118 Midterm 2 Solutions ${ }^{1}$

1. Question 1

Find the minimum and maximum values of $f(x)=2 \sqrt{x^{2}+1}-x$ on the interval $[0,2]$
Solution. We have $f^{\prime}(x)=2 x\left(x^{2}+1\right)^{-1 / 2}-1$. If $f^{\prime}(x)=0$, we have $2 x\left(x^{2}+1\right)^{-1 / 2}=1$, so that $2 x=\left(x^{2}+1\right)^{1 / 2}$, and $4 x^{2}=x^{2}+1$, i.e. $3 x^{2}=1$, i.e. $x= \pm 1 / \sqrt{3}$. Since we are only considering $x \in[0,2]$, we see that $x=1 / \sqrt{3}$ is the only critical point of f. So, the minimum and maximum values must occur among the points: $0,1 / \sqrt{3}, 2$. We check that $f(0)=2, f(2)=2 \sqrt{5}-2=2(\sqrt{5}-1)$ and $f(1 / \sqrt{3})=2 \sqrt{1 / 3+1}-1 / \sqrt{3}=3 / \sqrt{3}=\sqrt{3}$. Since $\sqrt{3}<2<2(\sqrt{5}-1)$, the minimum value of f is $\sqrt{3}$ and the maximum value of f is $2(\sqrt{5}-1)$.

2. Question 2

(a) Find a unit vector pointing in the same direction as $(1,2,4)$.

Solution. $\frac{(1,2,4)}{\|(1,2,4)\|}=\frac{1}{\sqrt{1+4+16}}(1,2,4)=\frac{1}{\sqrt{21}}(1,2,4)$.
(b) Sketch the function

$$
f(x, y)=x y
$$

using a contour plot. Only plot the contours $f(x, y)=0, f(x, y)=1$ and $f(x, y)=-1$. Label each contour with the value that f takes on that contour.

3. Question 3

The following table summarizes some data about a function $f: \mathbf{R} \rightarrow \mathbf{R}$. We assume that f^{\prime} and $f^{\prime \prime}$ exist and are continuous on all of \mathbf{R}. We list several points $x \in \mathbf{R}$, and we also list the values of: $f^{\prime}(x), f^{\prime \prime}(x)$. Using the following table, identify all of the listed local maxima, local minima, and inflection points, by writing an X in the corresponding column of the table.

If the point cannot be identified as a local extremum using the data at hand, and if the point cannot be identified as an inflection point with the data at hand, write an X in the column labelled "unknown." Also, if you know for sure that the point is not a local extremum and this point is not an inflection point, write an X in the column labelled "unknown."

It is also given information that $f^{\prime \prime}(x)>0$ on the interval $(5,7)$ and $f^{\prime \prime}(x)<0$ on the interval $(7,8)$, and $f^{\prime \prime}(x)>0$ on the interval $(8,10)$.

You do not need to show any work for this question.

[^0]| x | $f^{\prime}(x)$ | $f^{\prime \prime}(x)$ | local
 max | local
 min | inflection
 point | unknown |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | | X | | |
| 2 | 0 | 0 | | | | X |
| 3 | 1 | 0 | | | | X |
| 4 | 0 | -3 | X | | | |
| 5 | -1 | 2 | | | | X |
| 6 | 0 | 2 | | X | | |
| 7 | 1 | 0 | | | X | |
| 8 | 0 | 0 | | | X | X |
| 9 | 1 | 2 | | | | X |
| 10 | 1 | 0 | | | | X |

Points $1,2,4$ and 6 use the second derivative test for critical points. Points 3 and 5 are not a critical points, and there is not enough information to determine whether or not they are inflection points. Points 7 and 8 have a sign change of the second derivative, so they are inflection points. (Even though point 8 is a critical point, we cannot determine whether or not it is a local extremum; for example, $f(x)=x^{3}$ has a critical point at $x=0$ which is an inflection point, but which is not a local extremum.) Point 9 is neither a critical point nor an inflection point. Point 10 is not a critical point, and there is not enough information to check whether or not it is an inflection point.

4. Question 4

Compute the following integrals.
(a) $\int_{1}^{3}\left(x^{2}+x^{-2}\right) d x$.

Solution. $\int_{1}^{3}\left(x^{2}+x^{-2}\right) d x=\left[(1 / 3) x^{3}-x^{-1}\right]_{x=1}^{x=3}=(1 / 3) 3^{3}-1 / 3-1 / 3+1=10-2 / 3=28 / 3$.
(b) $\int x e^{x} d x$.

Solution. We use $\int u d v=u v-\int v d u$ where $v=e^{x}, u=x$ so that $d v=e^{x} d x$ and $d u=d x$, so that

$$
\int x e^{x} d x=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+C=e^{x}(x-1)+C .
$$

5. Question 5

Compute the following integrals.
(a) $\int t e^{t^{2}} d t$.

Solution. Substituting $u=t^{2}$ so that $d u=2 t d t$, we have

$$
\int t e^{t^{2}} d t=\int e^{u}(1 / 2) d u=(1 / 2) e^{u}+C=(1 / 2) e^{t^{2}}+C
$$

(b) $\int_{-2}^{2} t^{99} e^{t^{4}} d t$.

Solution. The function is odd so the integral on $[-2,2]$ must be zero. That is, if $f(t)=t^{99} e^{t^{4}}$, then $f(-t)=-f(t)$, i.e. $-f(-t)=f(t)$. So

$$
\int_{-2}^{2} f(t) d t=\int_{-2}^{0} f(t) d t+\int_{0}^{2} f(t) d t
$$

Substituting the first integral $u=-t$ so that $d u=-d t$, we get

$$
\begin{aligned}
\int_{-2}^{2} f(t) d t & =\int_{2}^{0} f(-u)(-d u)+\int_{0}^{2} f(t) d t=\int_{2}^{0} f(u) d u+\int_{0}^{2} f(t) d t \\
& =-\int_{0}^{2} f(u) d u+\int_{0}^{2} f(t) d t=0
\end{aligned}
$$

[^0]: ${ }^{1}$ November 3, 2018, © 2018 Steven Heilman, All Rights Reserved.

