Please provide complete and well-written solutions to the following exercises.
No due date, but the quiz in Week 8 in the discussion section (on October 11) will be based upon this homework.

Q7: Quiz 7 Problems

Exercise 1. Let $f:[0,8] \rightarrow \mathbf{R}$ be a function such that $f(0)=1, f(1)=2, f(2)=4$, $f(3)=2, f(4)=0, f(5)=6, f(6)=1, f(7)=2$ and $f(8)=0$. Using four equal-width rectangles, find the Riemann sums of f evaluated at the right endpoints, evaluated at the left endpoints, and evaluated at the midpoints of the rectangles.

Exercise 2. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{1^{5}+2^{5}+\cdots+n^{5}}{n^{6}}
$$

by showing that the limit is $\int_{0}^{1} x^{5} d x$.
Exercise 3. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be continuous with two continuous derivatives. Find all functions f such that $f^{\prime \prime}(x)=20 x^{3}-12 x^{2}+6 x$.
Exercise 4. Two baseballs are thrown upward from the edge of a cliff of height 432 feet. The first ball is thrown upward with a speed of $48 \mathrm{ft} / \mathrm{s}$, and the other ball is thrown upward a second later with a speed of $24 \mathrm{ft} / \mathrm{s}$. Do the baseballs ever pass each other before hitting the ground? (Acceleration due to gravity is assumed to be a constant -32 in these units.)

Exercise 5. Let $a<b$ and let m, M be constants. For a continuous function f, we know from Property (9) for integrals that if $m \leq f(x) \leq M$ for all $x \in[a, b]$, then

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

Use this property to estimate $\int_{0}^{2}\left(x^{3}-3 x+3\right) d x$.
Exercise 6. Let $f, g: \mathbf{R} \rightarrow \mathbf{R}$ be integrable functions. Suppose $\int_{0}^{9} f(x) d x=5$ and $\int_{0}^{9} g(x) d x=7$. Find $\int_{0}^{9}(3 f(x)+2 g(x)) d x$.
Exercise 7. Using the Fundamental Theorem of Calculus, evaluate $\int_{-2}^{3}\left(x^{2}-3\right) d x$.
Exercise 8. Using the Fundamental Theorem of Calculus, evaluate $\int_{3}^{5}\left(x^{3}+x^{-2}+e^{x}\right) d x$.

