A VARIATIONAL PROOF OF ROBUST GAUSSIAN NOISE STABILITY

STEVEN HEILMAN

ABSTRACT. Using the calculus of variations, we prove that a Euclidean set of fixed Gaussian
measure that nearly maximizes Gaussian noise stability is close to a half space. The main
result proves a modification of a conjecture of Eldan from 2013: a robust Borell inequality
that removes a logarithmic dependence on the distance of the set to a half space. For sets
of Gaussian measure 1/2, we prove Eldan’s 2013 conjecture.

The noise stability of a Euclidean set A with correlation p is the probability that (X,Y) €
A x A, where X,Y are standard Gaussian random vectors with correlation p € (—1,1).

Barchiesi, Brancolini and Julin proved that a Euclidean set of fixed Gaussian measure
that nearly minimizes Gaussian surface area is close to a half space, using a variational
“penalty function” method. Our proof adapts their method to the more general setting of
noise stability.

We also show that half spaces are the only sets that are stable (in the sense of second
variation) for noise stability, generalizing a result of McGonagle and Ross for Gaussian
surface area.
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The Gaussian isoperimetric inequality says that a half space has the smallest Gaussian
surface area among all Euclidean sets of fixed Gaussian volume [SC74, [Bor75, Led94l, Bob97,
BS01, MRI5]. A robust version of this inequality says: if a Euclidean set nearly minimizes
its Gaussian surface area (subject to a Gaussian volume constraint), then this set is close to
a half space. Such an inequality was proven in [BBJ17], following [MN15a, IMN15bl [EId15].
The noise stability of a measurable Euclidean set A with correlation p is the probability
that (X,Y) € A x A, where X,Y are standard Gaussian random vectors with correlation
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p € (—1,1). Borell’s inequality [Bor85] generalizes the Gaussian isoperimetric inequality in
the following way: a half space has the largest noise stability among all Euclidean sets of
fixed Gaussian volume, when 0 < p < 1. Letting p — 1~ in Borell’s inequality recovers the
Gaussian isoperimetric inequality [Led94].

A robust version of Borell’s inequality says: if a FEuclidean set nearly maximizes noise
stability (subject to a Gaussian volume constraint), then this set is close to a half space.
Robust versions of Borell’s inequality were proven in [MN15bl [EId15].

The proof of the robust Gaussian isoperimetric inequality in [BBJ17] uses the calculus of
variations to minimize the Gaussian surface area plus a “penalty” function. The minimum
of this quantity occurs at a half space, so that the “penalty” function quantifies how far an
arbitrary set is from being a half space. The main step of the proof computes the second
derivative of infinitesimal translations of an optimal set that are Gaussian volume-preserving.

The proof methods of the more general robust Borell inequality [MNI15bl [EId15] are ar-
guably ad hoc, so one might hope for a more elementary proof, along the lines of [BBJ1T].
Moreover, the proof methods of [MNI15b, [EId15] do not seem to generalize to inequalities for
the noise stability of partitions of Euclidean space, as opposed to the calculus of variations
arguments of e.g. [Heil9, [HT20].

In this paper, we demonstrate that the penalty function method of [BBJ17] can prove a
robust Borell inequality. As in [BBJ17], the main step of the proof computes the second de-
rivative of infinitesimal translations of the optimal set that are Gaussian volume-preserving.
This step works for all correlation parameters 0 < p < 1, and it also seems to hold for an
arbitrary number of sets that partition Euclidean space, though we avoid pursuing such a
statement at this time. This “dimension reduction” step of Section [7] shows that a maximiz-
ing set  C R is “one-dimensional,” i.e. after rotating €2, there exists €' C R such that
Q = Q' x R™. The final step of the proof, contained in Section [§ shows that in fact ' is an
unbounded interval.

Besides their intrinsic interest, inequalities for noise stability have applications to social
choice theory [MOO10], the Unique Games Conjecture [KKMOO07, MOO10, KM16], to semi-
definite programming algorithms such as MAX-CUT [KKMOOQT7, TM12], to learning theory
[FGRW12], etc. For some surveys on this and related topics, see [O’Dl [Kho, [Hei21].

The combination of our robust Borell inequality, Theorem below, with previous works
such as [BBJ17, [Heil9, [HT20] essentially shows that one single argument can prove nearly
every known inequality for sets or partitions that maximize noise stability, with respect to
Gaussian volume constraints. So, instead of having disparate arguments to prove these in-
equalities, one single calculus of variations argument has emerged, providing an aesthetically
pleasing way to prove these optimal inequalities.

1.1. More Formal Introduction. For any k£ > 1, we define the Gaussian density as

n+1
V(z) = (27) W22, (z,y) = Z%‘yz‘, ||~T||2 = (z, ),
=1

Vo= (xla s 7xn+1)7y = (ylv cee 7yn+1) S Rn+1-
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Let f: R™™' — [0, 1] be measurable and let p € (—1,1). Define the Ornstein-Uhlenbeck
operator with correlation p applied to f by

Tpf(z) == s f@p+yv1—p)Y(y) dy
" ) (2)
_ lly—pz]|

_ (1 . pZ)—(n—i-l)/Q(Qﬂ_)—(n—‘rl)/Q f(y)e 2(1—p2) dy, YV € R+

Rn+l

T, is a parametrization of the Ornstein-Uhlenbeck operator, which gives a fundamental
solution of the (Gaussian) heat equation

d 1 — _

3@ = (=BT 0@) + . Vi), VeeRr™ (3)
Here A := Y2741 92 /022 and V is the usual gradient on R™!. Our main object of study is
the noise stability (or Gaussian heat content) of Euclidean sets.

Definition 1.1 (Noise Stability). Let @ C R"™! be measurable. Let p € (—1,1). We
define the noise stability of the set {2 with correlation p to be

—llel2—llyl®+2p(z,v)

[ @D o) e @ @ ooz [ CEREE quay. )
Rn+1

Equivalently, if X = (X1,...,X,11),Y = (Y1,..., Y1) € R are (n + ) dimensional
jointly Gaussian distributed random vectors with EX;Y; = p- 1= V4,5 € {1,...,n+ 1},

/R @) T la(w)n ) de = B((X, Y) € 0 x ).

Borell’s inequality says that a half space maximizes noise stability among all measurable
Euclidean sets of fixed Gaussian volume.

Theorem 1.2 (Borell’s Inequality, [Bor85]). Let Q C R™"! be measurable. Let H C R™!
be a half space with v,+1(Q) = Ypy1(H). Let 0 < p < 1. Then

[ e@Tla@hn(e)de < [ u@Tue)n @ o

If =1 < p <0, then the inequality is reversed.

An improved, robust version of this inequality says that if the inequality in Theorem is
nearly an equality, then € is close to a half space. Such an improved statement was proven
in [MN15b] and also [EId15].

Theorem 1.3 (Robust Borell’s Inequality, [MNI15b, Theorem 1.4]). Let 0 < p < 1 and
fit 0 < a < 1. Then there exists c(p,a) > 0 such that the following holds. Let @ C R™" be
measurable with v,1(Q) = a. Let H C R™ be a half space with ~,1(H) = a. Define

5 / @)Ll (@) do - / 1o T la(@) (@) dr.

Then, after rotating H if necessary,

(1-p)(1-p?)

i1 (QAH) < c(p,a) - 61 o

Here A denotes the symmetric difference of sets.
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(A=p)(=p?) _ 1

A similar inequality is given in [MNI5b] when —1 < p < 0. Since maxo<,<1 —% 15

the largest exponent of 9 in Theorem is 1/4.
In order to remove the sub-optimal power dependence on 6 in Theorem [1.3] Eldan proved
the following nearly matching upper and lower bounds on the “noise stability deficit,” 9.

Theorem 1.4 (Robust Borell’s Inequality, [EId15, Theorem 2|). Let 0 < p < 1 and fix
0 < a < 1. Then there exists c(a),d (a) > 0 such that the following holds. Let Q C R™ be
measurable with v,.1(Q) = a. Let H C R™ be a half space with ~,1(H) = a. Define

5 im /R @ T L) (o) de /R Lo(2) Ty Lo (@) (2) da.

n+1

n = H/Hxvnﬂ(x)dtz — H/Qawnﬂ(x) dxHQ.

Then n > 0 (with n = 0 only when  is a half space) and, if n < e~/?, then

n ' n
c(a) Tog ] V1i—-p<di<c (a)m.

Theorem [I.4] removes the power dependence on ¢ in Theorem [I.3] yet Theorem [I.4] still
has an extra logarithmic factor in the lower bound on §, so the upper and lower bounds on
do not match. Unfortunately, as shown in [EId15, Section 1.1], this logarithmic factor cannot
be fully removed, as one can see by considering sets of the form 2 = (—o0, 0] U [d, c0) where
d — oo. Desiring a matching upper and lower bound on 9, Eldan considered a different
definition of 1 that quantifies how far a set €2 is from a half space, resulting in the following
conjecture.

Before stating the conjecture, denote ®(t) := v(—00,t], V t € R, and denote v(z) :=
z/ ||| if 2 # 0 and v(0) := (1,0,...,0) € R"™. Also define a := —®~!(a).

Conjecture 1.5 (Eldan’s Robust Borell Conjecture, [EId15, Conjecture 7]). Let 0 <
p<1land fir 0 <a<1. Then there exists c(a),c (a) > 0 such that the following holds. Let
Q C R be measurable with v,11(Q) = a. Denote z := [, xy,41(x) dz € R"™'. Let H be a
half space with Y11 (H) = a such that [, 2v,11(x) dx is a positive multiple of z. Define

5 i /R @ T ) (o) de - /R Lo(2) Ty Lo (@) (2) da.

n+1

. /R - @(%)(mm — o(@)) e (2)dz

Then n > 0 (with n =0 only when § is a half space) and

c(a) -n(l—p) <6 <d(a) n

Moreover, in [EId15, Equation (129) and (130)], the bound 6 < 27 is shown to hold by the
Cauchy-Schwarz inequality, so the only remaining part of Conjecture [1.5]is the lower bound
on J.

In this paper we prove a modified version of the lower bound of Conjecture [1.5]
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1.2. Our Contribution.

Theorem 1.6 (Robust Borell’s Inequality, Small Correlation). Let 0 < a < 1. Let
Q C R be measurable with v,,1(Q) = a. Let H be a half space with v,41(H) = a.
Denote z 1= [, avpq1(x)dz € R Let H be a half space with ~,1(H) = a such that
[ @1 (x) dz is a positive multiple of z. Assume that z # 0 and ||z|| > 2z > 0. Define
v(z) = z/||z||. Let 0 < B < p. Define

= [ @@= [ 1a@ a0 @) de

Rn+1

= [ o %%‘ ) (Lu(z) — 1a(x)) o ().

Then ng > 0 (with ng = 0 only when 2 is a half space) and

faQ-max(l,ﬁ)

107 "az2e
[ (6 + |af)?
In the case a = 1/2 (so that o = 0 since o = —P~(a)), we can let B := p and deduce

107p%25(1 — p*)?n, < 6 < 21,.

p(1 = pB(1 = B)a(l - a) |y <3 < 20,

Remark 1.7. It seems possible to lower bound § by the quantity

v(z),x

[ (B 1) - 1o )
Rn+1 1 —_ /82

by changing some minor details in the proof of Theorem [I.6], though we will not pursue such

an inequality, since it seems further from Conjecture than Theorem [1.6]

Remark 1.8. It is unclear whether or not the proof of Theorem can achieve an exponent
1 in place of 4 in the term (1 — p?)*. Tt seems difficult to avoid an exponent smaller than 2
here, due to a use of the Cauchy-Schwarz inequality in Lemma

Remark 1.9. The restriction that ||z|| > 2o > 0 might appear a bit unnatural. Note however
that a similar restriction appears in Eldan’s Theorem i.e. n < e /P Note also that, in
the case z = 0, it is easily seen that Q with z = [, yn41(2) dz = 0 cannot maximize noise
stability, since if it did, e.g. the main result of [HT20] implies that every direction v € R
of translation of {2 has nonpositive second variation for the noise stability, implying that
(v, N(z)) =0V v eR"™ and V z € 99, where N(z) is the unit exterior pointing normal
vector to 9. No such unit vector N(z) can satisfy (v, N(z)) =0V v € R""| so we have
found a contradiction. That is, {2 with z = 0 cannot maximize noise stability.

1.3. Discussion of Proof Methods. The proof of Theorem [1.3|in [MN15b] proceeds by a
careful analysis of the rate of change of the auxiliary function

EJ(T,16(X), Ty1a(Y))
with respect to p, where X = (X1,...,X,11) and Y = (Y3,...,Y, 1) are each standard
Gaussian random variables that are correlated so that EX;Y; = ply—j forall 1 <4, 5 <n+1.
Here J(a,b) := fqu(a) Tpli—oo0-1(a))(x)71(x) dz for all a,b € [0,1] where ®(t) := 1 (—00, 1]

for all t € R. -
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The proof of Theorem |1.4]in [EId15] uses stochastic calculus to estimate the rate of change
of the quantity
‘2

EH / TYpy1 () do
Q—pX
Vi-p

with respect to p.

In the present paper, instead of analyzing the rate of change of an auxiliary quantity, we
simply consider how the noise stability itself changes when the set () is translated. This
strategy first appeared in [CM11] in the context of mean curvature flows, then appearing for
inequalities for the Gaussian surface area in [MRI5, BBJ17, BJ20, MN18al Heil8, MN18bl,
Heil9]. The strategy of analyzing the translations of noise stability first appeared in [HT20].
In the present work, we show that the strategy of [HT20] still works when we add a “penalty
term” to the noise stability. That is, we adapt the argument of [BBJ17, [Heil9] from the
setting of Gaussian surface area to the more general setting of Gaussian noise stability.

As mentioned earlier, the main strategy of [BBJ17] involves minimizing the Gaussian
surface area, plus a “penalty” term. So, the main problem of interested in [BBJ17] is to
minimize
2

)

/ Yni1(z)dx + € /:E’yn+1(a:) dz
b1 Q

over all measurable Q@ C R™™ with v,,1(Q) fixed, for sufficiently small ¢ > 0. Tt is then
shown that the minimal such set is a half space H, so that, for any Q C R**! if H C R**!
is a half space with v,,411(Q) = v,.11(H), then for appropriate € > 0, we have

/x7n+1(m) dz /x7n+1(x) dz
H Q

Rearranging this inequality then gives a robust Gaussian isoperimetric inequality:

/%lv%l(x)dx—/H%mmxze(‘

Since half spaces maximize the quantity || fQ TYp1(T) dx‘ 2, the right side of is nonneg-
ative, and it quantifies how close the arbitrary set 2 is from being a half space.

It seems natural to use this same method directly for our purposes, i.e. by trying to show
that half spaces maximize the quantity

2 2

J RO
H

S/ Yrg1(z)de + €
o0

2 2

). (5)

/ TYpy1 () do
H

/ Y1 () do
Q0

2

JRARCIEITEE , (6)

/ TYpe1(x) da
Q

over all measurable @ C R™"*! with v,,,1(Q) fixed, for sufficiently small € > 0. Unfortunately,
this approach fails for the same reason as mentioned in [EId15] Section 1.1]. A half space
cannot maximize (6], since sets of the form Q = (—oo, 0]U][d, co) with d large will always have
a larger value of (e.g. for sets of Gaussian measure close to 1/2). The issue here is that
the penalty function of @ grows linearly near infinity, with respect to the Gaussian density.
So, in some sense the only way for the approach of [BBJ17| to work for noise stability is to
use a penalty function such as ® that is bounded near infinity.

The following is therefore our main problem of interest.
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Problem 1.10 (Noise Stability, with Penalty). Let0 <e <p < 1. Let0 < a < 1. Find
a measurable set @ C R with ~,,1(Q) = a that mazimizes
v(z),x) — «

[ @@ <] [ o( R e

where z 1= [y aypii(x)de € R™ v(z) = o Yz # 0, and v(0) := (1,0,...,0), and
a:=—0"1(a), ®(t) := v (—o0,t], Vt € R.

The case ¢ = 0 corresponds to the problem of maximizing noise stability. Intuitively,
when ¢ > 0 is sufficiently small, the “penalty” term on the right should not affect the noise
stability term very much.

As in [BBJ17], for technical reasons, it is more convenient to replace the volume constraint
by a volume-penalization term. That is, we change Problem to the following

Problem 1.11 (Maximizing Noise Stability, with Penalties). Let 0 <e < p < 1. Let
0<a<1. Find a measurable set Q@ C R that mazimizes

J e e =] [ o(FETE ) we]” 201+ e @) —al,

where z = [ xvpq1(z)de € R™, v(z) = o i 2 # 0, and v(0) := (1,0,...,0), and
a:=—®"1(a), ®(t) ==y (—o0,t], V1t € R.

The Main Theorem [1.6] is a corollary of the following “Dimension Reduction” Theorem.
Theorem [1.12] says that the optimizer of Problem [1.10] must be one-dimensional.

Theorem 1.12 (Dimension Reduction). Let 0 < p < 1, let zp > 0 and let
I—plz
ploeoﬂ-max(o,%fl)

Let Q C R mazimize Problem|1.1(]. Assume that ||z|| > z9. Then, after rotating Q and
applying Lebesque measure zero changes to ), there exist measurable ¥ C R such that,

Q=0 xR"

D<e<

1.4. Technical Issues in Theorem [1.6] There are a few technical issues in the proof of
Theorem [L.6]

First, in order to get existence and regularity of  maximizing Problem [I.10] in Lemmas
and [3.8, we need to show that the quadratic quantity in Problem is a positive
semidefinite function of Q C R, To show this, we write the ® function as an exponentially
decaying sum of Hermite polynomials in Section[3] This argument is fairly elementary though
technical, and it requires € > 0 to be sufficiently small. (If ¢ > 0 is large in Problem [1.10}
then the quadratic quantity is not positive semidefinite.)

Second, we need to show that the second variation of the quadratic quantity in Problem
[1.10]is a positive semidefinite function of f: 92 — R. To show this, we write the ® function
as an exponentially decaying sum of Hermite polynomials in Section [3] This argument is
more involved than that of Section 3 but the idea is the same. We write we write ® and
its first and second derivatives as exponentially decaying sum of Hermite polynomials in
Section 3] Once again, ¢ > 0 must be sufficiently small in order to get a positive semidefinite

function. Most of the effort in proving this positive semidefinite property is contained in
7



Lemma With results such as Lemma [5.6], we can then prove Theorem by adapting
a now-standard argument appearing e.g. in [CM12], [MR15] or [HT20].

Finally, using Theorem [1.12] it suffices to solve the one-dimensional case of Problem [1.10]
In this case, we can explicitly write out various terms that appear in the second variation of
Problem (when the set is perturbed in the constant normal direction), and we control
these terms with the isoperimetric deficit | o0 Y1(7) dz — /. o Y1(7) dz, where H is a half space
satisfying v,4+1(H) = Y,41(€2). Such inequalities are proven in Sectlon [9] using technical but
somewhat elementary arguments.

All of these technical aspects have lengthened the paper. Besides its length, we believe
the argument of Theorem is conceptually simple, since it requires simply considering
infinitesimal translations of the set 0 C R™! to reduce to the one-dimensional case of
Problem m (Theorem , and we then only need to perturb the optimal set 2 C R in
the constant normal direction to deduce Theorem [1.6, Put another way, the details require
finding how small € > 0 needs to be in order to show that half spaces maximize Problem
1.10| (or equivalently, how large the constant in the lower bound of ¢ needs to be in Theorem
1.6)).

1.5. Outline of the Proof of the Main Theorem. In this section we outline the proof of
Theorem |1.6|in the case that 7,,1(22) = @ = 1/2. The proof loosely follows that of a corre-
sponding statement [MR15, BBJ17] for the Gaussian surface area (which was then adapted
to multiple sets in [MN18a, MNI8b, Heil§]), with a few key differences. For didactic pur-
poses, we will postpone a discussion of technical difficulties (such as existence and regularity
of a maximizer) to Section [3.2]

Fix a = 1/2, so that a = 0. Let € > 0. Suppose there exists measurable Q C R""!
maximizing

/}Rn+1 Lo(x)T,1a(z)Yner (z)de — 6[[2®<%>7ﬂ+1<x>d1‘:|2,

subject to the constraint v,41(2) = a. Define z := [, #yp41(2) dz € R A first variation
argument (Lemma [4.1| below) implies that ¥ := 0% is a level set of the Ornstein-Uhlenbeck
operator applied to 1q, plus another term. That is, there exists ¢ € R such that

it Pz @)
Y= {x eR": Tlg(z) —ed (—) = c}. (7)
V1—p?
Since Y is a level set, a vector perpendicular to the level set is also perpendicular to .
Denoting N(z) € R™" as the unit length exterior pointing normal vector to x € X, (7)
implies that

7[P<ﬁ*z>]2 [z =)]’

2(1-p2) _ T 2(1-p2)
pe - ;E)HVTplg(x)—epe - HH (8)

VT,1g(x) —¢ = —
PQ() 1_p2 HZ” 1_p2

(It is not obvious that there must be a negative sign here, but it follows from examining
the second variation.) We now observe how the noise stability of €2 changes as the set is

translated infinitesimally. Fix v € R"™!, and consider the variation of { induced by the
8



constant vector field v. Denote f(z) := (v, N(z)) for all x € X. Then define

lly—pa|?

S(f) (@) = (1= p?)~ D/ (2m) = 1)/2 / f)e 0 dy,  Vaesn.  (9)
>

A second variation argument (Lemma below) implies that, if f is Gaussian volume-
preserving, ie. if [y f()yo(x)de = 0, and if 2 i= [ wm, (o) de € RV s €
(—=1,1), then

1 d? p(%,@ 2
2ds? 8:0[/Rn+1 Lots(2)Tplatso(T)Ynr1(z) dz — 8[/§2+8U¢<ﬁ>%+1($) dx} }

= / (S((@) = e 'Z”’ / 1y ‘Z” y>)%ﬂ<y>dy

_MWWW

pe 2(1-p2)
1—p?

- vag(gg) s

) ) Vi1 () do.

(10)
(Technically, we use a slightly different vector field to perturb Q that is constant on ¥ but not
constant in a neighborhood of ¥, but we will not dwell on this point presently.) Somewhat
unexpectedly, the function f(z) = (v, N(x)) is almost an eigenfunction of the operator S

(by Lemma , in the sense that

NECE

2(1—p2)

—11 7

[z

2(1-p2)
_@@,Pe oz +¢>, Vrey,
p 1—p2 |7

S()@) = £@)5 [T 10() - a0 (&

(11)
where

ao ZI/S)q)(M)%ﬂ(:U) de, ci= [ & I ' = ) Tnt1(y) dy.

V1= p? o V1-p |l 121

Equation is the key fact used in the proof of the main theorem, Theorem . Equation
(11 follows from and the divergence theorem (see Lemma for a proof of (L1).)
9



Plugging into , and using also Mehler’s formula (see Lemma ,

[N =0 =

(s)
1 & P ze @ 2
2ds? s=0[/Rn+1 Lotso()Tploysn(T) Vo1 (z) do — 8[/9+qu)(1——/)2>%+1($) dx] }

a2<max(0 Lﬂfl)

1 —eplle—— :; =
. < =)= B 1) /@,N(x»z VT, 10(2) || i1 (z) da.
p b

(12)
If ||2]] > 20 >0and if 0 < e < 2F1_p)238iil), then the last term in is nonnegative.
The set

V= {ver: /E@, N(@)) () dr = 0}

has dimension at least n, by the rank-nullity theorem. Since {2 maximizes noise stability,
the quantity on the right of must be non-positive for all v € V| implying that f = 0
on Y (except possibly on a set of measure zero on ). (One can show that [|[VT,1q(z)|| > 0
for all z € X. See Lemma [5.5]) That is, for all v € V, (v, N(z)) = 0 for all € & (except
possibly on a set of measure zero on X). Since V has dimension at least n, there exists a
measurable discrete set 2 C R such that Q = Q' x R™ after rotating €2, concluding the proof
of Theorem [L.12]

Theorem then follows by showing that €’ is actually an unbounded interval. This
requires an additional argument that perturbs the optimal set €)' in the constant normal
direction. Since this perturbation is not necessarily Gaussian volume preserving, we suppose
that Q = Q' x R (which we can by Theorem , and we perturb € in the normal direction
times zo. This argument is sufficient to conclude the proof.

1.6. Local Stability of Half Spaces.

Definition 1.13. A set Q C R™™! is called locally stable for noise stability for any family
of sets {2 }se(—1,1) with Qo = € such that

d
— i1 (Qs) =0,
dS s:0’y +1( ) 0
we have
d2
1 / oo @) lgo (@) () do < 0.

The following result generalizes the main result of [MR15] from the setting of Gaussian
surface area to the setting of noise stability.

Corollary 1.14. Half spaces are the only locally stable sets for noise stability.

Proof. If Q@ C R™ is not a half space, then we have by definition @ of S the following
strict inequality

/E S({w, NY) (&) - [{0, N (@) | s () da > / S((0, N))(@) - (0, N(@))ys () dz. (13)

by
10



In the case that 2 = €' x R (which we can assume by the Dimension Reduction Theorem
1.12)), consider the function g(z) := x,11 [(v, N(x))| defined on ¥. Then

[ (@)@ = INT1a@)la(@))ala) (@) da
= / (pS (v, M) (@) - [0, N@)] = IV T La(@)| o, N(@)] ) 1o, N (@) s () da
/z (S0, M) @) = (9T o) (0, N (@) ) (0, N (@) ) da L0

So, [5 9(x)yn+1(x)dz = 0 while the corresponding variation of g satisfies (by Lemma
below)

d2

ds?

/ Lo (2)Tplae () Y1 (z) do > 0.
$=0 Jrn+1
That is, the half space is the only stable maximum of noise stability. O

The above proof does not seem to generalize to the case € > 0 needed to prove Theorem
1.6 There is a slightly longer proof of Corollary that does in fact generalize to prove
Theorem [1.6] so we present this proof below for didactic purposes.

Second proof of Corollary[1.14, We may assume that Q = ' x R for some ' C R" by the
Dimension Reduction Theorem [1.12). Consider the function g(x) := z,.; defined on X.
Then [;, g(2)ynt1(z) dz = 0 and by Lemma [5.5( below

d2
ds?

5=0 /Rn+1 Lo (2)Tplae ()Y (x) da
_ /E (S()@) = IV, 10(2)19(2) ) g(w) 3011 (2) d
_ /E (,05(1)(93) - WTplg(:p)H)%H(:p) dr.

Let H C R™! be a half space with 7,11(Q) = 7,41(H). By Lemma [9.1| below, we have

d2
ds?

| e @) T @ @) ds
s=0 Rn+1

1

> o= D@ = @) [ i) do— [ (o) de)
80 5 %

So, this quantity is positive, unless ¥ is a half space, by the usual Gaussian isoperimetric

inequality. That is, the half space is the only stable maximum of noise stability. 0

1.7. Remarks on More than Two Sets. We believe that Theorem also holds for par-
titions of Euclidean space optimizing noise stability. However, this extra generality seemed

to make the paper more difficult to write and to comprehend, so we avoided this generality.
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2. SUMMARY OF NOTATION

Here is a summary of notation used throughout the paper.

e T, denotes the Ornstein-Uhlenbeck operator with correlation p € (—1,1). (See (2).)
e ) C R™"! denotes a measurable set.

e ¥ := 9*Q denotes the reduced boundary of @ C R"*1. (See Definition [3.5)

e V denotes the gradient on R™!

o A:=3"""19%/02? denotes the Laplacian on R™*.

e N(x) is the exterior pointing unit normal vector to x € X.

o z:= [, xy,41(x) dz € R™ denotes the Gaussian barycenter of .

o O(t) = ffoo e~ /2dx/\/2m, ¥, t € R, denotes the Gaussian cumulative distribution
function.

T if z € R™\ {0}
o y(r):=gI® _
(1,0,...,0), ifr=0
o 2| = (234 -+ a2 )2 for any x = (z1,...,2041) € R*TL
e o € (0,1) satisfies y,41(2) = a.

o € R satisfies [~ () de = o, ie. a:= =P }(a).

Throughout the paper, unless otherwise stated, we define G: R*™! x R**! — R to be the
following function. For all z,y € R"" V p € (—1,1), define

2 2
—lzll"=llyl*+2p(=,y)

G(z,y) = (1— p2)f(n+1)/2<27r)f(n+1)e s

=22z lI2+HlwI>) +20(z,v)

- (1 N p2)7(n+1)/27”+1(x)7n+1(y)€ 2(1—p2)

—ly—pz||2
= (1= )y 2 () (14)
(24 °

= @ ) Y0 DT he@)he(y)e.

k=0 LeENTHL:
[l =F

3. EXISTENCE AND REGULARITY

3.1. Mehler’s Formula. We demonstrate here that a shifted and dilated Gaussian density
on the real line can be written as an exponentially decaying sum of Hermit polynomials.
The derivation uses various elementary formulas.

Let x € R. Recall that the Hermite polynomials hg(x), hi(z),... are defined by the
following generating function. For all 0 < A < 1, and for all z € R, we have

Zz:; Nhy(z) = X7 N/2 = z; %I;)\pz; (_1)q()\q)! 1(1/2) (15)

oo 2] 4 o ko—k
C1)k2
SV . 1
2 ; Rl — 2K)! (16)
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The generating function leads to the following explicit formula:

L€/2) ook, ko—k
xR (=1)R2
he(@) = 3 KI(0—2k)!

k=0
For example, ho(z) = 1, hy(z) = z, ho(x) = (1/2)2? — (1/2), and hs(z) = (1/6)x® — (1/2)z,
for all z € R. Let N:={0,1,2,...}. Tt follows from that

d
ah@+1(x) = he(x), V>0, VzeR. (18)

V>0, Vo €R. (17)

Let £ = ({1,... 0ny1) € N*™Land for any o = (21, ...,7,,1) € R" define
n+1

= H hgz(xz)

For any ¢ € N™+! define ¢! := []/'(¢;!) and define ||¢]|, :== 3217 4.

-1)¢ . >
h(x) = %ew (d/dx)e= /2, VIL>0, Yz eR. (19)
/ R2e="Pdx/2r =1/0,  Y{>0. (20)

R
Let £ > 0 and let A € R. Then
/ Z )\é ft(zfu)2 dx e)\:cf)\2/267t(:cfu)2 dx
R 9o v/t R T/t
d
_ / e—t(z—u—/\/(Qt))ze)\ue)\Q(—1/2+1/(4t)) ol _ e/\ue/\Q(—1/2+1/(4t)) (21)
R v/t

_ Z)‘] Z)\% —1/2 + 1/(4t))

Therefore, V nonnegative integers £ > 0, and V s,t > 0, V u € R,

/h< ot “ﬁ“ Wk (<1/2 4 1/(4t)"
T = .
R T/t o [0 — 2k k!
/h£<x)es(xu)26x2/2 dx :€u2$2/(1/2+s)6su2/hz(x)e(1/2+s)(:vus/(1/2+s))2 dx
R vV 27T R vV 271’
1£/2 J
u252/(1/2+s)675u 1 Z (]‘/2 + S))Z 2k ( S/(]- + 25))k
V1+2s =~ [0 — 2F]! k!
1¢/2]
u252/(1/2+s)6—su 1 Z k kU u st k(1/2+s) l
V1+2s &~ [0 — 2F]! k!
1£/2]
eUQSQ/(1/2+S)€78u2 1 Z(_ 2 ku (]‘ + 1/(28>)
V1+2s = [0 — 2k]!k!

13



So, in the Lo(71) sense, V x € R,

o0

ems@mw® — (/esthZ(y)%(y) dl’)h[<$)£!

=0 R

oo [£/2] ok
_ 1 u k(14 1/(2s))F
u?s2/(1/2+s) ,—su? 2 k h /)
¢ Vit ;; kz; o)
oo |4/2] 2k k=, /01
_ u252/(1/2+s) —su? . 2 kU (]‘ + 1/<28)) h 1l
‘ Jit2s Z (-1 0 — 2k]IK! @)V

(=0 k=0
(22)

For any integer ¢ > 0, define cop 1= (—s/(1 4 2s )) ) . From Stirling’s approximation,

20! _ 2o 2e/e) ),
S o <Y

So,
1

< M2s/(1+2s) =0
leoe] < 0H%(2s/(142s5))" =4 eSO
Choosing s := 32/[2(1 — 8?)], we have
’026’ S €—1/452é'

We now estimate (22)). ming<y<s2(¢ — 2k)!k!c* occurs when k = (¢/2) — v/2¢l/4 > 0, or
when k = 0 if (¢/2) —v2cl/4 <0, ie. if ¢ > 20.

Case 1. In the case ¢ < 2/, we therefore have

Va o1/2p8/2+1/4,—0/2
(0 = 2k)Ik! = 2 (0 — 2k) 02k 12— (E=2k) [oh 12—k

o1/2pt/2+1/4

27r€@/4+1/4[(£/2) _ \/@/4] (£/2)—V/2cl/4+1/2

— (2/\/%)@/%1/26\/2(\/%/2—\/%/4)

_ £<2/\/2—C)m/2+1/26m(\/§/4)< 1 >£/2€1/4.€_M/4[(€/2)_ V 206/4]@/4
V2¢
2m 1/2 — ¥ V(€/2) = vact/a
éQW/4+1/2 —V2cl/4 f(f/4)24/2< 1ﬁ>é/261€—1/4£—M/4[(€/2> o @/4]@/4
1—
2Ve

< 6*1/42‘/@/4“/20’@/46‘@(‘@/2)25/2[(1/2) . \/2_0/4\@]@/4
< 6*1/4\/§c’m/4e@(ﬁ/2)2€/2[1 . \/2—0/2\@]@/4 < £71/4\/ﬁcfx/ﬂ/%\/a(\/i/z)%/zefc/z;
<9. 24/2671/467@/46\/@\/5/2)6%/4.

Vi <9. 2£/2£_1/4C_£/2€M(\/§/2)6_C/4.

(0 = 2k)lklck =
14



Choosing s := 32/[2(1 — 3?)], we have 1+ 1/(2s) = 72 and ¢ = (2u*$?)
\/E

21¢ 210

_ 5@6\/06(\/5/2)670/4 — ﬁ€e|a\\/zefa2/2.

2@/25—1/4(2u252)—£/2€ﬂ(\/§/2)6—0/4

Let A > 0. Let us find ¢ > 0 such that glel*lVie=o/2 < ¢(8 + \)t. Solving for ¢, we get
elal\/ze_a2/2
t> ——.
— (1+A/B)

That is, we can choose
e|a\\/zefa2/2
t = sup

o (L+A/B)
The supremum occurs when ¢ = o?/(4log?(1 + A/f)), so that

a?/[2log(1+M/B)] ,—a2/2 2( 1 B 1 ) )
€ ¢ @ O, o —a2 a’B
t = (1 n )\/ﬁ)a2/[410g2(1+>\/5)] — (1 4 )\/ﬁ) 210g(143/8) ~ 1log2(143/8) ) ,—0?/2 < e

The last inequality used 0 < A < § and log(1 + ) > x/2 for all 0 < z < 1.
In summary, when ¢ < 2/, for any A > 0 we have

20 v
(uﬁ) ( —2/{:)'/€'(2 B2>k —(

Case 2. In the remaining case that ¢ > 2¢, we similarly have

VB VA1
(€ —2k)klck = o /o
Choosing s := 32/[2(1 — 5?)], we have 1 + 1/(2s) = 72 and ¢ = (2u*3?), u = o/
V< (e = O < e
2wy = 7a \/_ :
Equation [22| implies the following (noting also that eu's?/(1/2s)g=su? — g=0?/2 gince g =
B?/[2(1 = %)) and u = o/ ),

Lemma 3.1. Let 0 < A< g < 1. Let a € R. Then 3 ¢}, d,,... € R with

B—i—)\)e%.

(up?)"

=p

ekl < (8 4+ At me(a3),
for all k > 1 and ¢ := e=**/% and ¢, == afe"/? such that

[Be—a)? °©
(1= %) e 205 =Y " chhp(x)VEl,  VzeR

k=0

The sum on the right converges uniformly on compact subsets of R, and it also converges in
the Ly(71) sense. Also, when o = 0 we have |ci| < ¥~V for all k > 1.

(B
M) - 7 g @ s

d

Denote ®(¢ f i (x




Lemma 3.2. Let 0 < ;A< 1. Let a € R. Then 3 ¢q,¢,... € R with
okl < (B + e m(0573),

or all k > 2, with ¢y := ®(a) = a, ¢ = L_e=®12 gych that
Var

@(%) = kzzgckhk(l’)m, Vzrel.

The sum on the right converges uniformly on compact subsets of R, and it also converges in
the Lo(v1) sense. Also, when o = 0 we have || < (1 — B2)7'B*EY4 for all k > 1.

Remark 3.3. Let z € R"™. From the Cauchy-Schwarz inequality (applied to discrete
sequences of real numbers),

_ [B(z.w(2))—a]?
e 2(1-82)

oo O a7z s o7 = o 1 )

“(S4 /.
< () (x|

Lemma 3.4. Let 0 < ;A < 1. Let a« € R. Then 3 ¢/, ¢y, ... € R with
] < (B + Akt mx(0=3),
for all k > 1, with ¢} := Bae /2, &' == B2(a® — 1)e~*"/% such that

_[Bz—a)?

(1 - ﬁ2>73/2[a _ .T 6 2(1-82) — ZC !, Yz - R.

Fla)({, 2D)VE i () ) (23)

e, VR (@) da] ).

Rn+1

The sum on the right converges uniformly on compact subsets of R, and it also converges in
the Lo(7y1) sense.

Mehler’s formula then says: for any 0 < p < 1, for any z,y € R**!

—llz)®~llylI®+2p(z.)
—(I=l2+lyl? )/2Zp Z hé hz £| ( ) (n+1)/2 e 2(11}_,,2)P y . (24)

k=0 LeENTHL,
]l =k

3.2. Preliminaries and Notation. We say that 3 C R"™! is an n-dimensional C'* mani-
fold with boundary if ¥ can be locally written as the graph of a C'*° function on a relatively
open subset of {(xy,...,z,) € R": x, > 0}. For any (n + 1)-dimensional C'*° manifold
) C R™*! such that 09 itself has a boundary, we denote

CoELR™) = {f: Q 5 R f e C(R™), £(909) =
3r >0, f(Q2N(B(0,7))%) = 0}.

We also denote C§°(2) := C3°(€;R). We let div denote the divergence of a vector field in

R"™!. For any r > 0 and for any z € R"™ we let B(z,r) := {y € R"™: |z —y| < r}
16
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be the closed Euclidean ball of radius r centered at x € R™t!. Here 00f) refers to the
(n — 1)-dimensional boundary of 2.

Definition 3.5 (Reduced Boundary). A measurable set  C R™"! has locally finite
surface area if, for any r > 0,

Sup{/ div(X(z))dz: X € C°(B(0,7),R™™), sup || X(z)| < 1} < 0.
Q zeRn+1

Equivalently, €2 has locally finite surface area if V1 is a vector-valued Radon measure such
that, for any € R"*!, the total variation

IVial (B )= s 31O
artitions .
Curt o of Ba1) =1
m>1

is finite [CLI2]. If Q C R™"! has locally finite surface area, we define the reduced boundary
0*Q of  to be the set of points z € R"*! such that

) e~ lim Via(B(z,r))
N(w) ==l e B )

exists, and it is exactly one element of S™ := {z € R"*!: ||z| = 1}.

The reduced boundary 9*€ is a subset of the topological boundary 9S2. Also, 9*€2 and 02
coincide with the support of V1g, except for a set of n-dimensional Hausdorff measure zero.

Let Q C R""! be an (n+1)-dimensional C? submanifold with reduced boundary ¥ := 9*Q.
Let N: X — S™ be the unit exterior normal to ¥. Let X € C°(R*"™ R"™). We write X
in its components as X = (X1,...,X,41), so that divX = Z?:ll B%L_XZ-. Let U: R x
(—1,1) — R™*! such that

d
U(z,0) =z, g\lf(a:,s) = X(¥(z,s)), VreR" se(-1,1). (26)
For any s € (—1,1), let Q©) := ¥(Q,s). Note that Q© = Q. Let X = 9*Q) Vv
se (—1,1).

Definition 3.6. We call {Q(s)}se(,lyl) as defined above a variation of Q) C R"*'. We also
call {E(S)}se(_m) a variation of ¥ = 0*Q.

For any # € R"" and any s € (—1, 1), define

V(z,s):= G(z,y)dy. (27)
Qs)
Below, when appropriate, we let dx denote Lebesgue measure, restricted to a surface
3 g Rn—i—l_

Lemma 3.7 (Existence of a Maximizer). Let 0 < 3 < p, define A :== p — [ and let
0 <e< e_QQ'max<0’%_%). (If « = 0 let 0 < ¢ < 1.) Then there exists a measurable set

Q C R™! mazimizing Problem [1.11]
17



Proof. Let f: R™ — [0,1] be measurable. Denote z = z(f) := [pu ©f(2)Yns1(2) dz,
v(z) = z/||z| if 2 # 0 and v(0) := (1,0,...,0). Fix w € R"". The set

Dy = {f: R"™ —[0,1]: - f(@) Y (x)dz =a and z(f) =w}

is norm closed, bounded and convex, so it is weakly compact and convex. Consider the
function

Clf) = [ F@Lf@) () de—e|

]Rn+l

pw(z), z) — o
V=P

This function is weakly continuous on Dy, and Dy is weakly compact, so there exists fe Dy

such that C'(f) = maxsep, C(f). If f € Dy, then z(f) = w, sov(z(f)) = v(w),ie. ¥V f € Dy,

C) = [ | @@ () do - f(:v)é(m% V(]

Moreover, C' is convex since for any 0 < ¢t < 1 and for any f,g € Dy,

tC(f) + (1= 1)C(g) = C(tf + (1 - t)g)
_ /R (@@ + (1= g T(a)
— (tf(@) + (1 = Dg@NTef (@) + (1 = Dg(@)] ) s () da

—et-0[ [ () - gtane(” W) Z 0, @) da]

Flay( ) (z)dz]

Rn+1

Rn+1

— -1 [ (U6 = gD — g0
—et=n[ [ () - gane(” <”““’j%‘ V() o]
PEBRi-0(Tt -l T a[[ 0@ - st a])
k=0 feNTHL
1€]l1=FK
> 0.

The penultimate inequality used ¢ < e~ mx(0.35-3) and Lemma , cp = P(a) = a,
e = e, o] < (84 W OF 1) for all k> 2,

Since C' is convex, its maximum must be achieved at an extreme point of Dy, so that
Yur1({z € R*": f(z) € {0,1}}) = 1. Then, define Q := {x € R""!: f(x) = 1}, so that
f = lq. Finally, note that C'(1g) = C'(1rgq) for any rotation R: R"*! — R"*1. O

Lemma 3.8 (Regularity of a Maximizer). Let 0 < 5 < p, define A\ == p — 5 and let

0<e< g0t max(0,35-3) (Ifa=01let0<e<1.) Let Q C R"™ be the measurable set
mazimizing Problem guaranteed to exist by Lemma |3.7. Then the set ) has locally
finite surface area. Moreover, for all x € OS2, there exists a neighborhood U of x such that

U Nois a finite union of C°° n-dimensional manifolds.
18



Proof. This follows from a first variation argument and the strong unique continuation prop-
erty for the heat equation. Define ®(t) := fioo 7 (x) dx and define

z = / TYny1(7) dz € R™ (28)
Q

v(z) == z/||z| if 2 # 0 and v(0) := (1,0,...,0). We first claim that there exist a constant
¢ € R such that

0> {x e R"™: T 1g(z) — gq)(ﬁ(y(z),x) _ a) > c}

Vi- B

QD {x e R"™: T 1g(z) — 5@(5<V(Z)’x> _ a) < c}.
V1=
By the Lebesgue density theorem [Ste70), 1.2.1, Proposition 1|, we may assume that, if
y € Q, then we have lim, 0 7,+1(Q2 N B(y,7))/Yns1(B(y,r)) = 1.
We prove by contradiction. Suppose there exist ¢ € R, and there exists y, z € €2 such
that

(29)

T,(1a)(y) — ez, 29 — 20y < ¢, T,(10)(2) — ez, 29 — 20y > ¢,
By (2), T,(10)(x) is a continuous function of z. And by the Lebesgue density theorem, there

exist disjoint measurable sets Uy, Uy with positive Lebesgue measure such that Uy, Uy C 2
such that v,11(U1) = Yn41(Usz) and such that

T,(1a)(y) - o 2L ) o vy e,

-7

T,(10) () — 5<1>(5<”<Z>’x> _ O‘) > ¢, Yy € U,

V-7
We define a new set  C R"*! such that Q := U, UQ \ U;. Denote ¢ := fﬁ TYnt1(x) dz,
20 = [ xy,41(z) da for i = 1,2. Then,

/Rn+1 15(@)Tplg(x)Ynr1(x) do — 5[/@ (I)<B<V\(/<1>7_L>pz_ a)’)’nJrl(iU)diUr

oM o]

- / Lo — 1o, + L) ()T [a — Loy + iy (2) de
Rn+1

—ef [P 00 0y ]

: Ny
- [ @D e ) dee] | @(W% Vs ()]
=2l 1)) (T e — et (U e s
#2 [ [l - L@, — 1)@ @) do
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_ /R » lo(z)T,1a(z)Ynt1(x) dz + [ /

Q




Rearranging the terms and using , the previous quantity is
Blv(z),z) —a
V1=

+ 2/ [1Uj - 1Uk]TP[1Uj - 1Uk]7n+1<x) dz
R+l
6<V(Z>7 ZL‘) —a
<I>( ) 1y, — 1y () Vet () dz
/]anLl \/ﬁ [ U; Uk]( )7 +1< )

The first quantity is positive by . The remaining two quantities sum to a nonnegative
number by Mehler’s formula and Lemma

2 /R ety 1)) (Tl — 1)) — 8 ) ) ()

2

— 2¢

/ . []‘Uj - 1Uk]TP[1Uj - 1Uk]’7n+1(x) dz
Rn+1

o [ R e

Dl e tpmyl Yo 0 [/Rn+1(1Uﬂ' (z) = Lu (@) he(x) 141 () dx]z =0

feNntL:
I¢lli=Fk

2

The last inequality used ¢ < e~ mx(0.35-3) and Lemma co = Pla) = a, g =
\/%G_QQ/Q, lex] < (B + /\)keo‘z'max(o’%fé) for all k& > 2. In conclusion, we have contradicted

the maximality of Qy,...,€,,. We conclude that holds.
We now upgrade by examining the level sets of

T,(1a)(z) — 8¢</B<V(z),x) _ O‘), Ve R

Vi- B

Fix ¢ € R and consider the level set

Yi={z e R"": T,(1g)(z) — 5@(“% 04) = c}.
This level set has Hausdorff dimension at most n by [Che98, Theorem 2.3].

From the Strong Unique Continuation Property for the heat equation [Lin90], 7),(1q)(z)
does not vanish to infinite order at any # € R""! so the argument of [HS89, Lemma 1.9]
(see [HL94, Proposition 1.2] and also [Che98, Theorem 2.1]) shows that in a neighborhood
of each x € X, ¥ can be written as a finite union of C* manifolds. That is, there exists a
neighborhood U of x and there exists an integer £ > 1 such that

Uny = uﬁ;l{y ceU: Di [Tpug)(x) - g¢<ﬁ<% O‘)] £ 0,
Blv(z), x) —
V1-32

D [Tp(m)(l«) - gcp(
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Here D! denotes the array of all iterated partial derivatives of order i > 1. We therefore
have

pw(z),z) — a) _ C}
iz )T

and the Lemma follows. O

Y =90 D {:p € R™L: T,(1g)(z) — ch><

From Lemma [3.8] and Definition [3.5| if x € X, then the exterior pointing unit normal
vector N(z) € R is well-defined on ¥, 9Q \ 3 has Hausdorff dimension at most n — 1, and

[B(v(2),2)—a]?

VI, (10)(#) - e —u(2)

_ [/s<u2<z1>,z>27a12 ’
(1-52) V(Z>H

Hva(hﬁ(x) —efe P

In Lemma below we will show that the negative sign holds in (31)) when {2 maximizes
Problem [L.11l

Lemma 3.9. Let x € R"™\ {0}. Fiz v € R™™. Then
v(as,v) v (z,v)5op U (o> V) T . Proj,. (v)

Izl Nl )f? ] ]l

N(z) ==+ Vel (31)

Lemma 3.10. Let x € R™!. Fizv,w € R"'. Let z = 2 for all s € (—1,1).

d
ds

<v,w> o <||_2H7U><ﬁ7w>

s=0 &l

= [~ C w2 = w2 — e, 2+ e w2 ]

Proof.
i <?J,’lU> - <ﬁ7v><ﬁaw>
dsls=o || z]]

2

[Ed]

w7<ﬁ,w>

(e, TELEL (5 ) — (&, o) (S EL

2]l [E
= [~ o) + ﬁ(g, 20, 2) (0, 2) — (£, (o, 2) + ﬁ(m 22, 7)o, 2)

1

— (v, w)(z,2") + B

(v 2w 2) e )/

4. FIRST AND SECOND VARIATION

In this section, we recall some standard facts for variations of sets with respect to the
Gaussian measure. Our first and second variation formulas will be written in terms of GG, as

defined in .
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Lemma 4.1 (The First Variation [CS07]; also [HMN16, Lemma 3.1, Equation (7)]). Let
X € CRR™L R, Let Q C R™™ be a measurable set such that OQ is a locally finite
union of C* manifolds. Let {Q0 } —1,1) be the corresponding variation of Q). Then

4
ds ls=0

| e tGlaady = [ Gl (X, V) dy (32)

The following Lemma is a consequence of and Lemma . As usual, we denote
28 = Jo, #mii(z)de € R 2= 20,2 = [ xypqa(z) da, v(z) = 2/ ||z|| when z # 0
and v(0) := (1,0,...,0).

Lemma 4.2 (The First Variation for Maximizers). Suppose Q C R"™! mazimize Prob-
lem[1.11. Assume z # 0. Then there exists ¢ € R such that

T,(10)(z) — cagp [®<5<% a> + (:U,Q] =c, Ve

Moreover, |c| < 2(1 + |a|). Here ag and ¢ are defined in and (34)), respectively.

Proof. Denote f(z) := (X (x), N(x)) for all z € ¥. From Lemma

1d

5 ds oo /Rn+1 Loe (2) T lge (@) Y (2 dfﬁ—/G T,y /(X(x) N(z))dzdy
B [ 1,(10)() (o) ()

Similarly, using G(z,y) := (2, y)Ynt1(2)Ynr1(y) for all z,y € R™*! in Lemma [4.1]

1d e 1d 2
pasl 1 =55 /( Tynia(@) dz
- / (2, 5 (1) / (X(2), N(2)) s (z) de dy B / Dy (z) do = (2, ).
(33)
Define

[B(2).2)—a]?

o= [ 1“_1;2’ V() () dy. (34)




Then using G(z,y) = <I><B<xf_>g2a>@(55;”12_;:)%“(3:)%“(34) for all 7,7 € R*™ in Lemma
and the product rule,

d Blr(z),z) — a
dsls—o /Q(s) q)< \/1_7 >7n+1(517) dzx
[B(v(2),) —o]”
—Q Be 20-8%H  d .
:/2 ( 1 _52 >f )1 (@ d$+/ \/m ds 8:0<yv v(2)) g1 (y) dy
[B(r(2).2) —a)?
_/E ( 1 = 52 ) F@a(a) de + / o ﬂ(_—ﬁ) W (2)y. ) Ynra (y) dy
= / 1 - 52 ) @) do
3 [ﬁ<2((1>2>2 o?
:/2 ( 1_@2 a>f Vi1 () d / (2, s (z) da.
ag ::/Qq)(ﬁ(u(z),\/l— a)%ﬂ( )dx. (35)
In summary,
1d Blv(2®), ) — 5

1s s:o[ /R ., oo (@) Toloo (@) (@) dr — 6[ /Q . q’( N a)’ynﬂ(x) d:z:] ]

2ds
- /E (Tp(lg)(:c) — cag [@(5@(21),\/% oz) + <x,§>Df(x)%H(x) da.
It Tp(10)(2) — eag [¢<%> + (I,Q] is nonconstant, then we can construct f with

[ o0 f (2)ms1(z)dz = 0 to give a nonzero derivative:

d

Tl [/Rnﬂ Lo (2)T)lage () Yns (z) do — 6[/{2(8) @(5@/(\2/(?)_,72)2— a>7n+1(x> dx] 2} £ 0,

d

,Y’n-i-l (Q( ) Oa

contradicting the maximality of {2 (as in Lemma and (B0)). (The last equality used

Lemma [.1] with G(x,y) = y11(y).)
Finally, in the case of a general vector field X supported in ¥, we have

L d Blv(z9),z) — a

2ds SZO[/WH Low (@) T loe (2) Y41 (x) do — 5[/%) <I>< Ny )%H(J;) dx] 2]
Z/cf(x) dz
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d
@ 8207n+1(Q(8)) = /;f($)’yn+1(x) dz.

S0, |34 ],—07n11 ()] equals 0 or | [, f(2)Vn41(z) dz|. Since @ € R™™ maximize Problem
1.11} in either case, it follows that |c| < 2(1 + |«). O

Theorem 4.3 (General Second Variation Formula, [CSO7, Theorem 2.6]; also [Heil5,
Theorem 1.10]). Let X € C°(R™ R, Let Q@ C R™™ be a measurable set such that 9

1s a locally finite union of C'*° manifolds. Let {Q(S)}se(_m) be the corresponding variation of
Q. Define V as in ([27). Then

1 d2
/ / Loe (¥)G(z, y)lge (v) dzdy
s=0 Jpn+1 JRn+1

2ds?
:/E/EG(x,y)<X(x),N($)><X(y),N(y)>dxdy+/div(V(x,O)X(@)(X(@)N(x»dx.

by

5. NOISE STABILITY AND THE CALCULUS OF VARIATIONS

We now further refine the first and second variation formulas from the previous section.
The following formula follows by using G(z,y) ‘= Vns1(2)Vns1(y) ¥V 2,y € R* in Lemma
41l and in Theorem 4.3

Lemma 5.1 (Variations of Gaussian Volume, [Led01]). Let Q C R™ be a measurable
set such that 9 is a locally finite union of C* manifolds. Let X € C°(R"™ R, Let
{QE)}se(_1.1) be the corresponding variation of Q. Denote f(z) = (X(z),N(x)) for all

x €Y = 0. Then 4

ds

e @) = [ @) = (X)) (@) () di

s:OW"H(Q(S)) - /Ef(x)%zﬂ(l’) dz.

d2
ds?

Lemma 5.2 (Extension Lemma for Existence of Volume-Preserving Variations,
[Heil8, Lemma 3.9]). Let X' € C3°(R™ !, R™™) be a vector field. Define f = (X', N) €
Coo(X). If

/2 (@) () d = 0, (36)

then X'|s. can be extended to a vector field X € C§°(R™ ™ R"™) such that the corresponding
variation {Q(S)}se(,m) satisfy

Vs S (_17 1)7 ’Yn-i-l(Q(S)) = ’yn-i-l(Q)

Lemma 5.3. Define G: R"™ x R™™ — R by (14). Let f: & — R be continuous and
compactly supported. Then

/E/ZG@’y)f(x)f(y) dady > 0.

Proof. If g: R"*! — R is continuous and compactly supported, then it follows from that

/ / G(z,y)9(x)g(y) dzdy > 0,
YJY 04



From Mercer’s Theorem, this is equivalent to: V p > 1, for all 2z, ..., 2® ¢ R”, for all
517"'75}7 GR?

p
> BiBG(2", 2)) > 0.

1,j=1

In particular, this holds for all z(),... 2P € 9Q C R™'. So, the positive semidefinite
property carries over (by restriction) to 0. O

Lemma 5.4 (Second Variation). Let Q@ C R"™™ be a measurable set such that OS) is
a locally finite union of C* manifolds. Let X € CPR™LR™). Let {Q®}c 11y be
the corresponding variation of Q. Denote f(z) := (X (x), N(x)) for all x € ¥ := 0*Q. Let

2= [ Y41 (z) da, 2) = Jaw Tyms1(x) dz. Define ag and ¢ by and (34), respectively.
Then

1 d?
2 ds?

v(z®), ) —a 2
ol [ [, S asr—e [ o(FATE= )]

_ / / Gla,y)f (@)f(y) dedy — = / [@(5@(21),_90)5 0 ¢ (e ]S ros) )

[B(v(2),z)—a]?

= cag /E <ﬁe\/12<_17;22> (22, 2) + (2.C)) (&)t (x) da

[B(v(2),2)—a]?

v [ (Fh10t0) - (ﬁm U2+ €) X(@) ) (@) () do

+ /E [Tplg(x)—sao [@(5 <V(21)’\/_L>52_ O‘) +(x,(>”(div(X(x))— (X(:Jc),x>> F(@)ynan () da.
(37)

Proof. For all z € R"™ we have V(z,0) & Jo Gz, y)dy = Y1 (x)T)la(z). So, from
Theorem [4.3]

1 d?
2 ds?

s=0

/Rnﬂ /Rnﬂ Low (y)G(:L’, y)19<8> (37) dzdy
_ /E /Z Gz, y){X (z), N(2))(X (), N(y)) dedy

[ (

+

+

0

[Tplﬁ(x]a_xi

Xi(z) — 2T,1o(x)X;(2)

™

oL

)
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Also, by Lemmas [5.1] and

2 v(z®) ,T) — 2
%% 5:0[/9( ) (I)<ﬁ< <\/)_75>2 )’Ynﬂ(ﬂc) dx]
-(/, [‘I’(m% %)+ (0.0 (e dr)
_ [B(z).e) —a)?
+ag /E (q>(ﬁ<u(z1),_x>ﬁ;a [div(X) — (X, 2)] + ﬁe\/%;; (X, y(z)>> F (@) Ynsr (z) da
- 0% szo/Z (@(ﬁ@%_ a) - (x,§(5)>>f(x)7n+1(x) dz

rao [ (0. Q) — (X.a)] + (X.0) Fe (o) do

= (/Eq)<5<y(z_1)’_x>62_ a)f(iﬂ)%ﬂ(l”) dx>2
_[Bw(z),2)—a)?

ra [ (o (22— aiy(x) — ()] + 2 (X u(2)) £ () do

VI Vi
_Bw(z)z)—a)?
+ ao/Z (66\/1(_7_;2) W'(2)x, ") + (x, ’>>f(:c)’yn+1(a:) dx

+ao [ (@O = (X2 + (X0 ) o) d

That is, holds. O

Lemma 5.5 (Volume Preserving Second Variation of Maximizers). Suppose 2 C

R™™ mazimizes Problem |1.11, Let ¢ < (kpézz‘%ﬁ 7 where ||z|| > 2z > 0. Let
a®-max( 0, 775 —

2
pl0e

{QE)}se(_1.1) be the corresponding variation of Q. Denote f(z) := (X(z),N(2)), V x €
%= 0", 2= [,y (x) dz € R If

/E F (@) (z) dz = 0,
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Then there ezists an extension of the vector field X|s such that the corresponding variation
{Q(S)}Se(,l,l) satisfies

2 vz, z) — a 2
sileal o f Gt astr—e[ [ (B2 o) o]

2ds?

:/S:/EG(x,y)f(x)f(y) d:L’dy—s(/2 [(I)<5<V(21):T>52_a> +<1‘,C>]f(96)7n+1(w) dx)2

_[B(v(2),x)—a]?

— gag /E (56\/12(_17;22) V'(2)x, 2"y + (x, C'))f(:r)’yn+1($) dx

ﬂe 2(1-82)

_/ZHVTplg(x) —aao( N V() +<)H P s () dr

[B(r(z),2) —a)?

(38)
Moreover,
5 ,[B<u2<(i>,z‘323a12
— e -
VT,1a(x) — €a0< v(z) + C)
1 _ 32
vi=o (39)

_[Bw(2).x)—a]?
Be 2(1-52)

Vi- 7

= N (@)|[FT 1a(e) — 2o v(z) +¢)

, Vo el

[Bv(2),z)—a]?
Lastly, ||7Tp(19)(x) _gbe 200D

dimension at most n — 1.

v(2)|| > 0 for all x € X, except on a set of Hausdorff

Proof. From Lemma , Tylo(z) — eag [CD <%> + (93,{)} is constant for all z € X.
So, from Lemma and Lemma , the last term in (37)) vanishes, i.e.
1 d?

v(z), ) —a 2
saclol [, [, vz —<[ [ o(% % Jinin(o)de] |

:/E/EG(x,y)f(x)f(y)dxdy—s(/E [q)(mlf(zl),\/% a> +<$,C>]f(x)”yn+1(x)dx>2

—en [ (B e ) 0 0) S @)
_Be@ ) —a)?

+ /E <7Tplﬂ(x)—€ao(5€\/12(_17; v(2) +C), X (@) F(@) i (2) da

(Here V denotes the gradient in R"*1.) Since T,1q(z) — cag [CID (%) + (a:,Q] is

_[Bw(z).2)—a]?
constant for all x € 9Q by Lemma [4.2, VT,1q(x) — caqy Be 207D 0, + () is parallel
p s
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to N(x) for all z € 9. That is, for all x € X,

_[Bw(2).x)—a]?
ﬂe 2(1-82)

Vi- B

= ﬂ:Hvalg(l') - ea()(

VT,1q(z) — €a0< v(z)+ C)

_[B(v(2),2)—0a]?
Be 2(1-582)

S5

In fact, we must have a negative sign in , otherwise we could find a vector field X
supported near x € 0f) such that has a positive sign, and then since the second variation
is a positive semidefinite function of f by Lemmas[5.3]and Lemma [5.6] below, we would have

(40)

v(z) +¢) HN(@.

/ / Lo (4)G (2, y) Lo () dzdy
s=0 Jrn+1 JRn+1

_BWw(z).@)—a]?
ﬁe 2(1-42)

V1o

1 d?
2 ds?

> /E (VT 1o () — 2o v(2) +¢), X (@) (X (@), (@)} s1(w) do > 0,

a contradiction. In summary,

v(2¥), z2) — a 2
ol [ fy G masty=[ [ o(% 2]

_ / / Gla,y)f (@) f(y) dedy — = / [q)(m%a) 0] )2’

_ eao/E (56\/12(_17;22) (y'(z)x, z') + <x, '))f(x)vnﬂ(x) dz

valg)(JZ) — 5a0(
This same argument implies the final assertion, that |V, (1) () —2

1 d?
2 ds?

[B(r(2),2)—a]?

_BWw(z).@)—a]?
/Be 2(1-82)

N

v(2) + ) || 1£@)F Yusa () da

[B(v(2),z)—a]?
2(1-52)

\/1-82
0 for all x € X, except on a set of Hausdorff dimension at most n — 1. More specifically, if
_[Bv(2),2)—a]?

IVT,(1q)(z) — s%y(z)ﬂ = 0 on a set of positive Hausdorff measure on X, then

we let f be supported on this set with [, f(2)yn41(2z) dz = 0, then Lemma and Mehler’s
formula implies that f has positive second variation, a contradiction.

v(z)ll >

The following technical lemma shows that the second variation formula is a positive
semidefinite function of f, when ¢, 8 are sufficiently small.

Lemma 5.6. Define

. 1Oea2~max(0,p_iﬁ—1)
7 ik

(1—=p)|
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%;—; _ 0[/Rn+1 Lo ()T 1o (%) Yy (7) do — 5[/9(8) @(5@(5/(;))_’79;)2_ a)%ﬂ(x) dx] 2]

1-6 //f y) dady

[Bv(2),2)—a]?

/ HVT Loz 5a0 \/12(_17;22) v(z) + Q) H | ()] g (2) daz.

Proof. From Lemma 5.5,

o =0 |:/Q(S) /Q(s) Gla,y) dedy = 5[/9(3) ¢<5<V(\Z/(i))_,7xﬁ>2— a)%ﬂ(ﬂv) dx] 2}

2ds?

- [ (st

—<| / [‘D(my(z)’x) —2) + (4,0 () (v) | [cp(ﬁ@(zw —) 4 ,0)

1-5 Vi1=p
_ b)) —al?
~ 9100 - €ao(ﬂe\/12(_17_;2) )+ )| F@) F@)me (@) da

_ B (z).x)—a]?

~ a0 [ (P 0900, 2) + 0.0 F @) do

Vi
Here
/yf( )Yn+1(y) dy.
Also
d e P
= ‘ _ /(59) 4
C dsls=0 Qs \/?ﬂz U(Z )y7n+1(y) Yy
15} <2(<1) yﬁ>2) =
e

[Bly.r(2)~ a]?

/ Plo=8 lf (ﬁi]ﬁn W) W) ) dy

[B¢v(2),2)—a]?

Be 2(1-52)
/ e V' (2)y 1 (y) dy.

Using Lemma [3.10, we have

. PI‘szl (y)
2]l

3<—<z/’y>z—<y,z>z’_<z,2> P H < 2)(z, z>z>
29

(41)

(42)

(44)



We bound the second term in using Lemmas and . Since

[B{v(2),2)~a]?

. ﬁe 2(1-52)
/ i v (2)y s (y) dy,
we have
B
<]l < —.
|12l

So, Lemma [3.2) with A := p — 3 implies that 3 ¢y, o, ... € R with

k] < ple 2max(0, 5,55 - %)

I

for all k > 2, with ¢ := ®(a) = a, ¢; 1= —2*/2 guch that

e

<I><B<V(?’\/_L>62_ a) :;ckhk(y)m, VyeR

(47)

We have (using also [ f(y)Vas1dy = 0 and the Cauchy-Schwarz inequality for discrete

sequences of real numbers),

([ [o(F2220y <y,<>]f<ymﬂ<y> ay)’

-7
B / [H ia +Zcmk (. DV F@) s () dy)
< <i Cj +1{J 1}” ”D<Z ‘Ck+ {k= 1}|| ||H/ hy (y, ( )))\/Hf(y)fynﬂ(y) dy]2>
p?< (Zp [ [ el VR ) ] ).

We now bound the last term of (41). From (3.1), 3 ¢}, ¢, ... € R with

for all k> 1 and ¢, := e /2 such that

[Ba—c]?

( 62) 1/26 2(1-82) = chhkz \/k_ VreR.

3()



So, using the Cauchy-Schwarz and AMGM inequalities,

B ()2 —a)?

([P et e =)
@/

VIi- B

[B¢v(2),)—a]?

/ - 12(—1 ;22) V@t @ (@) dr, /2 yf(y)7n+1(y)dy>

_[Bw(2).x)—a]? 2

- 20-8% Proj,. (z) f(z)yp41 (z) do

= Te HHW/

66a2 rnax(O pﬂﬁ 1) N
HIED %p
2
Y [V ] )
iié;;ﬁ%fio:&ggrizsii
2
w1l Lar@natas
It then remains to bound the last term of :
/ ) Yny1 () dz, C>
g 5amT
B ([ ar@mn@an, [ H ey st dv)
2 _ B (2'/1(z)>2 a)?
([ at@rmm@an, [ 20 (1”_@/;21;/2 o (50)

1217 (Proj.a (), 2/)Proj.. (1) s () dy )
[B(v(2).2)—a]?

" < /zxf(x)%“(x) a /Q 56_12\/% V' (2)y s (y) dy>.

The first term of is bounded by . The second term of is bounded similarly as
31



( [ ar@rmnt s

/ Pl ﬁ%ﬂ;)g];ﬂ Al (Prods (), #)Prod ()i (v) dy>
B 2
< W xf(x)%,ﬂ(x) dxH
||zH H</ i _52)1/3(/22»]6_%Projzi(?/)Prszi(?J)’Yn+1(y) dy, Z,> ’2
d;z:

[ — Bly,v(2))] —lwrn_a? . 2
(1 + [/Q (1= g2 e 20-8% Proj,.(y)Proj..(y)V¥ns1(y) dy] )
The last term of is bounded in a similar way to the second term, by substituting (44)).

[B(r(2),y)—a)?

( [ar@mn@ar, [ F s ) )
5 "o 1= p2 "
_ B —a)?

a7 [ ef@pmao) o, [ %@cwmm ay)

[B(v(2),y)—a]?

17 [ ar@rn s, [ %@ 2 () dy
_ B w-a)?
17 [ ar@rn @, [ %@,z@ml@) ay)
_ B -a?
#31l{ far@ma e [ F .9 ) dy)
_Be@w) —a?
© e [ et e =) [ F e ia ) ay

ﬁ B(é((zl) 1;3)2)0]
(&
/ i (Y, 2)yns1(y) dy

_ B (=) .y —a]?

e e [ @t ds, [ %yw@ ay)

[B(v(2),y) =)

30l o) [t as, =) [ E ) dy
32
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[B(2).y)—o?
[2)

= —||z||_3</2xf(l‘)%+1 z)dz, Z /56 ;i;jy%ﬂ(y) dy>

5 [muz((zl) 122)(112
e
/ SiE (Y, 2)vn41(y) dy

_ B (z) ) —a)?

L Be~ aa-mm -
— |2l (z,z></2xf(:)s)%+1(x)dx,/ﬂ i y7n+1(y)dy> (51)

_[B(v(2).y)—a]?

#3177 e, =) [ F )

[B{v(2),y) —)?

Be  20-89
/ N y%+1(y)dyH

a7 [t o) da

-2
< 6]zl

/ 2 (@) (2) da

<6811 || [ apeator o]

Combining all above estimates, we get

%;—; SO|:/Rn+1 Lo ()T 1ge () g1 (7) do — 5[/9(3) ¢<5<y%_ &>7n+1($) dx]Q

//f £(y) dedy

e (ipk[ [ VRt 0]

66a2 maX(O L - 1

S Y e Vi am ]

k=0 Jj=1,...,n: e1,....,en is
an orthonormal basis
of zt

] / £ ()i () d

— Hvalg(x) — 5a0<56

g el o+ )

_Bw(z).a)—a]?
2(1-52)

=@+ | @ (o

(52)
Then Mehler’s formula and conclude the proof. O

6. ALMOST EIGENFUNCTIONS OF THE SECOND VARIATION

Let 3 := 9*Q. For any bounded measurable f: ¥ — R, define the following function (if
it exists):

S(f)(x) = (1- pZ)_(”H)/Q(ZW)_(”“)ﬂ/ f(y)e_”;(l_fzg)2 dy, Vrel. (53)
b



Lemma 6.1 (Key Lemma, Translations as Almost Eigenfunctions). Let Q) mazimize
Problem |1.11. Let v € R™™'. Define z := [, xv41(x)de € R**'. Then

_[B(v(2).2)—a)?
Be 2(1-582)

=) +¢)|

_Bw(z).x)—a]?

2(1-52)
—%<v, pe V(z)+C>, VreX.

p NI

Proof. Since T,1q(z) — €ay [@(%) + <m,§>} is constant for all x € 9 by Lemma
- [3<v2((zl),zﬁ>2—>a12

— Se -
1.9 VT, 10(2) — eaq <W

S((v, NY)(z) = (v,N(x))%Hvalg(x) — zaq

v(z)+ () is parallel to N(z) for all z € 9. That is

olds:
[Bv(2),z)—a]?

— Be 2(1-52)
VT,1la(z) — 5a0< N v(z) + C)
5 _[ﬂ<u<(2>,x>2—)a12 (54)
_ 2(1-8
_ —N(JL’)HVTplg(x) — cao em @) +¢)|,  vees
From Definition [2] and then using the divergence theorem,
— —  _ly—pz?
(0, VT, 1a(2) = (1= p?) "+ 0/2(2m) =02y [ T, 3000 dy)
Q
y—pz|?
= (1= gy ey L oy gy S 4y
L =p*Ja
_lly=p=|?
- (1- p2>(n+1)/2(27r)(n+1)/2p/ div, (Ue S102) ) dy (55)
Q
_ ly=p|®
= (1= ) R n) 0 [ (o N T dy
)
(53)
= —pS((v,N))(x).
Therefore,
5 _[ﬁ<v((z),x>2—)a]2
__ e 2(1—8
(0. N @) [Vptaa) = o= —r() + ¢) |
_ [B<u2<(zl>fﬁ>2—)a12
= —<U,VTP19(:L’) - 5a0<ﬁe v(z) + C>
V1 — 32
_ [6<u((z),a;>—)a12
2(1—82
= 0 S((v, N))(@) + 2ao (v, em v(z) +C).
0]
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Remark 6.2. To justify the use of the divergence theorem in , let » > 0 and note that
we can differentiate under the integral sign of T,1onp(0, (%) to get

= —  _llypa)?
VT, Lonpon (2) = (1= p2) 0 0/2(2m) =002y, / Ve 3 dy)
QNB(0,r)
_ (1 . 2)—(n+1)/2(27r)—(n+1)/2 P <U i $>6_%d
N g L—p% Jonbos e Y
I
— (- p2)—(n+1)/2<2ﬂ-)—(n+1)/2p/ div, (Ue, i > dy
QNB(0,r)
lly—pe||
=-(1- p2)‘("+”/2(27f)‘("+”/2,0/ (v, N(y))e 20 dy.
(ENB(0,r)U(QNB(0,r))

(56)
Fix 7' > 0. Fix z € R™! with |[[z| < 7. The last integral in over QN IB(0,7) goes
to zero as r — oo uniformly over all such |z]| < r'. Also V1,1g(z) exists a priori for all
x € Rt while

[=

P

V1= p?
P

< \/1—7 sup / . (w, 1) 1eos)e(@p + Y1 — p?) Vs (y) dy.
_ R?’L

weR™ L |Jw||=1

Hvalg(l’) — valQﬂB(O,r) (l’) ||

/ » Ylonsore(zp +yv 1 — p?) Vi1 (y) dyH
Rn

And the last integral goes to zero as r — oo, uniformly over all ||z|| < 7.

Lemma 6.3 (Second Variation of Translations). Let v € R"™'. Let Q mazimize Problem

1.11 Let {Q(S)}SE(_M) be the variation of Q) corresponding to the constant vector field X := v.
Assume that

[N @) ar =0,

L t 9 L 1Oea2-max(0,p‘[_35—1) Th
e T A

(s) _
%;—; szo[/ms) - G(z,y) dedy — 5[/0(8) @(6@% a)’YnH(SC) d:z;] 2]
_ [B(@).m)—a)?
> (= = 1) [FL o) — cao(F—mrl) 4 ) 1o V@) s ) d

S

Proof. Let f(x) := (v, N(z)) for all z € £. By Lemma [5.6]

%;—; SO[/Rn-H Lo (2) T 1o (%) Yy (7) do — 5[/9(5> @(5@(\2/(;))_,7935)2— a>7n+1(90) dx] 2]

> (1-6) / / F(@)Gl,y) f(y) dady

[B(v(2),z) —a]?

_/ZHVT,;IQ(@ —5a0<56\/12(_17;2 o(2) +C>H £ )P e () .
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Applying Lemma [6.1] (with (53), (14)),
1 d2 5<V(Z(S)),:L‘> — 9
s=0 [ /Q<5> Q) Clo,y) dedy —e [ /Q(s) (I)< V1i-532 )7"+1(33) dx] ]

2 ds?
[B(v(2).z)—a]?

£ag Be  20-8%
>— | (1—-0)—(v, v(z) +
> / R Gy e -S(CRYY
_Bw(),m)—a]?

(5 =1) [ T80t - oo ta) 4 ) | @ i)
)J. = -

We now show that the first term in is zero. By assumption, [ (v, N(x))7yn41(x)dz = 0.
By the Divergence Theorem and the definition of z, we have

0= [ N@hate)ds = [ div(onn(@)de = [ (=00t de = (o.2).

So, (v,v(2)) = (v,2)/||z]| = 0. Similarly, [;(v,¢)f(2)Vn1(z)dz = (v,{)(=1){v,2) = 0.

_[B(2).2)—a]?
So, the first term [, (v, % ) + ) f(2)Yn41(z) dz in (57) is zero. The proof is

concluded. Note also that [, [|[VT,1q(z) — ez|[(v, N(2))*yns1(x) dz is finite priori by the
divergence theorem and (| .

o0 > /Q <v, —z 4+ V{v,VT,1g(x) — 5z)>'yn+1(x) dz

/Qdiv <U<U,va19(Q?) - 5z>7n+1(:v)> dz

/E@, N(x)}@,VTplQ(:U) — €2)Ynp1(x) do

D | [ 19T,10(0) = 20, N @)1 () |-

O

Remark 6.4. To justify that [, (v, N(2))¥n41(2) dz is finite a priori in Lemma (6.3} let 7 > 0
and use the divergence theorem to obtain

[ dvtonne)de= [ ()0 N@h) ds
QNB(0,r)

3NB(0,r)
+ (_1)<U7N(l’)>’)/n+1($) dzx.
QNOB(0,r)
And note that

< vl Yn+1(x) da.
0B(0,r)

/QﬁaB(O )<_1)<U’ N(x)>’}/n+1 (SC) dz

The last quantity goes to zero as r — 0o, and [, B(ow) div(vy,41(x)) da is uniformly bounded

for all 7 > 0, so [, (v, N(2))Vn+1(x) da is finite a priori.
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7. PROOF OF DIMENSION REDUCTION THEOREM
Proof of Theorem[I.13. Let 0 < p < 1 and let
2

(0Pl
ploea max(Op B 1)
Fix 0 < a < 1. Let Q C R*"! be a measurable set that maximizes Problem [1.11] The set
Q) exists by Lemma [3.7] and from Lemma, [3.8] the boundary of Q is a locally finite union of
C* n-dimensional manifolds. Define ¥ := 9*Q). Define z € R"*! by . Assume that

||| > 2 > 0.
By Lemma [4.2] there exists ¢ € R such that

T,(10)(z) — ec1>(5<”(z)’x> _ O‘) —c¢, Vzex
V1=

By this condition, the regularity Lemma [3.8 and the last part of Lemma [5.5] there exists a

set 0 C ¥ of Hausdorff dimension at most n — 1 such that

€<

_Bw(z)@)—a]?
Be 2(1-82)

Vi- B

— —N(iL‘)Hva<1Q)($) —€

VT,(1g)(z) —

_[Bv(2).x)—a]?
Be 2(1-82)

Nz

y(z)”, Voeed\o.

Moreover, by the last part of Lemma [5.5 we have

_[B(2).2)—a]?
ﬁe 2(1-82)

1 — 32
Fix v € R*"! and consider the variation of € induced by the constant vector field X := v.
Define S as in . Define

V= {vem: /E(U,N(a?))'yn+1(x) ax =0},

From Lemma , 5 |S O%H(Q(S)) =0, and

v(z)|| >0, VeeX\o. (58)

Hmuﬂ)(x) s

veV =
L& B(z1),2) —a .
2ds2 szo[/RnH Lo (2)Tplae (%) Ynri(z) dz —5[/9(3) <I>< Ny >%+1(x) dx} }
[B(v(2),2)—a]?
> (120, VT,1 Pe =0-5 .
_( p - )H Q )—5a0< m +C>H| |’7n+1(> x,
106a2‘max(0‘ﬁ*i57 .
where = ep T Since
)2 2
o =Pl

ploea max(Op B 1)
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we have (1 —6)/p—1 >0, so (58)) implies
veV = (v,N(x)) =0, Vel (59)

The set V has dimension at least n, since it is a set of vectors in R"*! that is perpendicular to
another fixed vector. So, by , after rotating €2, we conclude that there exist measurable
Q) C R such that

Q=0 xR"

8. ONE-DIMENSIONAL CASE

By Theorem [1.12] it remains to solve the one-dimensional case of Problem [1.10] That is,
it suffices to assume that 2 C R.

Proof of Theorem [1.6, We will show that the maximizer of Problem [I.11]is a half space H
with Gaussian measure a. Consequently, any ' C R"™! with Gaussian measure a satisfies

/Q/ Tplo/ () yns () do — 5[/Rn+1 @(6@(21)’\/% a) Lo (2)Yn+1(2) dx} i
< /H Tplu(z)ynt1(z) dr — 5[/}Rn+1 <I><B<V(Zl>’\/_i>ﬁ2_ a) L (@) yns1(2) dm} 27

where H C R™ is a half space such that [, 27,11(2) dz € R""! is a positive multiple of
Sy ¥ ns1(z) dz € R™!. Rearranging gives the first inequality (i.e. the only part we
need to prove) of Theorem [1.6}

([ o8 %@6‘ %) (La(2) — 1oy (@) (@)l

. ( /R - @(5 <u(z1),_:c>ﬂz— a) (Lu(2) + 1o (m))%ﬂ(x)dw)

< [ @ T = [ la@ el d

Rn+1

(60)

using also the inequality:

/R » QD(B(% D) L) (2)dz = /a . @(éf—%;;)%(x) dz

> f@(%)w)dx:@(—a,/%) /:Owl@)dx

1 1
> min (5, CID(—a)) - = min <§,a) ca>a*/2.

Let us therefore find the maximizer of Problem m; By Theorem [1.12] we may assume
that € C R. Denote X :=0Q, Q:=Q x R, and ¥ := 0. Let f: ¥ — R be defined so that

f(fBl,l"z) = T, V($1,x2) S i

Then the corresponding variation of Q satisfies
38



1

v(Z), z) — a 2
s /S) Q()G(m y)dxdy—a[/g()@(m (\/1)_7; >72(x)dx} }

0
/EXR

/ (2, y) f(x) f(y) dedy

YxR

_ [Bz1—a)?
ﬁ@ 2(1-52)

_A;Jﬁwﬂmﬂ@y—mw;Tf?;uwaﬂ@Fw@wm

_[B(v(2).x)—a]?

_ £ag /2 B (ﬁe \/1:7;; <y'(m,z'>+<x,g’>) F(2)70(2) da.

We begin by simplifying the last v/ term. We get

[B(v(2),2)—a]?
Be  20-6% , -
v(zZ)xf(x)y(x)dx, z
(LT v Ottt z, 7)

_[Bw(2).x)—a]?

(42) pe V(D) x f(z)vy(x) de
2 < By (D) f(x)y2(x) da, /ZXRyf(y)%(y)dy>

[Bz1—a]?
0 (o dw-/ Y572(y) dy
||z||\/1—52 /sz 2(7) SxR ()
[Bx1—a]

Tai— 52) v (z1) day - /’Yl(?h)dyL
>

NE W/

We examine each of the three terms from . The first term was just dealt with. For
the second term, we have

([ ar@n s,
xR
_ [Byw(2))—a]?

Bla = Bly, v(z))le -
QxR (1—p2)32
_a)?

9 117
0 RB[ (1 6ylﬁ]2)3/2( - 1207 ya(ea, 2"yyaa(y) dy

12172 (Proj.. (y). =) Proj.. ()7 (y) dy)

_ /Z _maf(@)a(e)de

y1—a]?

1 ﬁQ a — ﬁy ei 2(1 2(1-82)
2/71 v [ (e ) dy

Il

_[By;—a)?
B%a — Byile 20-5%
||Z|| </ n( dx / (1 — [2)3/2 71 (y) dy.
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Finally, from (51]), (noting that the first, third fourth terms there are zero),

[B(v(2).y)—)?
([ as@man [ E s Gymi)a
zf(x)y2(x) de, ——V"(2)y72(y y>
TxR axr /1 — 32
_ B (=) —al?
ﬁe 2(1-82)

| [ emwad [ S 2 dy

(B (2).y)—)?

-~ ﬁe S 201-82)
== () [ nm

Therefore,

ds2 =0[/Rz /]1@2 Loe) ()G (2, y) 1o (z) dedy —5[/9(3) q)<ﬁ<u(\z/(;))_,7xﬁ)2— Oé)”ynﬂ(a:) dx] 2}

[Bz1—a]?

:/ / G(z,y) dxdy—/ <N(x) VT, laxr(z) —eaou(l 0)>’}/2($) dz

©xR JExR ’ SxR Lo V1I-p52
/ By —o)?

Nl \/1—52

2057 (1) day - 1 (X)

_ By —a]? _ By —a]?
ﬁQ [a — Byle 2(1 52) Be 20-8%)

+ean—an (e[~ [ nwdy+ [ Py )
I2 H2 (1—p7)3 @ /1-—p

_ / B / Gla.y)dady - / (N(@). VT laca(@))a(e) o

_ [Bx1—a]
M/ S () dan (14 28/ el
T [ = ape 55 )
+eao 5N —/yl—a e 2= (y)dy.
o T,
We will now split into two cases, thereby giving two separate bounds for (61])
Case 1. Assume in this case that & [, 1 (y) dy > 247 (1 + a?)(11(X) —11(0H)). Lemma

0.1 with £ = 1 lower bounds the ﬁrst term. Lemma [0.4] controls the middle term. And

Lemma controls the last term. Combining these estimates,
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s=0 / / Loo (¥)G (2, y)lge () dedy — 5[/(2(3) @<ﬁ<V(z(;))_7?2— a)”ynﬂ(a:) dx] 2}

> (/8971<x>dx—[)Hvl<x>dx)

ot PRI e g OO (1 a2 +

271( )2”

e ( B)f)/l dgj

_€a0<_1+271 /H ” m
+ea (2 )L (x —apf) = ﬂ]) (z)d
"21° H”l (L= PP J, e i

— </89 1(z)de — /BH”yl(w)dx>

min(a, 1 — a) +/a< + |a)? B ) 5
'[P(l—P)T+6 o855 oy (L= () a1 — 2 Hm ?)]

/ 5 4 (2) dar(1 = (D) [12])2

+ €agp
\/7

Ignoring some nonnegative terms,

o / / Lo (¥)G(z, y) g (x dxdy—a[/ﬁ(s) @(5@(2(?)_,?2—(1)%1“@) dx] }

KT
. [p(l B p)min(aéol —a) cagl6etis (;(14— ’Ogi) ” 1H2 1(2)2}

From the main result of [BBJ17],

/Q:E'yl(x) da:—/foyl(x) dz

So, using this inequality

s=0 / / Loo (y)G (2, y)lge (z) dedy — g[/ms) @(5@(\2/(?)_,7?2—@)7““(@ dxr}
SVRTES /H (o)) - [o(1 = ) G

R () V
Bl —p5?) Jaym(y) dy — 24n (1 + o) (1(X) = n(0H))/ 1
41

< 247(1+ ()42)(/69’)/1(1‘) dz — /aH’yl(:r) d:v).

1 d?
2 ds?




Then, using the assumption of Case 1,

_d_22 szo[/R2 /R2 Low (Y)G (2, y)lge (z) dedy — g[/ﬂ(s) (I)<6<V(Z(i))_’9;>2_ a)%+1($) d:c} 2]
> ([ nwar— [ @) o - pmned =0

10161+ (6 + |al)2 <%(@H) + simiar Ju 91 W) dyﬂ
B(1—p?) 16 Juym(y) dy

> (/6971(95) dz — /aH%(x) dx) . [p(l _p)%ol_a)

B ao16e1%8 (6 + || )2y, (OH)? <1 + 2407r(11+a2) )2]
B(1—5?) 1
a2
min(a,1 —a)  apl6e¥3 (6 + |a)?

> ([ wlede= [ e [p1 - p == - )

Case 2. Assume in this case that 7 [}, 71(y) dy < 247(1+ o2) (71 () — 1 (9H)). We now
give our alternate bound of . Lemm 1| lower bounds the first term, though we use the
k = 2 case instead of the k = 1 case. Lemma 4] controls the middle term again. For the
final term, we just lower bound it by zero. Combining these estimates,

- =0|:/Rz /R2 Low (¥)G (2, y)1ge (z) dzdy — 5[/{2(5) @(my(\z/(?)_’%_ a)fynﬂ(x) dx] 2}
> </8971<$>dx—/8H71(2U)dx> . [/J(l—p)%</m%(x)dx— 8nyl(;1:)dg;>

2 (6 + |af)?
50 62)( L+ 2%(%5)/ [l=[)

\/1_752/ T ,?2)% dz
> ([ n@de— [ )as). [p<1—p>%(/mm<x>dx—/aHm(:c)dx)

: (64 Ja])?
e R Kl

— 5@0861 B

[ I

—eao(—=1+2n(2)/ [|z[])

— eagl0et+s e

Ignoring some nonnegative terms and rearranging
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ds?le=o0 |:/R? /R? to WG o () dedy _ ) [ /Q(s) ¢ <ﬁ<y%_ OZ)%H@) dx] 2}
> </BQ%($) dr — /aH%(x) dx) . [,0(1 - P)W(/@Q%(m) dr — /aH%(x) dx)

2 6+fa)? o
- eran200ets 2 5 () = 90 (0H) + 30 (01)]

1 @ laD) 1 (6 fa])
S o] g @)

Then, using the assumption of Case 2,

/R2 /R2 Lo ()G (z, y)1ge (v) dady — g[/ﬂ(s) (I)<B<V(\z/(;))_,7xﬁ)2— a>7n+1($) dm] 2}

min(a,1 —a) 1 2 (6+]af)” lar])?
> — H) - |p(1—p)——— H 200e 145
1 ( + |af)?
—p200eT+7 oOH
- s o)
1 min(a,1 —a) 1 ( + |a])?
= — H) - |p(1—p)——— H 2200177 ~—— |
Completing the Proof by combining Cases 1 and 2.
Suppose

80

min(a,1—a) 1
P o)

162200e 77 (6(+|a‘))

HZII
It then follows that

min(a,l—a
p(1 — p) e

(12 :

ap16e1+8 (6+|a|)2
B(1-5?)

So, in either Case 1 or Case 2, the following quantity is positive:

1d?

S I SZD[/R2 /IR? Lo (¥)G(x, y) g (z) dedy — 5[/9(3) q><5<u(\z/(i))_,7xﬁ>2— a>7n+1(x) dx:| 2]

That is, we have contradicted the assumption that €2 maximizes Problem [1.11], unless €2 is a
half space.

Finally, Lemma shows that 2 has the desired Gaussian measure, i.e. v1(£2) = a, so
that 2 maximizes Problem as desired.

This inequality contradicts Lemma for 2 x R C R?. We conclude that Q is a half

space. It remains to show that 71 (€2) = a. This follows from Lemma [9.5] O
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9. ONE-DIMENSIONAL LEMMAS

The lemmas below are needed in order to lower bound the second variation in Section [

Lemma 9.1. Let Q C R, X := 0. Then

/sz /sz Gla,y) dedy = /sz VT, 10xr(2) || Y2(z) da
min(a, 1 — a)

> p(l—p)Tkg%} </271($) dﬂf—/H%(x) dl“)k-

Proof.

/ / G(z,y) dxdy—/ VT, 1axr(2)| 12(x) dz
YxR JEXR YxR
:/ pngplz(wl)vz(w)dwdy—/ VT, 10(x) || 2372 (2) dz.
R? TxR

= ,0/2/ Tls(xq)n(x) de — /E VT, 10(2)|| 71 (z) dz.

Using then the divergence theorem,

/EX]R .- G(z,y) dedy — /sz Hvalng(x)H%(x) dz
= p/R(T\/,;lg(xl))nyl(x) dx+/Z<N(x),VTplg(x)>%(x) dz.
— ) /R (T s (2)) 27 () dar + /Q div(VTpm(x)%(x)) da,

= p/R(T\/plg(x))Q%(x) dz + / lo(z)(A — <x,V>)Tplg(x)’yl(:c) dz.

R

Integrating by parts,

/R 10()(B — {2, V)T la(e)m (x) dr. = — / VT () [P (x) da
Since

Tla(o) = [, 1)y
1—p

VT slo(z) = \/'p[Z
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In summary,

/MR/M Gle.y) dxdy—/EXRIWTpme(x)IIw(x) dz
:/)/R((Tflz —y|/ ymly) dyl )%( ) da

o [ ([ w2 -] /f () o) (e da

The latter quantity is nonnegative by rearrangement, as noted e.g. in Eldan’s proof of
Borell’s inequality [EId15]. However, we need a better lower bound. To this end, write
¥ = Ul_,0; C R with r a positive integer or oo, such that gy,_1 < 09; for all « > 1. In the
case r = 2 we have

L neanr =1 [, o ) @) da

1—p

__4 Ke—Q(m—ﬁx/(l—p))Q+€—;(al—\/ﬁz/(1_p))2>2
(27m)3/2 Jg
_ (e—%(ol—\/ﬁw/(l—p)) N )>26_x2/2} de
= 1 o~ 3(01=vpr/(1=p))* =5 (02— /pr/(1-p)* — 52° 1,
(2m)3/2 Jg
R

2 ((‘71""‘72)2 p>
(1 P _(o1402)vP 1 1 (-p) _l(g24452
_ 4 <2+<1*P>2> <x (a=p) 2 1/2+,,/<1,,,)2) T iarzrea-poE 2 (01te)
e dz
R

16 ﬁ (01+02)%p

1
= e /D (1-p)+0/ —p)% ¢~ 3 (01 +03)

2
W31 —p) 3o (1)

_2 N2
VB ) (o) (i) _ VB0 0) g (57
T/ p?+1
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More generally,

/R <[/3_\/?>w Ny dy]2 = /W y71(y)\|2>71(:c) dz

1

(2 4)3/2 / (Ze 3=/ (1= p))) - (Z(_nieé(wﬁz/(lp)ﬁyeﬁm dz
m R :

=1

4 1 2 1 2 2
_ L=/ (1-p)? . o=y (1=p)? ) y=a?/2
_(27r)3/2/R( D, e ) < D, ety )6 de

1=2,...,r, even i=1,...,r, odd

s}

" w< Z 67%0? (1%;;;)2)) < Z e*%a'% <12”£§+’1’)2>>
7rV p2+1 1=2,...,7, even i=1,...,r, odd
(63)

We now analyze a variant of the last quantity. For any Q2 C R denote ¥ := 09, ¥ 1= {z €
Y: N(z) = —1}, ¥gp = {z € ¥: N(z) = 1}, so that 3 is the disjoint union ¥ = ¥, U 3.
Consider now the following minimization problem in R: fix 0 < a < 1 and minimize

/ELvl<x>dx~/ER%<y>dy—m/EMx)dx (64)

over all 2 C R such that v, (€2) = a. The first variation condition implies that the minimum
of this problem is attained at an interval of the form Q = [¢,d] or its complement, where
—00 < c¢<d< oo, Forany s € R, let ¢(s),d(s) € R such that v,([c(s),d(s)]) = a. (Assume
that ¢(s),d'(s) > 0 for all s € R.) Then ®(d(s)) — ®(c(s)) = a, so differentiating gives

7(d(s))(=d'(s)) = 7(c(s))(=c'(s)) = 0.

That is,

W) (5) = nle(s) ) (65)
Also,
& [ n@ae [ =k [ nea

= (c(s)n(d(s))(=c(s)¢ (s) = d(s)d (s)) = r(n(c(s))(=c(s)c'(s)) + 71 (d(s))(—d(s)d (s)))
= 1(el9)) (5) (= m(d(s)e(s) = le(s))d(s) + wle(s) + d(s))).
So, a critical point occurs when ¢(s) = d'(s) = 0, or when

—c(s)(k —m(d(s))) = d(s)(rx —n(c(s))).
That is,

r—me(s) &= 7(d(s))

—c(s)  d(s)

Assume for now that a > 1/2, let 5 > 0 such that y[—f, 5] = a. Assume also that
c(0) = —f and d(0) = . Let k € R such that 0 < K < 71(). In the case a > 1/2, the
unique solution of this equation occurs when —c(s) = d(s) = f3, since ¢(s) < 0 always, and

cr %Z(C) is decreasing and negative (when s > 0)), whereas d Ll(d)
then positive (when s > 0).

(66)

is increasing and
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We now consider the case a < 1/2. In this case, again there is a solution —c(s) = d(s) = 3
k=71(c

to the critical point condition , and then ¢ — =210 g decreasing and negative (when

d) iy a1 (e)

c(s) < 0), whereas d — % is increasing, as long as ¢(s) < 0. When ¢(s) > 0, ¢ —

.. . . —~i(d) . . . . .
is increasing and negative, whereas d E=md) g increasing and positive. By choice of k,

for all s > 0 in the domain of ¢, we have ¢(s) < inf;> d(t). So, as before, there is only one
solution to the equation (66)), corresponding to —c(s) = d(s) = f.

The function f(t) := (k — e /%) /t satisfies f'(t) = 0 when e ¥/2(12 + 1) = &, so f(t) =
kt/(t? + 1) < k/2 at this critical point. Moreover, if x := min(1/|a|,1)1e=*/2, then
fla) < —(1/2)e=?/ |a| < —.

In conclusion, the only two possible critical points of the minimization problem ((64)) are
the symmetric interval [— (3, 8] (or its complement) and the half space [—oo, —«) (or («, o]).
By choice of k, the minimum occurs at the half space. We conclude that, for any set (2 with
7 () = a, we have

/EL 71($)dx-/ZR%(?J)dy—fi/E%(x)dx > _K/fm%(x)dx'

/ZL%(I)dx-/ZR%(y)dyZ /f(/zm(x)dx—/aH%(x)dx)’

Plugging this into (63) completes the proof for the k& = 1 case of the lemma, where x :=
min(a, 1 — a)/2 suffices.

The case k = 2 of the lemma is simpler. By identifying the left endpoints of an interval
in © with its right endpoint (if it exists) we have

/EL () de — /ZR’yl(y)dy‘ < \/LQ_W < .8.
And [; n(z)de + [g n(y)dy = [y n(z)dz, so

min(/ZL 71 () dx,/ZRfyl(x) dx) > %(/ZL 7 (x) d:c—l—/ZRfyl(a:) dx — .8)
()

That is,

([ ) (67)
- 2 271 xr)dx . .
If [oy(z)dz — [, 71(x)de > 1, then and imply that
2
_ 2
L noa] 1 [ R
o i
21— p)1 )
E M‘(/%@)dx—ﬁ)
T2 +1 4\ s
44/2(1 — 1 )
> M_(/m(x)dx—/ 71($)dx> .
/2 £ 1 100\ /s .
The case k = 2 of the lemma follows.
U
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Lemma 9.2. Let QQ C R satisfy fQ zy1(z)dz > 0. Let H C R be a half space such that

Y(H) = 1(Q) and [, zy(x)de > 0. Let 0<a<1/2 letaeR satisfy [ 7(t)dt = a.
Then
[ﬁzfa]Q

_ [Bz—a)? _
[ @ ag)e T (@) do - [ (o= ag)e () da
H Q

< 8eTHP <56(;—_|a5g) (/{m 71 (z) dz — /8H () d:zc)‘

Moreover, the left and right sides of the inequality are both nonnegative.
Proof. Choose € > 0 such that
_ A2)3
e I L=y
8 (s +3C1al + 2+ al H2(1/2+ ) ~ 86+ al)
Suppose we minimize over all {2 C R the quantity
_[Bz—a)? 2
/ Ti(z) dx+s%(/(x —af)e 2=y (z) da:) +2(1 4 |a) |1 (Q2) —al . (69)
o9 2(1-p5?) Q
The first variation condition [Heil8, Lemma 3.2] says 3 ¢ € R such that

~oN@ e ([ e EF 0 ) -ap) HH = voes=an,
=\ g o

and |c| < 2(1 + |a]), which follows by repeating the argument of Lemma [4.2} For a general
vector field X supported in X, its first variation (without the Gaussian volume term) is
Js ¢f (z) dz, and

(68)

152

d

€5 lso 'Yn+1(Q(s)) = / f(@)Ypy1(x) da.

So, 2410741 ()] equals 0 or | [y, f(2)yn+1(z) dz|. In either case, it follows that |c| <
2(1 + |af).

The second variation [Heil8, Lemma 3.7] [CM12, Theorem 4.1] says: V f: 002 — R with
Jaa 1 ) dz =0,

) 32 _[By=a)? _[Ba=a]?
/ [ — (f(x)*+ s ( / (y — aB)e 20y (y) dy)N(x)(f(:L‘)) e 2(1—132)}71(:@ dz
5 (1=52)*\Ja
32 [Bz—a)?

e /(x —af) f(z)e 0=y (z)dz
)
Multiplying by xN and integrating, then using the AMGM inequality and ,

/ExQ’yl(x)dx—é/Ex e [25916 252;%( )dz < (]c]+aﬁ)/2]a:|'yl(x)dx
<(d+apP [ n@de+ [ dr

2

+e

That is,
/ 22y, (x) dz < 3(|c| + oz/B)Q/ 7 (z)de. (71)
s s
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So, choose f such that f is supported on two distinct points and [; f(2)y(z)dz = 0.
Then

[ - 0@+ e ([ - a8 55000 ) N )2 55 ) as

32 2
=y

[Bz—a]?

(z —af)f(z)e 2=y () de
%

]2

[By—a _ [Be—a)?
e ([ = 0Be 0 (0) ay) N (@) 550 ] (o) o
+3(lel + af( | (P n(yar) ([ niay)
< [U@P (=145 +e3lcl + a8y / () dy) () dr S o

The last inequality used fz N(y)dy <1/2 + £ ﬂQ This follows by the minimizing property
of © and since a half space ' = [a, 00) with v, ()) = a satisfies

/ @)dﬁgL(/(x—aﬁ)eg?T_?; () dz)” + 201+ [al) () —

o T2\ Jo " o
S/(B)Q/vl(x)dx—i—eﬁ(/ (¢ — aB)e -y (x) dz) +2(1+ [a]) (@) — af
= ‘“2/2/\/_+ ﬁ2 o2 TR < 12+ 1—5ﬁ2

We have then arrived at a contradiction, since the second variation must be nonnegative.
We conclude that no such f exists, i.e. () itself must be a half space. Then Lemma
implies that 2 has Gaussian measure a. Since a half-space minimizes the quantity over
sets of Gaussian measure a, we have: for any Q@ C R with () = q,

12

/8H i (x)de + 6% ( /H(x —af)e ey () dx>2
< /89 m(z)dz + 5(1_’;&)3 ( /Q(x - aﬁ)e—i’?f:;‘%wl (x) dx>2.

Rearranging this inequality completes the proof
—ﬁ ~loeef 2 B _[pa—ap? 2
€|:(1 _ 62)3 </H($ — Ozﬁ)@ 2(1-8 )'yl(x) d33> - —(1 — ﬁ2)3 (/{;(3; — Oéﬁ)e 2(1-8 >’)/1<£L‘) dl’) ]

< /m%(x)dx— /anyl(:c)dx-

To conclude, we use again the equality

1 _[B= 04]2 9 _Ja= a,B] 7&
. ﬁ2/(:v—ozﬁ)e 2=y () de = 7@ 1207205 = 7T,
- H
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Lemma 9.3. Let a € R. Let0<p<1andlet0<5<ﬁ For any t € R, define
" —t2/2 5 o] _‘57"_&%2 4 o1 .
= — 2(1-52) 00) — al .
( ) /_271' +€(1 _ 62)3/2 /t (ZL‘ ()45)6 ’}/1<CL’) T+ ( + |O'/|) |/71[ ) ) CL|

Then the unique minimum of h(t) occurs when t € R satisfies y1[t,00) = a (i.e. t = ).

Proof. For any t € R,

I6; _|pz—a® ‘
W (t) = —tm(t) - 5m(t —af)e 2= (t) = 2(1 + [a)n(t) - sign(nt, 00) — a)
6 |Bx— aéQ .
=n()| —t- 5m(t —af)e 20-7 —2(1 + |a) - sign(m[t, 00) — a)]-
The derivative of the term inside the square brackets is negative (since £ < %), and

R'(t) > 0 for sufficiently negative t. If t < «, then sign(y[t,00) — a) = 1, so lim;_,,- I'(t) =
h'(a~) < 0. So, h is increasing and then decreasing on (—oo, a]. If t > «, then sign( [t, 00)—
a) = —1,s0limy_,o+ W' (t) = B'(a™) > 0. And I/(t) < 0 for sufficiently positive t. In summary,
h increases, then decreases then increases and then decreases. So, the minimum value of h
is either h(—o00), h(oo) or (). In the case a > 1/2, we have

lim h(t) = 2(1 + |a)a > (1 + |a]) > e /2 /27 + &?Le_% = h(a).

t—00 1 = 62
e e—a2/2 ﬁ o2
lim A(t) =2(1+|a|)(1 —a) =2(1+ |« / w) dw > +€ e 1+8
Jim K0 =201 o)1 —0) =200+ o) [ > e
(The last inequality used 0 < § < 1.) Therefore, h is uniquely minimized at ¢ = «. In the
remaining case a < 1/2, we have

—a2/2 9
lim_h(t) = 2(1+ |af)(1 - @) > (1 +[a) > 5 = h(a).

2k \/1_752
lim A(t) = 2(1 + |a|)a = 2(1 + |a]) /00 Yi(w)dw > e~ 72 /21 + &TLG_HB = h(a).

t—o00

Therefore, h is uniquely minimized at t = a.

Lemma 9.4. Let Q C R satisfy fQ zy1(x)dz > 0. Let H C R be a half space such that
Y (H) =1(Q) and [, zy(x)dz > 0. Then

_[Bz—a]? _[Be—a]?
[ e @ [ @)
OH o)

< 8/(86(;——%(/8971(16)dx - /{)H%(a:) dac).

Proof. Let 0 < ¢’ < 1. Suppose we minimize over all Q C R with () = a the quantity

_[Bz—o]? [Bz—a]
/ 7 (x) dxis’/ e 2=y (z)de :/ (1+£e'e 2069 )y (x) da.
o0N 0N o0N
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(The minimum exists since ¢’ < 1.) The first variation condition [Heil8, Lemma 3.2] says 3
¢ € R such that

_ _[,895—04]2
”i Zfe XA N(x)=c¢, Vzeli=on. (72)
The second variation [Heil8, Lemma 3.7] [CM12, Theorem 4.1] says: V f: 92 — R with
Joq f(@)n(z) dz =0,
1 — _ [Bz—a)?
/ <_ 1¥ e + QI(SC 20&5)6 2<1*52)>(f($))2’)/1($) dz > 0.
0 1-p
Choosing 0 < & < (1 — 3%)(6 + |a|)~2 completes the proof, since if € is not a half space, we

can select an f supported on two points of 9Q with [,, f(x)y1(z) dz = 0 that has negative
second variation, a contradiction. We conclude that

_[Bz—a]? _[Bz—a]?
/ () dxis/ e 2=~ (x) dxﬁ/ 71 () dxis/ e 2=~ (z)dz.
OH G

OH o0
Rearranged, this gives the desired result:

—azN(z) Fe

[Bz—a]?

_[Bz—a)? -
:I:E(/ e 2=~ (x) dx—/ e 205" (x) dx) §/ 7 (z) da:—/ 7 (x) de.
OH o9 o9 OH

O

C¥2 i
Lemma 9.5. Let0<a<1. Let0<p<landlet0 <e < e_ﬁw—m. VteR, define

h(t) = 2V v e / " cp(ﬁf—%;)vl(x) dz]” 4201+ Ja) pult, 00) — al.
Then the unique minimum of h(t) occurs when yi[t,00) = a, i.e. when t = a = —® (a).
Proof.
ron bt — « > bxr —«a
W(t) = —tm(t) — 25@(\/1—_762>%(t)/t @(\/1—_7ﬂ2>71(x) dz
= 2(1 + [a])n(t) - sign(mnt, 00) —a)
Ot — « o bxr —a
= ()| -t- m(ﬁ) / @(ﬁ)m) do

+2(1 + |a]) - sign(m[t, 00) — a)].

V1> ), and

The derivative of the term inside the square brackets is negative (since € < EIGERE

h'(t) > 0 for sufficiently negative t. If t < «, then sign(y1[t,00) — a) = 1, so limy; .- #'(t) =
h'(a™) < 0. So, his increasing and then decreasing on (—oo, a]. If t > «, then sign(y;[t, c0)—
a) = —1,s0limy_,o+ W' (t) = K'(a™) > 0. And I/(t) < 0 for sufficiently positive t. In summary,
h increases, then decreases then increases and then decreases. So, the minimum value of h
is either h(—o00), h(co) or h(a). Suppose for now that a < 1/2 that a < 0. Then

tim_h(t) = 2(1+ [af)(1~a) > (14 |a]) > 6;2 +a{/(qu>(§f—%;‘2)%(x) @] = ha).
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Jim h(0) =21+ [al)a =21+ [a]) [~ () dw

> Vo e / N @(%)mx) w]" )

The last inequality used

Therefore,
a <0 and

o0

/:Oq)<§f—:7§2>%<x>dx§/a Y1 () da.

h is uniquely minimized at ¢t = .. In the remaining case that a > 1/2, we have

> e 2 )\ 2w + 5[/:0 @(ﬁ%)”yl(aﬁ) d$:|2 = h(a).

i h(t) =2(1+ a1~ a) =21 +]a]) [ () du

The last inequality used the definition of . Also,

Tim h(t) = 21+ |al)a > (1+ |a]) > e™/2/V2r + g{/:o @(%)vl(x) dx]? — h(a).

Therefore,

h is uniquely minimized at t = «.
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