1. QUESTION 1

Find the minimum and maximum values of $f(x) = 2\sqrt{x^2 + 1} - x$ on the interval [0, 2]

Solution. We have $f'(x) = 2x(x^2+1)^{-1/2} - 1$. If f'(x) = 0, we have $2x(x^2+1)^{-1/2} = 1$, so that $2x = (x^2+1)^{1/2}$, and $4x^2 = x^2+1$, i.e. $3x^2 = 1$, i.e. $x = \pm 1/\sqrt{3}$. Since we are only considering $x \in [0,2]$, we see that $x = 1/\sqrt{3}$ is the only critical point of f. So, the minimum and maximum values must occur among the points: $0, 1/\sqrt{3}, 2$. We check that $f(0) = 2, f(2) = 2\sqrt{5} - 2 = 2(\sqrt{5} - 1)$ and $f(1/\sqrt{3}) = 2\sqrt{1/3 + 1} - 1/\sqrt{3} = 3/\sqrt{3} = \sqrt{3}$. Since $\sqrt{3} < 2 < 2(\sqrt{5} - 1)$, the minimum value of f is $\sqrt{3}$ and the maximum value of f is $2(\sqrt{5} - 1)$.

2. QUESTION 2

(a) Find a unit vector pointing in the same direction as (1, 2, 4). Solution. $\frac{(1,2,4)}{\|(1,2,4)\|} = \frac{1}{\sqrt{1+4+16}}(1,2,4) = \frac{1}{\sqrt{21}}(1,2,4)$. (b) Sketch the function

f(x,y) = xy

using a contour plot. Only plot the contours f(x, y) = 0, f(x, y) = 1 and f(x, y) = -1. Label each contour with the value that f takes on that contour.

3. QUESTION 3

The following table summarizes some data about a function $f: \mathbf{R} \to \mathbf{R}$. We assume that f' and f'' exist and are continuous on all of \mathbf{R} . We list several points $x \in \mathbf{R}$, and we also list the values of: f'(x), f''(x). Using the following table, identify all of the listed local maxima, local minima, and inflection points, by writing an X in the corresponding column of the table.

If the point cannot be identified as a local extremum using the data at hand, and if the point cannot be identified as an inflection point with the data at hand, write an X in the column labelled "unknown." Also, if you know for sure that the point is not a local extremum and this point is not an inflection point, write an X in the column labelled "unknown."

It is also given information that f''(x) > 0 on the interval (5,7) and f''(x) < 0 on the interval (7,8), and f''(x) > 0 on the interval (8,10). You do not need to show any work for this question.

¹November 3, 2018, © 2018 Steven Heilman, All Rights Reserved.

x	f'(x)	f''(x)	local	local	inflection	unknown
			max	min	point	
1	0	1		Х		
2	0	0				Х
3	1	0				Х
4	0	-3	Х			
5	-1	2				Х
6	0	2		Х		
7	1	0			Х	
8	0	0			Х	
9	1	2				Х
10	1	0				Х

Points 1,2,4 and 6 use the second derivative test for critical points. Points 3 and 5 are not a critical points, and there is not enough information to determine whether or not they are inflection points. Points 7 and 8 have a sign change of the second derivative, so they are inflection points. (Even though point 8 is a critical point, we cannot determine whether or not it is a local extremum; for example, $f(x) = x^3$ has a critical point at x = 0 which is an inflection point, but which is not a local extremum.) Point 9 is neither a critical point nor an inflection point. Point 10 is not a critical point, and there is not enough information to check whether or not it is an inflection point.

4. Question 4

Compute the following integrals.

(a) $\int_{1}^{3} (x^{2} + x^{-2}) dx$. Solution. $\int_{1}^{3} (x^{2} + x^{-2}) dx = [(1/3)x^{3} - x^{-1}]_{x=1}^{x=3} = (1/3)3^{3} - 1/3 - 1/3 + 1 = 10 - 2/3 = 28/3$. (b) $\int xe^{x} dx$. Solution. We use findly where $x = e^{x} dx$ and $dy = e^{x} dx$ and dy = dx as the formula $dy = e^{x} dx$ and $dy = e^{x} dx$.

Solution. We use $\int u dv = uv - \int v du$ where $v = e^x$, u = x so that $dv = e^x dx$ and du = dx, so that

$$\int xe^{x} dx = xe^{x} - \int e^{x} dx = xe^{x} - e^{x} + C = e^{x}(x-1) + C.$$

5. QUESTION 5

Compute the following integrals.

(a) $\int te^{t^2} dt$.

Solution. Substituting $u = t^2$ so that du = 2tdt, we have

$$\int te^{t^2} dt = \int e^u (1/2) du = (1/2)e^u + C = (1/2)e^{t^2} + C.$$

(b) $\int_{-2}^{2} t^{99} e^{t^4} dt$.

Solution. The function is odd so the integral on [-2, 2] must be zero. That is, if $f(t) = t^{99}e^{t^4}$, then f(-t) = -f(t), i.e. -f(-t) = f(t). So

$$\int_{-2}^{2} f(t)dt = \int_{-2}^{0} f(t)dt + \int_{0}^{2} f(t)dt.$$

Substituting the first integral u = -t so that du = -dt, we get

$$\int_{-2}^{2} f(t)dt = \int_{2}^{0} f(-u)(-du) + \int_{0}^{2} f(t)dt = \int_{2}^{0} f(u)du + \int_{0}^{2} f(t)dt$$
$$= -\int_{0}^{2} f(u)du + \int_{0}^{2} f(t)dt = 0.$$