

4+4(34)(1/2−∥g∥2)−2
68 , if ∥g∥2 ≤ 1/2, or

∥f − g∥c ≥
√

4−4(40)(1/2−∥g∥2)−2
80 , if ∥g∥2 ≥ 1/2, or

(4) ∥f − g∥c ≥
√

16+4(32)(1−∥g∥2)−4
64 , if ∥g∥2 ≤ 1.

So, putting everything together, and noting that ∥g∥2 = 2P[A], since
A ∩ (−A) = ∅, either (1) through (4) hold, or

∥f − g∥2 ≥ min
(
.0896561/(1−c), (1/14.6)2/c

)
So, choosing c = .69, we get, either ∥f − g∥2 ≥ .000422, or

∥f − g∥2 ≥ min
(
2−2/.69(1− 2P[A])2/.691{P[A]<1/2}, (2P[A])1/.6938−1/.69,[√4 + 4(34)(1/2− 2P[A])− 2

68

]2/.69
1{P[A]<1/4}

+
[√4− 4(40)(1/2− 2P[A])− 2

80

]2/.69
1{P[A]≥1/4},[√16 + 4(32)(1− 2P[A])− 4

64

]2/.69
1{P[A]<1/2}

)
Since
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∥f − g∥2 =
∥∥f − (1{A} − 1{−A})

∥∥2 = 4
∥∥f/2− (1{A} − 1{−A})/2

∥∥2
= 4

∑
|S|≥3 odd

|1̂{A}(S)|2.

We finally conclude the lemma, noting also that the first term in the mini-
mum is an upper bound for the last term, i.e. we can remove the first term
from the minimum.

□

We used an assumption that A = −A in the previous Lemma, which is
justified by the following structural result for Chang’s inequality maximizers.

Lemma 4.2. Let A ⊂ {−1, 1}n and let α := P(A). Let z := E[X1A(X)] ∈
Rn. Suppose A maximizes

∑n
i=1 |1̂B(i)|2 subject to the constraint P(B) = α

over all B ⊂ {−1, 1}n. Then A is a half space, i.e. ∃ u ∈ R such that

A = {x ∈ {−1, 1}n : ⟨x, z⟩ ≥ u}.

Proof. Let t ∈ R and St := {x ∈ {−1, 1}n : ⟨x, z⟩ ≥ t}. Let u := inf{t ∈
R : P(St) < P(A)}. We will first show that, for any ϵ > 0,

Su+ϵ ⊂ A.

Assume for the sake of contradiction that this does not occur. Then there
exists x ∈ A, y /∈ A and t ∈ R such that ⟨z, x⟩ < t and ⟨z, y⟩ ≥ t. Consider
the set A′ defined by A′ := (A \ {x})∪ {y}. Denote z′ := E[X1A′(X)] ∈ Rn.
Then

n∑
i=1

|1̂A′(i)|2 −
n∑

i=1

|1̂A(i)|2 =
∥∥z′∥∥2 − ∥z∥2

=
∥∥z − x2−n + y2−n

∥∥2 − ∥z∥2

= 2 · 2−n⟨z, y − x⟩+ 2−2n ∥y − x∥2 .

By definition of x, y, t, we have ⟨z, y − x⟩ ≥ 0. So,

n∑
i=1

|1̂A′(i)|2 −
n∑

i=1

|1̂A(i)|2 > 0.

We have achieved a contradiction. We conclude that A ⊃ Su+ϵ.
We now consider what happens when ϵ = 0. By definition of Su, we have

P(Su+ϵ) < P(A) ≤ P(Su). If P(Su) = P(A), we conclude that A = Su,
and the proof is completed. In the remaining case that P(Su) > P(A), the
cardinality of ∂Su := {x ∈ {−1, 1}n : ⟨x, z⟩ = u} is larger than one. So, let
x, y ∈ ∂Su with x ∈ A and y /∈ A. Repeating the above argument, we arrive
at a contradiction. We conclude that A = Su, as desired. □
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Proof of Improvement to Theorem 1. Combining Lemma 4.1 with (4.1) and
Lemma 2.1 we have: if h : {−1, 1}n → {0, 1}, and if α := P[h(X) = 1], then

(4.7)

n∑
k=1

|ĥ(k)|2 ≤ min
[
2α2 log(1/α),

α

2
− 1

4
min

(
(2P[A])1/.6938−1/.69,[√4 + 4(34)(1/2− 2P[A])− 2

68

]2/.69
1P[A]<1/4

+
[√4− 4(40)(1/2− 2P[A])− 2

80

]2/.69
1P[A]≥1/4,[√16 + 4(32)(1− 2P[A])− 4

64

]2/.69
1P[A]<1/2

)]
The last quantity is depicted as the dotted line in Figure 1.

Let f, g : {−1, 1}n → [n]. Let Ωf ⊆ [n] be 6 indices (or n indices if n < 6)
i ∈ [n] with the largest values of P[f(X) = i]. Similarly define Ωg ⊆ [n].

Suppose for now that P[g(X) /∈ Ωg] < .0168995. After applying a permu-
tation to [n], we may assume that P[g(X) > 6] < .01270673. Then we can
apply Lemma 3.2 with k = 7 and ϵ = .01270673 to get

E
[
Xg(Y )Yf(X)

]
≤ 1

2
− (1− 4(.01270673))2−6 = 0.485169170625.

As discussed after the statement of Theorem 1, this proves Theorem 1 with
the bound

U = (1 + .485169173)/4 ≤ 0.37129229325.

We get the same conclusion from Lemma 3.2 if P[f(X) /∈ Ωf ] < .01270673.
The only remaining case to consider is:

P[f(X) /∈ Ωf ] ≥ .01270673 and P[g(X) /∈ Ωg] ≥ .01270673.

In this case, as in Lemma 3.3 it suffices to upper bound ∥F∥2 by .485169173.
It then suffices to maximize the sum of the right side of (4.7), as in (3.4),
subject to the constraint

n∑
j=7

αj ≥ .01270673, α1 ≥ · · · ≥ αn,

n∑
j=1

αj = 1.

These constraints imply .01270673 ≤ αj ≤ 1/5 for all 5 ≤ j ≤ 7. In this
range of values, the smallest value of the right side of (4.7) occurs when
αj = .01270673 for all 5 ≤ j ≤ 7 (which can be verified numerically). Also,
this value occurs where the right side of (4.7) is equal to 2α2

j log(1/αj) for
each 5 ≤ j ≤ 7. If α1, α2, . . . maximizes a sum of the terms on the right of
(4.7) subject to these constraints, we then get an upper bound of the form

max
s∈[.01270673,1/5]

(
(1− 3s)/2 + 3 · 2s2 log(1/s)

)
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which is achieved as s = .0168995 with value

(1− 5(.01270673))/2 + 5 · 2(.01270673)2 log(1/.01270673) ≤ 0.485169173.

We therefore improved Theorem 1 from a bound of .37406 to a bound of
.37193.

□
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