Math 118, Section 39432, Fall 2018, USC		Instructor: Steven Heilma	
Name:	USC ID:	Date:	
Signature:(By signing here, I certify that I have	taken this test while refra	ining from cheating	g.)

Mid-Term 2

This exam contains 8 pages (including this cover page) and 5 problems. When the exam begins, check for missing pages. Enter all requested information on the top of this page.

You may *not* use your books, notes, or any calculator on this exam.

You are required to show your work on each problem on this exam. The following rules apply:

- You have 50 minutes to complete the exam, starting at the beginning of class.
- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit.
- If you need more space, use the back of the pages; clearly indicate when you have done this. Scratch paper appears at the end of the document.

Do not write in the table to the right. Good luck!^a

Problem	Points	Score	
1	10		
2	10		
3	10		
4	10		
5	10		
Total:	50		

 $[^]a\mathrm{November}$ 3, 2018, © 2018 Steven Heilman, All Rights Reserved.

 $[this\ page\ left\ intentionally\ blank]$

1. (10 points) Find the minimum and maximum values of

$$f(x) = 2\sqrt{x^2 + 1} - x$$

on the interval [0,2]

2. (a) (4 points) Find a unit vector pointing in the same direction as (1, 2, 4).

(b) (6 points) Sketch the function

$$f(x,y) = xy$$

using a contour plot.

Only plot the contours f(x,y) = 0, f(x,y) = 1 and f(x,y) = -1. Label each contour with the value that f takes on that contour.

3. (10 points) The following table summarizes some data about a function $f: \mathbf{R} \to \mathbf{R}$. We assume that f' and f'' exist and are continuous on all of \mathbf{R} . We list several points $x \in \mathbf{R}$, and we also list the values of: f'(x), f''(x). Using the following table, identify all of the listed local maxima, local minima, and inflection points, by writing an X in the corresponding column of the table.

If the point cannot be identified as a local extremum using the data at hand, and if the point cannot be identified as an inflection point with the data at hand, write an X in the column labelled "unknown." Also, if you know for sure that the point is not a local extremum and this point is not an inflection point, write an X in the column labelled "unknown."

It is also given information that f''(x) > 0 on the interval (5,7) and f''(x) < 0 on the interval (7,8), and f''(x) > 0 on the interval (8,10).

You do not need to show any work for this question.

x	f'(x)	f''(x)	local	local	inflection	unknown
			maximum	minimum	point	
1	0	1				
2	0	0				
3	1	0				
4	0	-3				
5	-1	2				
6	0	2				
7	1	0				
8	0	0				
9	1	2				
10	1	0				

4. Compute the following integrals.

(a) (5 points)
$$\int_{1}^{3} (x^{2} + x^{-2}) dx$$
.

(b) (5 points)
$$\int xe^x dx$$
.

5. Compute the following integrals.

(a) (5 points)
$$\int te^{t^2} dt$$
.

(b) (5 points)
$$\int_{-2}^{2} t^{99} e^{t^4} dt$$
.

(Scratch paper)