Please provide complete and well-written solutions to the following exercises.
No due date, but the quiz in Week 2 in the discussion section (on August 30) will be based upon this homework.

Q2: Quiz 2 Problems

Exercise 1. Define

$$
H(x)=\left\{\begin{array}{ll}
0 & , \text { if } x<0 \\
1 & , \text { if } x \geq 0
\end{array} .\right.
$$

Explain in your own words why $\lim _{x \rightarrow 0} H(x)$ does not exist.
Exercise 2. Find two functions f, g such that $\lim _{x \rightarrow a} f(x)$ does not exist, $\lim _{x \rightarrow a} g(x)$ does not exist, but such that

$$
\lim _{x \rightarrow a}(f(x)+g(x))
$$

does exist.
Exercise 3. Evaluate the following limit and justify each step by indicating the appropriate limit law.

$$
\lim _{u \rightarrow-2} \sqrt{u^{4}+3 u+6}
$$

Exercise 4. Evaluate the following limit, if it exists. If it does not exist, explain why it does not exist.

$$
\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t^{2}+t}\right)
$$

Exercise 5. Evaluate the following limit, if it exists. If it does not exist, explain why it does not exist.

$$
\lim _{x \rightarrow 0} \frac{x}{\sqrt{1+3 x}-1}
$$

Exercise 6. Is there a real number a such that the following limit exists?

$$
\lim _{x \rightarrow-2} \frac{3 x^{2}+a x+a+3}{x^{2}+x-2}
$$

If so, find the value of a and the value of the limit.
Exercise 7. Are the following statements true or false?
(a) If $\lim _{x \rightarrow 5} f(x)=0$ and $\lim _{x \rightarrow 5} g(x)=0$, then $\lim _{x \rightarrow 5} \frac{f(x)}{g(x)}$ does not exist.
(b) If x is a real number, then $\sqrt{x^{2}}=x$
(c) If $\lim _{x \rightarrow 5} f(x)=2$ and $\lim _{x \rightarrow 5} g(x)=0$, then $\lim _{x \rightarrow 5} \frac{f(x)}{g(x)}$ does not exist.
(d) If f is continuous at 5 and $f(5)=2$, then $\lim _{x \rightarrow 2} f\left(4 x^{2}-11\right)=2$.
(e) If $f(x)>1$ for all $x \neq 0$ and $\lim _{x \rightarrow 0} f(x)$ exists, then $\lim _{x \rightarrow 0} f(x)>1$.

Exercise 8. Fix $x \in \mathbf{R}$, and let $f(x)=x^{2}$. Calculate the following limit

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

The fraction $(f(x+h)-f(x)) / h$ is known as a difference quotient. The limit of this difference quotient will come up again later in the course.

Exercise 9. Let $f, g: \mathbf{R} \rightarrow \mathbf{R}$ and let $a \in \mathbf{R}$. Is it always true that $\lim _{x \rightarrow a}(f(x)+g(x))=$ $\left(\lim _{x \rightarrow a} f(x)\right)+\left(\lim _{x \rightarrow a} g(x)\right)$?

Exercise 10. Find all values of a and b such that the following function is continuous:

$$
f(x)= \begin{cases}a x-b & x \leq-1 \\ 2 x^{2}+3 a x+b & -1<x \leq 1 \\ 4 & x>1\end{cases}
$$

Exercise 11. For what values of x is the following function continuous: $g(x)=\left(3 x^{5}+10\right)^{1 / 3}$. (Hint: treat each function as a composite function, and look at the domain of each part.)
Exercise 12. Draw the following set and describe it in words: the set of all points (x, y) in the plane such that

$$
\lim _{t \rightarrow \infty}\left(|x|^{t}+|y|^{t}\right)<4
$$

