Please provide complete and well-written solutions to the following exercises.
No due date, but the quiz in Week 3 in the discussion section (on September 6) will be based upon this homework.

Q3: Quiz 3 Problems

Exercise 1. Compute

$$
\lim _{y \rightarrow \infty} \frac{4 y^{5}+5}{\left(y^{2}-2\right)\left(2 y^{2}-1\right)} .
$$

Exercise 2. Find all horizontal and vertical asymptotes of the following functions:

- $y=1 / x$.
- $y=\sqrt{x^{2}+x+1}-\sqrt{x^{2}+x}$.
(A vertical asymptote occurs at a when any one-sided limit of y at a is ∞ or $-\infty$. A horizontal asymptote occurs if $\lim _{x \rightarrow \infty} y(x)$ exists, or if $\lim _{x \rightarrow-\infty} y(x)$ exists.)

Exercise 3. Show that the function $f(x)=x^{3}-x-1$ has a zero between -1 and 2 .
Exercise 4. Let $g(x)=x^{2 / 3}$.

- Show that $g^{\prime}(0)$ does not exist.
- If $a \neq 0$, find $g^{\prime}(a)$, using the definition of the derivative.
- Show that $y=x^{2 / 3}$ has a vertical tangent line at $x=0$. (A vertical tangent line occurs at a when $\lim _{x \rightarrow a}\left|g^{\prime}(x)\right|=\infty$.)
- Demonstrate the vertical tangent line by graphing $y=x^{2 / 3}$.
(Hint for second item: Recall that $c^{3}-d^{3}=(c-d)\left(c^{2}+c d+d^{2}\right)$. Using $c=(a+h)^{2 / 3}$ and $d=a^{2 / 3}$, we get the formula $(a+h)^{2}-a^{2}=\left((a+h)^{2 / 3}-a^{2 / 3}\right)\left((a+h)^{4 / 3}+(a+h)^{2 / 3} a^{2 / 3}+a^{4 / 3}\right)$. This might be useful when you write the difference quotient.)

Exercise 5. Suppose a baseball is thrown vertically upward with a velocity of $80 \mathrm{ft} / \mathrm{s}$. Then its height after t seconds is $r(t)=80 t-16 t^{2}$.

- What is the maximum height reached by the baseball?
- What is the velocity of the ball when it is 96 feet above the ground on the way up? And on the way down?

Exercise 6. Suppose the curve $y=x^{4}+a x^{3}+b x^{2}+c x+d$ has a tangent line when $x=0$ with the equation $y=2 x+1$ and a tangent line when $x=1$ with equation $y=2-3 x$. Find the values of a, b, c and d.

