118 Midterm 1 Solutions ${ }^{1}$

1. Question 1

(a) Evaluate the following limit. If the limit does not exist, write DNE.

$$
\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{x^{2}+x}\right)
$$

Solution. $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{x^{2}+x}\right)=\lim _{x \rightarrow 0}\left(\frac{x+1}{x^{2}+x}-\frac{1}{x^{2}+x}\right)=\lim _{x \rightarrow 0}\left(\frac{x}{x^{2}+x}\right)=\lim _{x \rightarrow 0}\left(\frac{1}{x+1}\right)=$ $\frac{1}{1}=1$. The first few equalities use algebra. The penultimate equality uses the limit law for quotients, which allows us to plug in the value $x=0$ into $1 /(x+1)$. Alternatively, note that $1 /(x+1)$ is continuous at $x=0$, so the limit at $x=0$ is equal to the value of $1 /(x+1)$ at $x=0$.
(b) Find all values of the constant a such that

$$
\lim _{x \rightarrow 0} \frac{\sqrt{a x+4}-2}{x}=1
$$

Solution. $\lim _{x \rightarrow 0} \frac{\sqrt{a x+4}-2}{x}=\lim _{x \rightarrow 0} \frac{\sqrt{a x+4}-2}{x} \frac{\sqrt{a x+4}+2}{\sqrt{a x+4}+2}=\lim _{x \rightarrow 0} \frac{a x+4-4}{x(\sqrt{a x+4}+2)}=\lim _{x \rightarrow 0} \frac{a x}{x(\sqrt{a x+4}+2)}=$ $\lim _{x \rightarrow 0} \frac{a}{(\sqrt{a x+4}+2)}=\frac{a}{(\sqrt{4}+2)}=\frac{a}{4}$. The first few equalities use algebra. The penultimate equality uses the limit law for quotients, which allows us to plug in the value $x=0$ into $\frac{a}{(\sqrt{a x+4}+2)}$. Alternatively, note that $\frac{a}{(\sqrt{a x+4}+2)}$ is continuous at $x=0$, so the limit at $x=0$ is equal to the value of $\frac{a}{(\sqrt{a x+4}+2)}$ at $x=0$.

So, we must have $a=4$.

2. Question 2

Compute

$$
\lim _{x \rightarrow 0} \frac{|2 x-1|-|2 x+1|}{x} .
$$

If the limit does not exist, write DNE. Solution. Let x with $|x|<1 / 2$. Then $|2 x|<1$, so $2 x-1 \leq|2 x|-1<0$. In particular, $|2 x-1|=1-2 x$. Consider again x with $|x|<1 / 2$. Then $|2 x|<1$, so $2 x+1 \geq-|2 x|+1>0$. In particular, $|2 x+1|=2 x+1$. Combining these two facts, we have, for $|x|<1 / 2$

$$
\frac{|2 x-1|-|2 x+1|}{x}=\frac{1-2 x-(2 x+1)}{x}=\frac{-4 x}{x}=-4 .
$$

As $x \rightarrow 0$, we only need to consider $|x|<1 / 2$, so we conclude that

$$
\lim _{x \rightarrow 0} \frac{|2 x-1|-|2 x+1|}{x}=\lim _{x \rightarrow 0}(-4)=-4 .
$$

[^0]
3. Question 3

Find the equation of the tangent lines to the curve $y=\frac{x-1}{x+1}$ that are parallel to the line $x-2 y=2$.

Solution. The tangent lines are given by $y=(1 / 2) x-1 / 2$ and $y=(1 / 2) x+7 / 2$.
Let $x \neq-1$. Then $y^{\prime}(x)=\frac{(x+1)-(x-1)}{(x+1)^{2}}=2 /(x+1)^{2}$. The line $x-2 y=2$ has slope $1 / 2$, so we solve the equation $y^{\prime}(x)=1 / 2$. We get $(x+1)^{2}=4$, so $|x+1|=2$, so $x=1,-3$. Note that $y(1)=0$ and $y(-3)=2$. So, the two tangent lines are $y=(1 / 2)(x-1)$ and $y=(1 / 2)(x+3)+2$.

4. Question 4

For the following functions, determine whether or not $f^{\prime}(0)$ exists. If $f^{\prime}(0)$ exists, compute its value.
(a) f is the inverse of the natural logarithm function.
(b) $f(x)=x^{1 / 3}$.

Solution of (a) We have $f(x)=e^{x}$, and we know from class that $f^{\prime}(x)=e^{x}$, so $f^{\prime}(0)=$ $e^{0}=1$.

Solution of (b) We have

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{f(h)}{h}=\lim _{h \rightarrow 0} \frac{h^{1 / 3}}{h}=\lim _{h \rightarrow 0} h^{-2 / 3} .
$$

The quantity $h^{-2 / 3}$ becomes arbitrarily large as $h \rightarrow 0$ since $h^{2 / 3}$ goes to zero as $h \rightarrow 0$, so the limit does not exist, i.e. $f^{\prime}(0)$ DNE.

5. Question 5

Let f be a function such that $f(1)=2, f(2)=3, f^{\prime}(1)=4, f^{\prime}(2)=5$ and $f^{\prime}(3)=6$. Define

$$
F(x)=f(x f(x f(x)))
$$

Find $F^{\prime}(1)$.
Solution. $F^{\prime}(1)=198$. To see this, observe that

$$
\begin{aligned}
F^{\prime}(x) & =f^{\prime}(x f(x f(x))) \cdot \frac{d}{d x}[x f(x f(x))], \quad \text { chain rule } \\
& =f^{\prime}(x f(x f(x))) \cdot\left(x \frac{d}{d x}[f(x f(x))]+f(x f(x))\right), \quad \text { product rule } \\
& =f^{\prime}(x f(x f(x))) \cdot\left(x\left(f^{\prime}(x f(x)) \cdot \frac{d}{d x}[x f(x)]\right)+f(x f(x))\right), \quad \text { chain rule } \\
& =f^{\prime}(x f(x f(x))) \cdot\left[x\left(f^{\prime}(x f(x)) \cdot\left[x f^{\prime}(x)+f(x)\right]\right)+f(x f(x))\right], \quad \text { product rule }
\end{aligned}
$$

So, plugging in the given values of f and its derivatives,

$$
\begin{aligned}
F^{\prime}(1) & =f^{\prime}(f(f(1))) \cdot\left[f^{\prime}(f(1)) \cdot\left[f^{\prime}(1)+f(1)\right]+f(f(1))\right] \\
& =f^{\prime}(f(2)) \cdot\left[f^{\prime}(2) \cdot[4+2]+f(2)\right]=f^{\prime}(3) \cdot[5 \cdot 6+3]=6 \cdot[33]=198
\end{aligned}
$$

[^0]: ${ }^{1}$ September 15, 2018, © 2018 Steven Heilman, All Rights Reserved.

