Please provide complete and well-written solutions to the following exercises.
No due date, but the quiz in Week 13 in the discussion section (on November 15) will be based upon this homework.

Q11: Quiz 11 Problems

Exercise 1. Find the maximum and minimum values of the function $f(x, y)=x^{2}+y x$ on the disk $x^{2}+y^{2} \leq 1$.

Exercise 2. In statistics and other applications, we can be presented with data points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$. We would like to find the line $y=m x+b$ which lies "closest" to all of these data points. Such a line is known as a linear regression. There are many ways to define the "closest" such line. The standard method is to use least squares minimization. A line which lies close to all of the data points should make the quantities $\left(y_{i}-m x_{i}-b\right)$ all very small. We would like to find numbers m, b such that the following quantity is minimized:

$$
f(m, b)=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2} .
$$

Using the second derivative test, show that the minimum value of f is achieved when

$$
\begin{gathered}
m=\frac{\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{j=1}^{n} y_{j}\right)-n\left(\sum_{k=1}^{n} x_{k} y_{k}\right)}{\left(\sum_{i=1}^{n} x_{i}\right)^{2}-n\left(\sum_{j=1}^{n} x_{j}^{2}\right)} . \\
b=\frac{1}{n}\left(\sum_{i=1}^{n} y_{i}-m \sum_{j=1}^{n} x_{j}\right) .
\end{gathered}
$$

Briefly explain why this is actually the minimum value of $f(m, b)$. (You are allowed to use the inequality $\left(\sum_{i=1}^{n} x_{i}\right)^{2} \leq n\left(\sum_{i=1}^{n} x_{i}^{2}\right)$.)
Exercise 3. Let $f(x, y)=x^{2}+y^{2}$. Using Lagrange Multipliers, find the maximum and minimum of f on the ellipse $x^{2}+2 y^{2}=1$.
Exercise 4. Let $f(x, y)=x^{2}+y$. Using Lagrange Multipliers, find the maximum and minimum of f on the circle $x^{2}+y^{2}=1$.

Exercise 5. Let a, b, c be positive constants. An ice cream cone is defined as the surface $z=a \sqrt{x^{2}+y^{2}}$ where $z \leq b$. Suppose the ice cream cone has surface area c. Using Lagrange Multipliers, find the ice cream cone of fixed surface area c and with maximum volume. (This way, you get to eat the most ice cream with the least amount of material.) You should probably use the variables r and b, where r denotes the radius of the cone, and where b is the height of the cone. You can freely use that the surface area of the cone is $\pi r \sqrt{r^{2}+b^{2}}$.

