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Optimization is the search for local and global maxima and minima of functions.

Optimization problems are encountered in various disciplines in mathematics, statistics,
physics, computer science, and so on. There are some general theories of optimization, but
unfortunately, there is no single theory that tells us how to optimize any quantity that we
can encounter. So, in this course, we will focus on some theories of optimization, and we
will also focus on specific examples. Some examples we will consider include:

e Find the maximum of a continuous function f: [0,1] — R.

e Find the largest eigenvalue of a large square matrix.

e Maximize the volume of a rectangular box of constant surface area.

e If n people want to order a pizza, and each person has some constraints on which
toppings they do or do not want, find the set of pizza toppings that maximizes the
number of satisfied people.

e Find the shortest path between two points in the plane.

In each of these problems, we consider if we can answer the problem theoretically, and if a
computer can answer each problem in a reasonable amount of time. For example, finding the
largest eigenvalue of a large square matrix seems impossible for a person to do in general, but
perhaps a computer could answer this problem in an amount of time that is a polynomial of
the size of the matrix.

2. REVIEW OF CALCULUS AND LINEAR ALGEBRA

2.1. Optimization on the Line.

Definition 2.1 (Limits). Let f: R — R be a function. Let z, L € R. We say that f has
limit L at z if and only if: Ve > 0, 3 § = d(¢) > 0 such that, for any y € R such that
0 <|z—y| <d, we have

|fly) — L] <e.
If f has limit L at x, we denote this by writing
lim f(y) = L.
y—T
Similarly, if @, 2™, ... is a sequence of real numbers, we say the sequence (), 2™ . .

has limit L as j — oo if and only if: V ¢ > 0, 3 j = j(¢) > 0 such that, for any k£ € R such
that & > j, we have

2™ — L] <e.
If 20 2 has limit L as j — oo, we denote this by writing

lim 29 = L.

j—00
Definition 2.2 (Continuous Function). Let a < b. Let f: (a,b) — R be a function. Let
x € (a,b). We say that f is continuous at x if and only if

lim f(y) = f(z).

Yy—x

We say that f is continuous on (a,b) (or we just say that f is continuous) if and only if
f is continuous at x for every x € (a,b). We say that f is discontinuous at z if and only
if f is not continuous at x.



Definition 2.3 (Derivative). Let a < b. Let f: (a,b) — R be a function. Let x € (a,b).
We define the derivative f'(x) of f at = to be the following limit, if it exists:
_flz+h)— f(z)
o) —

fiz) = Jim h '
If f'(x) exists, we say that f is differentiable at x. We say that f is differentiable on
(a,b) (or we just say f is differentiable) if and only if f is differentiable at = for every
x € (a,b).

Definition 2.4 (Critical Point). Let a < b. Let f: (a,b) — R. We say that f has a
critical point at the point = € (a,b) if f’(z) =0 or f'(x) does not exist.

Definition 2.5 (Local Extremum). Let a < b. Let f: (a,b) — R. We say that f has a
local maximum at the point x € (a,b) if there exists € > 0 such that f(z) > f(y) for all
y € (x —e,z+¢). We say that f has a local minimum at the point x € R if the function
—f has a local maximum at x. If f has either a local maximum or a local minimum at
x € (a,b), we say that z is a local extremum of f.

Definition 2.6 (Global Extrema). Let f: (a,b) — R. We say that f has a global
maximum at the point x € (a,b) if f(x) > f(y) for all y € (a,b). We say that f has a
global minimum at the point x € R if the function — f has a global maximum at x.

Proposition 2.7 (First Derivative Test). Let ¢ € (a,b) be a critical point for a continuous
function f: (a,b) — R. Assume that f is differentiable on (a,c) and on (c,b).

o If f'(y) >0V y € (a,c), and if f'(y) <0V y € (¢,b), then f has a local mazimum
at x.
o If f'(y) <OV y€ (a,c), andif f'(y) >0V y € (¢,b), then f has a local minimum at

x.
o If f'lly) >0V ye€ (a,c)U(e,b), orif f'(y) <0V y € (a,c)U(c,b), then f does not
have a local mazimum or a local minimum at x.

Exercise 2.8. Find a continuous function f: R — R such that f has a global maximum at
x =0, but f is not differentiable at 0.

Proposition 2.9 (Second Derivative Test). Let f: (a,b) — R. Let ¢ € (a,b). Assume
that f'(c) and f"(c) exist. Assume also that f'(c) =0, and that f" is continuous on (a,b).

(1) If f"(c) > 0, then f has a local minimum at c.
(2) If f"(c) <0, then f has a local mazimum at c.
(3) If f"(c) =0, then f may or may not have a local extremum at c.

Below is a procedure for finding the extreme values of a continuous function f: [a,b] — R.

Algorithm 2.10.
e Find the critical points of f in (a,b).
e Compute the value of f at the critical points of f, and at the endpoints a and b.
e Choose the largest and smallest values of f from these points.

Exercise 2.11. Let f: [-1,2] — R be defined by f(z) = 2* — 3z + 2. Find all local and
global extrema of f.

Algorithm 2.10 actually finds the extreme values of f, due to the following theorem.
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Theorem 2.12 (Extreme Value Theorem). Let a < b. Let f: [a,b] — R be a continuous
function. Then there exist x,y € [a,b] such that f(x) < f(z) < f(y) for all z € [a,b].

Exercise 2.13. Find a continuous function f: (0,1) — R such that there does not exist
x € (0,1) such that f(x) < f(2) for all z € (0,1).

Remark 2.14. Since maximizing a function f is equivalent to minimizing the function —f,
when we discuss optimization below, we will typically focus on maximizing a function f.

2.2. Linear Algebra. Let x = (z1,...,x,) be a vector in R". Unless otherwise stated, a
vector x € R" will always denote a column vector. Also, we let I denote the n x n identity
matrix.

Let A be a real n x n matrix. For any 4,j € {1,...,n}, we let A;; denote the entry in
the " row and j column of A. We say that A is a diagonal matrix if A;; = 0 for all
i,7 €{1,...,n} with ¢ # j.

Remark 2.15. We use the symbol 0 to denote the scalar zero. We also use the symbol 0 to
denote the zero vector.

Definition 2.16. Let A be a real n x n matrix. We say that A is symmetric if A = A”.
We say A is orthogonal if AAT = ATA = I. That is, A is orthogonal when AT = A~1,

Definition 2.17. Let A be a real n x n matrix. Let A € C. We say that \ is an eigenvalue
of A if det(A — M) = 0. We say that x € R" is an eigenvector of A with eigenvalue \ if
Az = Az and if x # 0.

Exercise 2.18. Find all eigenvalues and eigenvectors of the matrix A = ((1) g)

Find all eigenvalues and eigenvectors of the matrix A = (é ?)

Exercise 2.19. Prove that a real n X n matrix has at least one eigenvalue.

Definition 2.20. Let A be an n X n real symmetric matrix. We say that A is positive
definite if
zT Az > 0, VreR" x#0.
We say that A is positive semidefinite, which we denote by A > 0, if
Az >0, VreR"

Exercise 2.21. Let A be an n x n real symmetric matrix. Show that the following three
conditions are equivalent:

e A is positive semidefinite
e All eigenvalues of A are nonnegative.
e There exists a real n x n matrix B such that A = BB”.

(Hint: you should probably use the Spectral Theorem for Symmetric Matrices.)

Theorem 2.22 (Spectral Theorem for Symmetric Matrices). Let A be an n X n real
symmetric matriz. Then there exists an orthogonal n x n matriz () whose columns are each

eigenvectors of A, and there exists a real diagonal matriz D whose diagonal entries are the
eigenvalues of A such that Q *AQ = D. That is, A = QDQ™'.



FEquivalently, if A\1,...,\, € C are the eigenvalues of A (where some eigenvalues are
allowed to be the same), then A1,..., N\, € R, and there exist vectors vy, ...,v, € R™ which
are an orthonormal basis of R™ such that A =3 Nivvl.

Exercise 2.23. Show that the two different versions of the Spectral Theorem for Symmetric
Matrices are equivalent.

Exercise 2.24. Let A be an n x n real symmetric matrix. Let Ay > --- > X, € R be the
eigenvalues of A, ordered according to their size. Let x € R™. Show that

Mlzl® = 2" Az > A, |l
Exercise 2.25. Prove the Cauchy-Schwarz inequality: For any x,y € R", we have

[z, )| < [l ]l
(Hint: subtract the projection of y onto x. That is, if z # 0, let v := %x, and expand out
the inequality ||y — v||* > 0.)
Exercise 2.26. Prove the triangle inequality: For any z,y, 2z € R",
lz =yl <llz =2+ llz =yl
(Hint: it may be conceptually easier to show ||z + y|| < ||z|| + ||y||. To show this inequality,
square both sides, and use the Cauchy-Schwarz inequality.) Then, deduce the reverse
triangle inequality:
e =yl = Hll =yl

Exercise 2.27 (The Power Method). This exercise gives an algorithm for finding the
eigenvectors and eigenvalues of a symmetric matrix. The Power Method described below is
not the best algorithm for this task, but it is perhaps the easiest to describe and analyze.

Let A be an n X n real symmetric matrix. Let Ay > --- > A, be the (unknown) eigenvalues
of A, and let vy,...,v, € R" be the corresponding (unknown) eigenvectors of A such that
|v;]l = 1 and such that Av; = A\, for all 1 < i < n.

Given A, our first goal is to find v; and A;. For simplicity, assume that 1/2 < A\; < 1,
and 0 < A, < --- < Ay < 1/4. Suppose we have found a vector v € R™ such that ||v| =1
and |(v,v1)| > 1/n. (A randomly chosen v will satisfy |[(v,v1)| > 1/(104/n), [which is a nice
optional exercise for those who have taken 170A], so this assumption is valid in practice.)
Let k£ be a positive integer. Show that

AFy
approximates v; well as k& becomes large. More specifically, show that for all k£ > 1,
n—1
16+ -
Since |(v,v1)| A} > 27%/n, this inequality implies that A*v is approximately an eigenvector
of A with eigenvalue \;. That is, by the triangle inequality,

HAkU — (v,v1>)\’fvl||2 <

vn—1
4k

|A(A* ) = A (AR) || < || A0 = (v, o) AT o || 4+ A || (0, 1) Ao — Ao < 2

Moreover, by the reverse triangle inequality,

vn—1
4k

| A%e]| = [[ 4% — {o, o) Xvr + (o, o) M| >~
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In conclusion, if we take k to be large (say & > 10logn), and if we define z := A*v, then
z is approximately an eigenvector of A, that is

ARy ARy ’
A — M\ < 4n??27F <an
[ A* | A*|
And to approximately find the first eigenvalue \;, we simply compute
2T Az
2Tz

That is, we have approximately found the first eigenvector and eigenvalue of A.

Remarks. To find the second eigenvector and eigenvalue, we can repeat the above proce-
dure, where we start by choosing v such that (v,v1) =0, |[v|| =1 and [(v,v5)| > 1/(104/n).
To find the third eigenvector and eigenvalue, we can repeat the above procedure, where we
start by choosing v such that (v,v;) = (v,v5) =0, ||v]] = 1 and |{v,v3)| > 1/(104/n). And
SO on.

Google’s PageRank algorithm uses the power method to rank websites very rapidly. In
particular, they let n be the number of websites on the internet (so that n is roughly 10?).
They then define an n x n matrix C' where C;; = 1 if there is a hyperlink between websites
¢ and j, and C;; = 0 otherwise. Then, they let B be an n X n matrix such that B;; is 1
divided by the number of 1’s in the i*" row of C, if C;; = 1, and B;; = 0 otherwise. Finally,
they define

A= (.85)B+(.15)D/n
where D is an n X n matrix all of whose entries are 1.

The power method finds the eigenvector v; of A, and the size of the i** entry of v, is

proportional to the “rank” of website i.

Exercise 2.28 (This exercise is optional; any exercise in this course involving programming is
optional). Write a program in Matlab that computes the first, second, and third eigenvectors
and eigenvalues of a symmetric matrix A of arbitrary size. Compare your results with the
Matlab programs eigs and eig.

Then, under the assumptions of the previous exercise (1/2 < A\; < 1,and 0 <\, <--- <
Ao < 1/ 4) provide an upper bound on the number of arithmetic operations that are requ1red
to compute the first three decimal places of the first eigenvalue A\;. Your upper bound could
involve either the size n of the matrix A, or the number m of nonzero entries of A.

Note that the power method iteratively applies the matrix to a vector, instead of multi-
plying matrices together. The latter operation can require many more arithmetic operations
than the former.

2.3. Convex Geometry, Convex Functions.

Definition 2.29. A set K C R" is convex if, for any two points z,y € K, the line segment
between them

{tx+(1—=t)y:t€[0,1]}
also lies in K.

Example 2.30. The unit disc {(z1,72) € R?*: 27 + 25 < 1} is convex. The unit circle
C = {(x1,13) € R?: 22 + 23 = 1} is not convex, since (1,0) € C, (-1,0) € C, (0,0) ¢ C,
while (0,0) = (1/2)(1,0) + (1/2)(—1,0). So, if C' were convex, then (0,0) would have to be
in C.



Exercise 2.31. Show that the intersection of two convex sets is convex.

Definition 2.32. A function f: R” — R is convex if, for any two points z,y € R", and for
any t € (0,1),

fltz+ (1 —t)y) <tf(x) + (1) f(y).
A function f: R"™ — R is strictly convex if, for any two points z,y € R", and for any
te(0,1),

[tz + (1 =t)y) <tf(z)+ (1 =) f(y).
Exercise 2.33. Let f: R — R so that f(z) = 2®. Show that f is convex.

Exercise 2.34. Let f: R — R be a function with three continuous derivatives. Show that
f is convex if and only if f”(x) > 0 for all z € R. (Hint: for the reverse implication, you
may need to use Taylor’s Theorem with integral remainder.)

Theorem 2.35 (Taylor’s Theorem with Integral Remainder, Dimension 1). Let
k> 0. Let f: R — R be a function with k + 1 continuous derivatives. Then, for any
r,y € R,

k-1 i T
)= 10+ 3 C 00+ gty [ 006 -

7!
Remark 2.36. The case k = 1 of Taylor’s Theorem is the Fundamental Theorem of Calculus.

Exercise 2.37. Prove Taylor’'s Theorem with Integral Remainder when £ = 2:
Let f: R — R be a function with three continuous derivatives. Then, for any x,y € R,

F(@) = ) + (@ — ) ') + / ") -ty

(Hint: integrate by parts.)

Exercise 2.38. Let f: R” — R be a strictly convex function. Show that f has at most one
global minimum.

Then, find a convex set K C R and a strictly convex function f: K — R such that f does
not have a global minimum.

Exercise 2.39. Let f: R" — R be a convex function. Let z € R" be a local minimum of f.
Show that x is in fact a global minimum of f.

Now suppose additionally that f € C!, and x € R™ satisfies V f(z) = 0. Show that z is a
global minimum of f.

Exercise 2.40. In statistics and other applications, we can be presented with data points

(1,91), - (Tn, yn). We would like to find the line y = ma + b which lies “closest” to all of

these data points. Such a line is known as a linear regression. There are many ways to

define the “closest” such line. The standard method is to use least squares minimization.

A line which lies close to all of the data points should make the quantities (y; — max; — b) all

very small. We would like to find numbers m, b such that the following quantity is minimized:
f(m,b) = Z(yZ — mx; — b)%

i=1



Show that the global minimum value of f is achieved when
(i) (S w) = n (i m)
(i) —n(Sjaa?)
)
i=1 j=1

(In probabilistic terminology, —m is a covariance divided by a variance.)

m =

2.4. Lagrange Multipliers.

Definition 2.41 (Standard Inner Product). Let x = (x1,...,2,),y = (y1,...,yn) € R™.
We define the (standard) inner product of z and y, denoted (x,y), to be

(w,y) =a"y =
i=1
We define the 2-norm of z, denoted ||z||, to be
2]l := VA, 2) = Q_af)'>.
i=1

Definition 2.42 (Limits). Let f: R" — R be a function. Let x € R", L € R. We say that
f has limit L at z if and only if: Ve > 0, 3 6 = d(¢) > 0 such that, for any y € R"™ such
that 0 < ||z — y[| < §, we have

[f(y) — L] <e.
If f has limit L at x, we denote this by writing

lim f(y) = L.

Definition 2.43 (Continuous Function). Let f: R” — R be a function. Let x € R". We
say that f is continuous at z if and only if

lim /() = f(z).

We say that f is continuous on R" (or we just say that f is continuous) if and only if f
is continuous at x for every x € R™. We say that f is discontinuous at x if and only if f
is not continuous at .

Definition 2.44 (Derivatives). Let f: R* — R be a function. Let x € R™. Let i €
{1,...,n}. We define the partial derivative %(m) of f at z in the x; direction to be the
following limit, if it exists:

af o 0 o f(l’l,...,xiflami+h7$i+17"'7$n) —f<£L'>

Ifi,j € {1,...,n}, we then define

0*f 0 [of




Similarly, If & > 0, and if iy,...,4x € {1,...,n}, then we can define the iterated partial
derivatives of f by induction:

L( )-— Y akilf ( )
0%1 tee 8% T = 8:10,-1 8%2 tee 8xzk * ’

(x) is an iterated partial derivative of order k of f.

and we say that %
1 k

Remark 2.45. These definitions easily extend to vector-valued functions. For example, we
say that s: R — R" is differentiable if each coordinate of s is a differentiable function.

Definition 2.46 (C* Function). Let f: R®™ — R be a function and let k be a positive
integer. If all partial derivatives of order k of f exist and are continuous, we say that f is a
C* function, which we denote by writing f € C*.

Definition 2.47 (Gradient, Directional Derivative). Let f € C! and let x € R". The
gradient of f at x is the following column vector

Vf(z) = (g—i(x),...,gi(x))T.

Let v € R™. The directional derivative of f at x in the direction v, denoted D, f(x), is
Dyf(x) == (Vf(z),v).
Remark 2.48. We also use the notation Df(x) = (ﬂ(x), . ﬁ(m)) for the row vector

Ox1 ) Oxp

of partial derivatives at x.

Definition 2.49 (Critical Point). Let f: R” — R be a function. We say that f has a
critical point at the point z € R" if V f(z) = 0, or if any partial derivative of f does not
exist at x.

Definition 2.50 (Local Extremum). Let D C R™. Let f: D — R be a function. We say
that f has a local maximum at the point x € D if there exists ¢ > 0 such that f(x) > f(y)
for all y € D such that ||y — z|| < e. We say that f has a local minimum at the point
x € D if the function —f has a local maximum at x. If f has either a local maximum or a
local minimum at x € D, we say that x is a local extremum of f.

Definition 2.51 (Global Extrema). Let D C R™. Let f: D — R. We say that f has a
global maximum at the point z € D if f(x) > f(y) for all y € D. We say that f has a
global minimum at the point x € D if the function — f has a global maximum at .

Exercise 2.52. Find a function f: R — R such that no local or global maximum of f exists,
and no local or global minimum of f exists.

Definition 2.53 (Level Surface). Let f: R* — R. Let ¢ € R. A level surface of f is
any set of the form
{z € R": f(z) = c}.

Exercise 2.54. Let f: R” — R. A version of Taylor’s Theorem for functions on R" follows
from Taylor’s Theorem for functions on R in the following way. (For simplicity, we look
at the Taylor expansion of f at © = 0.) Let y € R", let ¢t € R, and define g: R — R by
g(t) = f(ty). Then Taylor’s Theorem for g holds. Using the Chain rule, what are the first
two or three terms in the Taylor expansion of g, in terms of derivatives of f at x = 07



Proposition 2.55 (Geometric Interpretation of the Gradient). Letn > 2. Let f € C'.
Let x € R". Assume V f(z) # 0.

(i) Vf(z) points in the direction of greatest increase of f. That is, if w :=
Dyf(x)= max D,f(x).

vER™: |ul|=1

Vi)

TVr@) then

(ii) V f(x) is orthogonal to the level surface of f that passes through x.
Proof. Let v € R with ||v]| = 1. The Cauchy-Schwarz inequality, Exercise 2.25, implies

Dyf(x) = (Vf(x),v) < [[Vf(@2)| = Dwf(z).
Item (i) is proven.
We now prove item (ii). Let ¢ € R and let S := {y € R™: f(y) = ¢} be a level surface of
f such that x € S. Let s: R — R” be a path such that s(0) = x and such that f(s(t)) is
constant in ¢ € R. From the Chain Rule,

|t 0f (s(t)) = (V£(s(0)), s'(0)).

(
Let T be the span of all vectors s'(0) with s(0) = z. From Lemma 2.56 below, T has
dimension n — 1. And each vector s'(0) is tangent to the level surface S. Since V f(s(0)), is
perpendicular to T'; we conclude that V f(s(0)) is perpendicular to the level surface. O

Lemma 2.56. Let f € C'. Let v € R™ with Vf(x) # 0. Let c € R, and let S = {y €
R"™: f(y) = ¢}. Let T := span{s'(0): s(0) = x, s: R — S'is differentiable}. Then T has

dimension n — 1.

Proof. Without loss of generality, 0f(z)/0z, # 0 and x = 0. We freely use the Implicit Func-
tion Theorem. This theorem says: 3 & > 0 such that SN{y € R™: ||y — x| < ¢} is the graph
of a function g. That is, 3§ > 0, 3 U C R"! such that {u € R" ! |ju — (z1,...,2,1)| <
§} C U, and 3 a C! function g: R"™* — R such that

SO{yeR": |ly—zf <e} ={(z9(2): z€U}. (%)
We show that (%) implies T is an (n — 1)-dimensional subspace. Let 1 <i <n — 1 and let
€ R"! be the vector with a 1 in the i** entry and zeros in all other entries. Then for any
1 <i<n-—1, define s;: R — R"™ by s;(t) := (te;, g(te;)), where we restrict the domain of
s so that ¢ satisfies te; € U. Then s(0) = 0, and s7(0),...,s!,_,(0) are linearly independent,
so T has dimension at least n — 1. Also, T" has dimension at most n — 1 by the right side of
(%). Therefore, T" has dimension n — 1, as desired. 0J

Proposition 2.57 (Lagrange Multipliers). Let f,g € C'. Let c € R. Let v € R" so that
g(x) = ¢ and such that x is a local mazximum of f on the set {x € R": g(z) = c}. Assume

Vg(x) #0. Then 3 X € R such that
Vf(x) = AVy(z).

Proof. Let s: R — R"™ be a differentiable path such that g(s(t)) = ¢ for all ¢t € [—1,1],
and s(0) = x. By assumption, f(s(t)) is a function of the real variable ¢ which has a local
maximum at ¢ = 0. So, the Chain Rule implies

d /
Tlimof (s(1)) = (V1(5(0).5'(0)).
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Let T be the span of all vectors s'(0) resulting from differentiable paths s: R — R” with
s(0) = z. Lemma 2.56 implies that 7" is an (n — 1)-dimensional subspace. In summary,
V f(z) is perpendicular to T, and also Vg(x) is perpendicular to T', by Proposition 2.55.
Since T is (n — 1)-dimensional, we conclude that V f(z) = AVg(z) for some A € R. O

Exercise 2.58. Maximize f(z,y) = 2% + y* subject to the constraint z? + 2y* = 1.

Remark 2.59. As we know from calculus class, the level set of g might have a boundary,
in which case we need to check the boundary of the level set in order to optimize f on the
level set.

Exercise 2.60. Suppose that we have a probability distribution on the set {1,...,n}, i.e. a
sequence p = (py,...,p,) of probabilities in the set P,, where

P, = {pE[O,l]": Zpi: }, P, = {pE(O,l)”: Zpi—l}.

A fundamental quantity for a probability distribution p is its entropy
S(p) === _pilogp:.
i=1

(We extend the function xlogx to 0 by continuity, so that 0log0 := 0.) The entropy of p
measures the disorder or lack of information in p.

(i) Using Lagrange multipliers, find the local maximum ¢ of S on the set P,. Compute
the value of S at q. o
(ii) Prove that S reaches its maximum on P, at q.

Exercise 2.61. Let A be a real symmetric positive definite n x n matrix. Let b € R™. Define
f: R™ — R so that, for any y € R",
f@%z%fﬁy—fy

Show that f is strictly convex. Conclude that f has exactly one global minimum. (Recall
that strict convexity alone does not guarantee that a global minimum exists.)

More generally, let 1 < k < n —1,let H C R" be a k-dimensional subspace of R", let
2 € R and let

K:={2© +h:heH}.

Let fx: K — R by fx(y) = %yTAy —b'y, Vy € K. Then fx also has exactly one global
minimum zx € K. Moreover, V f(zx) = Az —bis orthogonal to H. Conversely, if zx € K
satisfies Axyx — b is orthogonal to H, then x is the unique global minimum of f on K.

2.5. Second Derivative Test.

Definition 2.62. Let f: R” — R. We define the Hessian matrix of f at x € R", denoted
D*f(xz), to be the following n x n matrix (if it exists):

o2 f o2 f
B_z%<x> e 0xn0x1 (.T)
D*f(x) = : . :
52 92
8;1:18J;n () - amg (z)
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Remark 2.63. Let f: R" — R be a function such that all of its second order partial
2 2

derivatives exists and are continuous. Then aziaij = aai- gxi for all 4,5 € {1,...,n} (this

statement is known as Clairaut’s Theorem, and it is proven in 131B). Consequently, the

Hessian of f is a symmetric matrix, so the Spectral Theorem, Theorem 2.22, implies that

all of its eigenvalues are real.

Proposition 2.64 (Second Derivative Test). Let f: R® — R with f € C3. Let v € R"
be a critical point of f.
o If all eigenvalues of D?f(x) are positive (i.e. if D*f(x) is positive definite), then x
is a local minimum of f.
o If all eigenvalues of D?f(x) are negative (i.e. if D?f(x) is negative definite), then x
15 a local mazimum of f.
o If D*f(x) has one positive and one negative eigenvalue, then x is called a saddle

point of f.

Proof. We prove the first assertion. We write f in its second-order Taylor expansion. Then
there exists € > 0,C' > 0 such that, for all y € R™ with ||y — z|| < ¢,

1) = () + = 0100 + 50— ) (D) - ) )| < €y =l

In particular,
1
F) 2 f2) + v — 2, V() + 5y —2) (D*f(2))(y —2) = Clly - x|l
Let ¢ > 0 be the smallest eigenvalue of D?f(z). Using V f(z) = 0 and Exercise 2.24,

fy) = f@) +elly —al* = Clly —z)* = f@@) + |y = 2l* (c = C lly — =]).
So, if y € R satisfies 0 < ||y — z|| < min(e, ¢/C), we get

fly) > f(=).

That is, x is a local minimum of f 0

If Vf(z) = 0 and if D?f(x) has all nonnegative eigenvalues, then the point z may or may
not be a local extremum of f.

Exercise 2.65. Give an example of a function f: R? — R such that Vf(0) = 0, all eigen-
values of D?f(0) are nonnegative, but f does not have a local minimum at 0.

Exercise 2.66. Let f: R? — R so that f(z,y) = 2% + 3?(1 + x)3. Show that f has one
critical point which is a local minimum, but f has no global maximum, and f has no global
minimum.

That is, having only one critical point which is a local minimum does not imply that this
point is a global minimum.

Exercise 2.67. Let f € C?. Assume that f has a local maximum at x € R". Conclude that
Vf(x)=0.

Exercise 2.68. Prove the following partial converse to Proposition 2.64.
Let f € C3. Assume that f has a local minimum at x € R”. Then Vf(z) = 0 and all
eigenvalues of D?f(z) are nonnegative.
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3. OPTIMIZATION OF REAL FUNCTIONS

3.1. Gradient Ascent/Descent. Suppose we have a function f: R” — R. From the
Geometric Interpretation of the Gradient, Proposition 2.55, we might expect that we can
maximize f by moving in the direction of increase of f.

Algorithm 3.1 (Gradient Ascent Algorithm).

e Start at any point z(® € R™.
e Move in the direction Vf(z®). That is, let ¢ > 0 be small and define z() =
70 + eV f(2®). More generally, if n > 1 and if we are given 2™, define

gD = () o f (™),

(To instead minimize the function f, define "+ := 2™ — eV f(2(™).)
e Repeat the previous step several times.

Note that even if the sequence of points z(®, z(1) .. converges to some z € R, then = may
only be a local maximum of f. That is, x may not be a global maximum.

Example 3.2. Let f: R — R so that f(z) = (22 — 1)2. Then f has no global maximum,
and f has a local maximum at z = 0. However, if we use the initial guess z(®) = 1/2 with
e = 1/100, then the sequence of points 2, () .. from the Gradient Descent algorithm
will converge to the local maximum at 0. For example, we have

2™ = 2D 4 (1/100)4z" V(D)2 — 1), VYn> 1.
So, using a computer,

D — 485, @ = 4702, ... 209 = 0098, ... 2z = 000165.

Remark 3.3. Already in the above example, we have encountered the main problem with
using computers to perform arithmetic. As a general rule, multiplication, addition and
division of positive numbers can be done with negligible errors on a computer. However,
subtracting two numbers on a computer will introduce numerical error, if those two numbers
are close to each other. Consider for example the quantity

(1+277) —1)2%.

This quantity is equal to 1. However, if we write ((1+27(-53))-1)*2~(53) in Matlab, we
get 0 instead!
For a less extreme but still important example, consider the quantity

(1+107%) —1)10°

This quantity is equal to 1, but in Matlab, this expression evaluates to about 1 + 8- 1078,
So, the error is somewhat small, but especially with an iterative algorithm such as Gradient
Descent, one could worry that the errors accumulate as more steps are used in the algorithm.

In both arithmetic examples, the issue with performing computer arithmetic is how the
number is represented in the computer. In double-precision floating-point arithmetic, which
is the standard way to represent numbers in computers, a real number is stored as a 53-digit
binary number with an 11-digit binary exponent. That is, a real number on a computer is
stored in the form

:i:l.blbg . b52 X 26162"'611_210+1,
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where by, ..., bs9,¢1,...,c11 € {0,1}, and we interpret the decimal and the exponent as
binary numbers.
For example, when Matlab computes 1 + 273, it is performing the following addition

(1.0...0><20) i (1.0...0><2*53>.

Now, in order to add the numbers, the computer tries to represent the smaller number so
that its exponent is 2°, matching the larger number’s exponent. But since only 52 binary
digits of the number 27° are stored, the addition becomes

<1.0...0><20)+(0.0...0><20> ~ 1

Finally, subtracting 1 from this expression gives the result of 0 for the expression (1+2723)—1.

Exercise 3.4. The Gradient Descent algorithm can behave quite badly for nontrivial reasons.
Let f: R — R be defined by f(z) = —2'%%. Suppose we want to maximize f, starting at the
initial guess (¥ = 1 and using the parameter ¢ = 1/100. Show that the sequence of points
2@, 2™ does not converge to 0. In fact, show that this sequence of points diverges!

On the other hand, choose a smaller € to use in the Gradient Descent Algorithm such
that the points z(®, 2" ... do converge to 0. (For the latter result you can freely use the
following fact from analysis: if a sequence of nonnegative numbers z(©, 21 .. is strictly
decreasing, i.e. if z0+D < 2@ for all 4 > 1, then the sequence (@, (M ... converges to a
nonnegative real number.)

In this way, a less naive version of the Gradient Descent algorithm will use a small value
of € exactly when the derivative of f is large. That is, the algorithm will adjust ¢ to depend
on [V f(z™)].

3.2. Newton’s Method. If we want to maximize g: R — R with g € C?, it suffices to solve
the equation ¢'(x) = 0 for x € R. That is, if f(x) := ¢/(z) for any x € R, then optimizing ¢
reduces to seeking the zeros of f.

Algorithm 3.5. Newton’s Method, a general way to find the roots of a differentiable
function f: R — R.

(1) Choose any point z(® € R.

(2) Compute the tangent line of f at 2 y(z) = f/(20)(x — @) + f(zO).

(3) Find 2" such that y(z™) = 0. This is the intersection of the tangent line y(z) with
the z-axis. Note that 2(") satisfies

f=)

L0 — 0 _ T

F0)

(4) Return to step (2), but replace z(® with (). More generally, at the n'* iteration
of the algorithm, compute the tangent line of f at (™ in step (2), and then find an
(™Y in step (3) which is a zero of the tangent line. So, in general we iterate the
following equation.

() f(z™)

fr(a)”

x(n—&-l)
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Example 3.6 (The Babylonian Square Root Algorithm). Let M > 0 be a fixed
constant. Let f(z) = 22 — M for any € R. Let (¥) = M. Then Newton’s Method gives
the recursion.

(n) N2 _ 1 M
(n+1) _ ..(n) fl@™) (n) _ ((z'") ) (x(n)_|_ )

Ry 7 S v R 2
Then the sequence z(*), 2! ... converges to the positive square root of M. (We will not
prove that convergence occurs.) This recursion was known to the Babylonians. And it is
still used today by our computers to calculate square roots.

For example, if M = 2, we have

M = %(1 +2) =15.

g? = %(3/2 +4/3) = 17/12 ~ 1.4167

13 = Z(17/12 + 24/17) = 577/408 ~ 1.414216

1
2
So, we can see that this algorithm converges to the square root rather rapidly.
Exercise 3.7 (Optional). To see an illustration of Newton’s Method, see the Applet, Newton
Example. In many examples, it only takes a few iterations of the algorithm to get a good
approximation for a zero of f.

Write a Matlab program that plots the first few iterates of Newton’s method, as in the
above applet. (Or, use a different programming language if you prefer it.) You can test your
program using, e.g. the function f(x) = 2% — 1 with initial guess x¢ = 2.

Exercise 3.8. Recall that Newton’s method is an algorithm for finding zeros of a function
f. It consists in iterating the map

p(z) = — (f'(2)"" f(2).
Thus, we start with some given 2(® and define 2 := @(2(®), 22 := p(zM), etc.

This problem is devoted to an analysis of the convergence of Newton’s method. For
simplicity, we work in one dimension, i.e. we set n = 1. Without loss of generality, we
assume that the zero of f we are interested in is at the origin: f(0) = 0. We shall show that,
assuming f’(0) is invertible and f € C?, the sequence 2@ M converges to 0 provided
2 is close enough to 0.

Let K > 1, R > 0 and suppose that

K <|f(x)| <K, |f'(@)| <K, V|z|<R (1)
(i) Using Taylor’s Theorem, show that there exists £ > 0 such that, if || < ¢, then
1£(0) = (f(z) —2f'(2))] < K |z,

(ii) Suppose |2(?| < e. Then from part (i), |f(2®) — 2@ f/(z@))| < K|z |2. Using the
definition of (), deduce that

20 < KIf@®) = 20 (20))] < K22
(iii) Let n > 1. Suppose |z(™| < . Show that
|x(n+1)| < KQ‘J}(n)F.
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(iv) Conclude that lim,,_,. |#(™| = 0, as desired.

In the case that we are looking for a local extremum of a function g: R — R, we applied
Newton’s method to f := ¢’. If we rewrite the iterative equation of Newton’s method in
terms of f, we get

(™)
L) — () _ M’ vn > 1.
g" (@)
This formula can be generalized to a function of n variables as follows

Algorithm 3.9. Newton’s Method Version 2, a general way to find the local extrema
of a function g: R* — R.

(1) Choose any point 2(® € R.
(2) Inductively define 2, (V) .. via the following recursion:

2 = 5 — [D2g(a)] V().

Remark 3.10. Newton’s Method implicitly assumes that we can compute all first and second
order partial derivatives of the function f. In practice, this is not always possible. Therefore,
there are various modifications to Newton’s method which only require computation of the
first derivatives of f. Nevertheless, as we have discussed, gradient descent methods may
only find a local extremum of a function. That is, these methods may not be helpful for
general optimization problems, where we seek a global extremum. For this reason, we will
not discuss Newton’s Method or gradient descent methods further.

Exercise 3.11 (Optional). Write a Matlab program to implement Newton’s Method for

functions of two variables. Test your implementation on Rosenbrock’s function: f(x,y) =
100(y — 22)* + (1 — 2)>.

3.3. Conjugate Gradient Methods. Let A be an nxn symmetric positive definite matrix.
Let b € R™ with b # 0. A general problem in linear algebra is to find x € R"™ such that

Ax = b.

Note that since A has no zero eigenvalues, the rank of A is n, so a solution z exists for the
equation Az = b. (Recall that a solution may not exist e.g. if the rank of A is less than n.)

Since A is invertible, we could just apply A~! to both sides. However, computing A1
can be computationally expensive. Moreover, if many eigenvalues of A are small, it can be
difficult to compute A~! accurately. In linear algebra class, we learned how to solve Az = b
using Gaussian elimination. However, that method can also be computationally expensive,
requiring on the order of n® arithmetic operations. (Gaussian elimination consists of n steps,
and each step requires roughly n? arithmetic operations, so there are roughly n? arithmetic
operations performed in total.)

Thankfully, there are ways to solve Ax = b with far fewer arithmetic operations. One such
method is called the Conjugate Gradient Method.

Exercise 3.12. Let A be an n X n symmetric positive definite matrix. Let y, z € R™. Define
a function (-,-)4: R" x R™ — R by

(y,2)a =y Az

Show that (-, -)4 is an inner product on R"™. That is, show:
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e For any y € R™ with y # 0, (y,y)a > 0.
e For any y,z € an <y7Z>A - <Zay>A‘
e For any y,z € R", A € R, (Ay,2)4 = ANy, 2) a.
e For any w,y,z € Rn’ AE Ra <w + v, Z>A = <wa Z>A + <y7 Z>A-
Then, a standard fact from linear algebra implies that the following function is a norm on
R™.

1ylla =V (¥, )4 = VyT Ay.

Suppose x € R” satisfies Az = b. We would like to find y € R™ that is as close to = as
possible. One way of formalizing the previous sentence is to find y € R™ such that ||y — z|| ,
is as small as possible. Note that

lly — xHi =yl Ay — 22T Ay + 2T Az = 4T Ay — 20Ty + 27 Az

So, minimizing ||y — z|| , is equivalent to minimizing the following quadratic function of y:

1
fly) = 5y" Ay = by
The rough idea of the Conjugate Gradient method is to minimize f(y) by selecting a
particular basis of R”. Suppose dV),... d™ is a basis of R”. (This set of vectors may not

be a basis in the algorithm, but for now let’s pretend that it is a basis.) Then there exist
Ci,...,cn € Rsuch that y = Y1 ¢;d?, and

n T n n
fly) = % <; cid(i)> A <; cid(i)> —~ bTZ;cid(i)

& i i i 1 i i
> (dN)TAdD =N e dD + 5 > cic;(dP)T AdY),

i=1 i=1 i£j

N | —

The Conjugate Gradient Algorithm chooses the vectors dV), ... d™ such that (d®¥),d")), =
0ifi,7 € {1,...,n} with ¢ # j. We then have

"1, . .
fly) = Z (ch(d(w)TAd(z) _ Cide(z)) _
=1

So minimizing f(y) is equivalent to minimizing each term in the sum separately. To minimize
each term in the sum separately, we can choose y (i.e. choose the ¢;) so the derivative with
respect to ¢; is zero. That is, we choose the ¢; such that

(b, d®)
Ci = 775~ -
(d@®,d@D) 4
Algorithm 3.13 (Basic Version of Conjugate Gradient Algorithm). An algorithm

for solving the matrix equation Az = b for z € R", where A is an n X n symmetric positive
definite matrix, and b € R™, b # 0.

e Let 20V :=0
o Let 7MW := Ax® —p. Let d® := b — AzW,
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e For every 1 < i <n — 1, recursively define

(), gy

0D = 20 4, d@, 3)

r(i+1) = A;p(i—H) —b. (4)
_ <d(i)’ T(i+1)>A

Biv1 = {dD,dD) , ?

For any 2 <1 < n, if we ever have r (i) — = 0, the algorithm terminates and outputs z®,
If 7@ £ 0 for all 1 < i < n, the algorithm outputs (™),

Remark 3.14. If r® = 0 for some 1 < i < n, then z( satisfies Az(Y) = b, so we have solved
the system Az =b.

Since 7 measures the error between Az® and b, r® is called the i** residual of the
Conjugate Gradient algorithm.

Lemma 3.15. The vectors produced by Algorithm 3.13 satisfy the following properties. Let
1 <k <n. Assume that (dD,d9D) 4y =0 for any 1 <i,j <k — 1 with i # j. Then

(rt 4Dy =0, V1<i<k.
Also, ¥tV is the unique minimum of the function f(y) := $y" Ay — b"y over the set
{zW + 2: 2 € span(dV, ..., d")}.
Proof. From Exercise 2.61, y is the unique minimum of f on the set
{zW 4 2: 2 € span(dV, ..., d")}

if and only if Vf(y) = Ay — b is orthogonal to span(d™, ..., d®). So by (4), to complete
the proof, it suffices to prove the either assertion by induction on k.

In the case k = 1, we have 2® = 2 4+ a;d") where «; is chosen to minimize f(2z* +
ayd™M). To see this, note that

L F 4 and®) = (V7@ + 00d®), ) = (Aa + 0, Ad) b, d).
1

So, solving for «; in the equation ﬁf(x(l) + aydM) = 0 gives

(b— Az, dO) (), 4O
041 = = —

[0, d0), (d®,dD),

That is, 2(?) is chosen to minimize f over the set of all possible a() € R. So, the base case
of the induction holds.

We now prove the inductive step. Assume (r*=D d®) =0V 1 <i < k — 1. We then
consider the case when k — 1 becomes k.

RONO; A(z® — g*=D) ¢ Axk=D _p HAB) gy AdE=D 4 p=), (+)
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Taking the inner product of both sides with d*~1,

(r09, a0y = (pE0, a0 D) 4 gy (@D, a% D), 2o,

Andif 1 <i <k — 2, we have

<7“(k), d(i)) *) <r(1f—1)’ d(i)> + Ozk_1<d(k_1), d(z‘)>A =0.

Here the first term in the sum is zero by the inductive hypothesis, and the second term
is zero by the first assumption of the lemma. This completes the inductive step, thereby
completing the proof. 0

Lemma 3.16. Fix 1 < k < n. Assume that r; # 0 for all 1 < i < k. Then the vectors
produced by Algorithm 3.13 satisfy the following properties.
(i) span(r(t ) 10 = span(r®, Ar®) AR (),
(ii) span( ., d®)) = span(r®, Ar(D) AR,
(iil) (dC d<k>) =0foralll<i<k-—1.
(iv) (r@ r®Y =0 for all 1 <i <k —1.

Proof. We prove all assertions simultaneously by induction on k. The case k = 1 is clear.
Assume (i)-(iv) hold for the case k. We prove that (i)-(iv) hold for k + 1.
Step 1. Inductive Step of (i). By the inductive hypothesis,

r®) € span(r®, Art) | AR d® € span(r®, Ar® | AF1p0)

Applying A to the second expression, Ad® € span(Ar®, ... A¥r(1)) Then

P @ ) 09y ) WA g m

Since r*) € span(r®, Ar(M) . AR we get r*+D ¢ span(r®, Ar®) . AFr(M) from
(%). So, using the inductive hypothesis for (i), we get

span(r, .. rEDY C span(r®), Ar® AR,
We now prove the reverse inclusion. Applying the inductive hypothesis of (ii) and (i),
Abr) = A(A®DrM) € span(AdW, ..., Ad®) C span(r®, ... ™) Aqk)).

From (%), Ad® = (r*+) — &) /q,  (Applying (6) iteratively and using the inductive
hypothesis of (iv), note that (d®, r®)) = —(r*) r(*)) £ 0, so we have not divided by zero
since oy # 0. Moreover, division by zero does not occur in (2) or (5) for this reason.) So,

Afr® e span(r®, ... D),
Combining this with the inductive hypothesis for (i),
span(r®, Ar® . A C span(r®, ... r®+D).

In conclusion, we verified that (i) holds for k£ + 1, completing the inductive step for (i).
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Step 2. Inductive Step of (ii).

span(d(l) ., dF)

= span(dV, ... d® &) by (6)

= n(r(l) Ar(l) L AR L) (R Dy by the inductive hypothesis for (ii)
= n(r(l) (k) p(k+D)y, by the inductive hypothesis for (i)

— span(r, Ar(l) AR by () fork + 1

Step 3. Inductive Step of (iii). From (6),

(dFHD d@Yy = (D g@y g (@B gDy ()

When i = k, the right side of (xx) is zero by (5). For any 1 <4 < k, we first apply Lemma
3.15 to get (r**+1D d®) = 0. Then, applying (ii) twice

AdY € span(Ar® ... ArW) C span(dV, ... dD).

Therefore, (r 1) d@), = 0 for any 1 < i < k. So if 1 < i < k, the first term on the right
of (%) is zero, and the second term is zero as well by the inductive hypothesis for (iii). In
conclusion, (xx) is zero for any 1 < i < k, completing the inductive step.

Step 4. Inductive Step of (iv).

From Lemma 3.15, (r®) d®)
for all 2 < i < k — 1. Therefore,
of r | we have (r®) r1)) = (pk

=0forall 1 <i<k—1. From (6), r® € span(d®,d(1)
(r®) ) = 0 for any 2 < i < k — 1. Finally, by definition
) ,dY) = 0 by Lemma 3.15. 0

Theorem 3.17. Let A be a real symmetric positive definite n X n matriz, and let b € R".
Then the output y of Algorithm 3.13 solves the equation'Ay =b.
Put another way, there exists 1 <1 < n+ 1 such that r = Q.

Proof. Let x € R™ such that Ax = b. By Remark 3.14, it suffices to consider the case that
r@ £ 0 for all 1 <i <n. We will show that 1) =0,

From Lemma 3.16(iv), the vectors r), ... r(™ are nonzero vectors which are orthogonal
with respect to the inner product (-, -) 4. Therefore, the span of 7, ... ™ is n-dimensional.
So, combining Lemma 3.16(i) and (ii), the span of dV), ..., d™ is also n-dimensional. There-
fore, there exist scalars ¢y, ..., ¢, such that

z—z = Z ;d®. ()

i=1
Fix 1 < j < n. Take the inner product of both sides of (%) with d¥) and apply Lemma
3.16(iii) to get
YR €)
( - ’.d >A. ()
<d(3)7 d(J))A

Cj:

Applying (3) iteratively, we have
33'(]) = 33'(1) + Oéld(l) + -4 Oéjfld(j_l). (* * *)
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Take the inner product of both sides with d) and apply Lemma 3.16(iii) to get
(d9) 2Dy ) = (dD | M) 4.
So, using this equality, Az = b, then (4),
(d(j),m — M), = <d(J) r — > <d(J bh— Ax J)> —(dW, r(j)>

Substituting this equality into (#x), then using (2),
<d(] r@) )
C; = _+ = ;.
4y (d@), d@)) 4 J
Comparing () and (* % *) for j = n + 1 concludes the proof. O

We now mention a slight simplification of Algorithm 3.18. Using Lemma 3.16,
L@ (r0.d0) @ 0,0+ d) 0, 0)
L (d@D, d®) 4 o (d(i> d®) 4 o (d®, d®) 4
Now, from (x) in Lemma 3.16, r(+1) — ) = o, 4d®. So, by Lemma 3.16
o) (dD, piDY <r<z+1) ) )y (D) (i)

TGO Ay, T @D 0 @)y (@), g0
©) (1) i)y (1) i)y
(=@, —1® + B,_1d0-D) EORT0))
So, we can adjust the formulas (2) and (5) in Algorithm 3.13 as follows.

Algorithm 3.18 (Conjugate Gradient Algorithm). An algorithm for solving the matrix
equation Ax = b for x € R", where A is an n X n symmetric positive definite matrix, and
beR™ b#D0.
o Let 2V :=0
o Let rM = AzM —p. Let dV := b — Azx®
e For every 1 <i < n — 1, recursively define
(), ()
(49, d0)
20 = 20 4 4, d®
P =@ 4 o, 4d®
<7,.(i+1)’ T(z’+1)>
Bi-i—l =
)
0D = _plD) g )
For any 1 < i < n — 1, if we ever have r("t1) = 0, the algorithm terminates and outputs z®.
If r® # 0 for all 1 <17 < n, the algorithm outputs (D)

Q= —

Exercise 3.19. At iteration 4, Algorithm 3.18 only requires the values of 2, (=1 @) p(G=1)
and d®,dY. So, the memory storage requirement of Algorithm 3.18 (and 3.13) is fairly
small.

Give a bound on the maximum amount of numbers that Algorithm 3.18 needs to store in
memory, at any point in time while the algorithm is running.
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Compared to Algorithm 3.13, Algorithm 3.18 requires a few less matrix multiplications at
each iteration, which saves some time.

Give a bound on the total number of arithmetic operations that Algorithm 3.18 performs
over the duration of the entire algorithm. Your bound should depend on the size n of the
matrix A and on the number m of nonzero entries of A. (Your bound should be something
like mn)

Remark 3.20. Even if an n X n matrix has e.g. 10n nonzero entries, Gaussian elimination
still might require around n?® arithmetic operations, since even the first step of Gaussian
elimination could create a matrix with around n? nonzero entries. So, Gaussian elimination
is strictly worse than the Conjugate Gradient method, in terms of the number of arithmetic
operations that may need to be done.

Remark 3.21. Some modern algorithms require significantly less arithmetic operations than
the Conjugate Gradient method in Algorithm 3.18. In particular, some algorithms almost
only require a number of arithmetic operations proportional to the number of nonzero entries
in A. However, a discussion of these algorithms is beyond the scope of this course.

3.4. Least Squares. In our discussion of the conjugate gradient method, we found the
solution = € R" of the equation Az = b where A is an n x n real symmetric positive definite
matrix, and b € R”. Since A is positive definite, A has rank n, so a solution z exists. In
general the matrix A may not be positive definite, or the matrix A may not have full rank,
so a solution z is not guaranteed to exist.

In this section, we let m > n, we let A be any real m x n matrix of rank n, and we let
b € R™. So, a solution to the equation

Axr =0

still exists, but we cannot use the Conjugate Gradient Method. Instead of trying to solve
Ax = b directly, we instead minimize

1
f(z) = 5 | Az — b, r € R"™.

Exercise 3.22. Let A be a real m x n matrix. Let £ € R™ and let b € R™. Show that the
function f: R” — R defined by f(z) = % ||Az — b||* is convex. Moreover, show that

— 2
Vf(z) = A" (Az —b), D*f(x) = ATA.
From Exercises 3.22 and 2.39, if Vf(x) = 0, then z is a global minimum of f. That is, if
AT Az = ATb,
then z is a global minimum of f.

Exercise 3.23. Let A be an m x n real matrix with m > n. Then A has rank n if and only
if AT A is positive definite.
(Hint: AT A is automatically positive semidefinite by Exercise 2.21.)

From Exercise 3.23, if A has rank n, then AT A is invertible. We summarize the above
discussion
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Proposition 3.24 (Linear Least Squares). Let m > n. Let A be a real m X n matriz
with rank n. Let b € R™. Then the global minimum of |Az — b||* among all z € R™ occurs
when

= (ATA)TATD.

From Exercise 3.23, we could try to applying the Conjugate Gradient method to the equa-
tion ATAz = A"b in order to find . But the multiplication A7 A itself could require as
many as n® arithmetic operations, which is fairly costly. (The multiplication of two n x n
matrices using the most naive method takes around n® arithmetic operations; a popular
implementation of matrix multiplication known as Strassen’s algorithm uses about n*® ma-
trix multiplications; the best known matrix multiplication algorithm uses Cn?3™ arithmetic
operations for a large constant C'.)

Inverting AT A directly could also introduce numerical error. So, although Proposition
3.24 theoretically finds the minimum of ||Az — b||*, in practice the formula z = (AT A)~'ATb
may not be so useful.

There are a few algorithms for minimizing || Az — b||%, such as

e Computing the Cholesky decomposition of ATA. (That is, we write ATA = RTR
where R is an upper triangular n x n matrix with positive diagonal elements.)

e Computing the QR decomposition of the matrix A. (That is, we write AIl = Q g ,

where II is an n X n permutation matrix, ) is an m x m orthogonal matrix, and R
is an upper triangular n x n matrix with positive diagonal elements.)
e Compute the singular value decomposition of the matrix A. (That is, we write

A=U (g) V', where U is an m X m orthogonal matrix, V' is an n X n orthogonal

matrix, and S is an n x n diagonal matrix with nonnegative entries.)

Since matrix decompositions are a topic of Math 115B, we will not focus on these methods.
We instead mention an iterative method for minimizing ||Az — b||>. Below, we list some
simplifying assumptions for the recursive algorithm.

Algorithm 3.25 (Recursive Least Squares/ Online Learning). Let m > n, let A be
an m x n real matrix. Let (V... a(™ € R™ be row vectors which are the rows of A (data),
and let b € R™. For any 7 > n, let

a b
AA = N , b(j) =
a) b;
Assume that A,, has rank n (so that AL A, is invertible). Define

™= (ATA,) AT e R?, P, = (ATA,)7L
For any j > n, define

P;(aU+ D)7 qU+1) pT
Py =P — 21— —
a 77 1 4 aU+) Py(aG+D)T

20D — 20) 4 Pj+1(a(j+1))T(bj+1 _ CL(J’+1)x(j))_

23



The vectors ™, ..., 2™ recursively minimize the quantity ||Az — b||* in the following
sense.

Proposition 3.26. Let A > 0. Let ™ ... 2™ be the output of Algorithm 3.25. Let
n <j<m. Define f;: R" =R by

f@) =5 S (ma) b, weRr"

i=1
Then 29 minimizes f; on R™. In particular, when j = m, 2™ minimizes || Az — b||*.
Proof. We induct on j. The case j = n follows by definition of (™ and by Proposition 3.24.
We now complete the inductive step. Assume the Proposition holds for j, and consider the

case j + 1. Define G := (AT A;).
First, note that

. A .
Gj+1 — (Ag“ (a(]+1))T) ( (]+1> ATA +< J+1))T (j+1) G +( ]+1))TG(J+1). <*)

By the inductive hypothesis and Proposition 3.24, we have 2V =G; 1ATb . So,

ATHO) = GG ATYY) = Gyl ) (Gja1 — (aUHD)T g+, (%)
From Proposition 3.24, the minimum of f;;; on R" occurs when
A \T /p) .
GJHA]THb = G]H (a(ji1)> (bj+1 GJH(ATb + bj+1(a(]+1))T)
= Ga+1 (Gj+1x(j) — (a(j+1))Ta(j+1)x(j) + bj+1(a(j+1))T>
=20 4 G;jl(a(j“))T(ij _ a(j+1)l.(j))_

Comparing this formula to the definition of U+ in Algorithm 3.25, it remains to manip-
ulate the G| term. Applying Exercise 3.27 to (%),
Gfl(a(j+1))T j+1)G—1

-1 _ (. G+ G+ — -1 _ 2
G = (G + (a ) a ) G 1+a(J+1)G (aml))T

Finally, note that P, = G, ', and since the matrices P; and G’;l satisfy the same recursion,
we get P; = G;l, completing the proof.
O

Exercise 3.27. Show the following identity. Let A be an r X r real matrix, let U be an
r X s real matrix, and let V' be an s x r real matrix. Assume that A is invertible and that
I+ V AU is invertible, where I is the s x s identity matrix. Then A+ UV is invertible and

(A+UV) t=A"1—(AT'U) T+ VAU H(VATY.
In particular, if s = 1, we get the Sherman-Morrison formula:

ATV AT

AyUv)yl=at o2 0V
(A+UV) L+ VAU
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Exercise 3.28. Give a bound for the number of arithmetic operations needed in Algorithm
3.25. Assume that P, is known, so that computing P, does not require any arithmetic
operations. (Hint: your bound should be something like (m —n)n?.) Compare this bound to
simply minimizing || Az — b||* directly. (In that case, you should need about mn? arithmetic
operations.)

The key point here is that, once P, is known, recursive least squares is much better.
For example, if m — n = 10, then recursive least squares requires around 10n? arithmetic
operations. But minimizing || Az — b||2 directly would require mn? operations, which is much
larger.

Remark 3.29. Here are some warnings about the data analysis interpretation of least
squares.

e Gradient descent should behave well for linear least squares minimization (since the
function & — || Az — b||* is convex), but minimizing more complicated objective func-
tions with many local minima could result in poor performance of gradient descent.
We have mentioned this point before.

e Data analysis involves fitting parameters to data. As von Neumann once remarked:

With four parameters I can fit an elephant, and with five I can make

him wiggle his trunk.
The point of the quote is that allowing many free parameters in a model can allow
you to make almost any conclusion. For example, the exponential function e® looks
a lot like the polynomial 1+ z + 22/2 + 23/6 + 2*/24. So, you could say that this
polynomial is closest to the exponential function, so these two functions are very
alike. But these two functions are actually quite different.

e Data analysis also involves finding correlations in data. However, if you look at
enough categories of data, some of them will always be correlated with each other,
essentially by the pigeonhole principle (see Exercise 3.30). For example, the chocolate
consumption of a country is strongly correlated with the percentage of Nobel laureates
in that country. (http://www.nejm.org/doi/full/10.1056/NEJMon1211064) But is
this correlation meaningful or informative in any sense?

Exercise 3.30. Let 2™, ... 2™ be vectors in R? such that ||| = 1 for all 1 < i < m.
Show that there exist 4,5 € {1,...,m} with i # j such that (z®, z0)) > 1 — 100/m?.

Exercise 3.31 (Logistic Regression). Let (), ... (™ ¢ R” and let v, ..., ym € {0,1}.
For the sake of intuition, we can think of each vector () as a vector of words in an email,
and y; classifies email i € {1,...,m} as either spam (y; = 1) or not spam (y; = 0). Given
this data, we would like to find a way to classify future emails as spam or not spam. (This
is what a spam filter does.) For any ¢ € R, define the logistic function g: R — (0, 1) by

1
Cltet

g(t)

The function ¢ is meant to be a differentiable approximation to a function whose output is
either 0 or 1.
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First, verify that ¢'(t) = g(¢)(1 — g(t)) for any t € R. Then, consider the log-likelihood
function L: R™ — R defined by

L(z) := log <H[9(<Z79€(")>)]yi[1 - g(<z,x(”>)]”i) ,  VzeRY
i=1
We would like to maximize L. The idea here is that if L is large, then z is a set of parameters
(or “weights”) that accurately classifies known emails as spam or not spam. So, once we
find z, and if we have some new email x € R™, then g({z,2®")) ~ 0 means the new email is
probably not spam, and g((z,2)) ~ 1 means the new email is probably spam.

Show that

m

VL(z) = (i —g({za)))z?,  VzeR"
i=1
This computation then gives the formula for a gradient ascent method for maximizing L.

Exercise 3.32. Define

A: > b:

N — W —
W W = o
= o =

D

Minimize the function ||Az — b||> over all € R, either by hand, or using a computer
program that you write yourself. In either case, use the recursive least squares method.
Verify that the 2 you found does actually minimize || Az — b||>.

4. LINEAR PROGRAMMING

4.1. Introduction. The invention of linear programming is attributed to Kantorovich, who
developed the theory for the USSR starting in 1939 to improve the allocation of resources
for factories. Koopmans investigated the same problems contemporaneously. Both were
awarded the Nobel Prize in Economics in 1975 for their work.

Here is a sample of the kind of problem Kantorovich considered.

Example 4.1. Suppose we have m machines which can produce any of n products, and
the machines are running all day. For any machine i € {1,...,m}, and for any product
j €{1,...,n}, let a;; > 0 be the amount of product j that machine i can produce in one
day. For any i € {1,...,m}, j € {1,...,n}, let z;; > 0 be fraction of the day that machine
i is assigned to produce product j. For any j € {1,...,m}, let z; be the amount of product
7 that is produced by all machines in total in a single day.

In summary, the constraints on the machines are:

m
Zj = Zaijxij, Vl S]Sn
i=1
n
da; <1, Vi<i<m
j=1
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And we would like to maximize some linear function of the total production. That is there
is some vector ¢ € R™ such that we want to maximize

m
T
E cjzj =C 2,
Jj=1
subject to the above constraints.

Definition 4.2 (Partial Ordering of Vectors). Let © = (x1,...,2,),y = (Y1,---,Yn) €
R™. We write x > y if and only if x; > y; for all 1 <7 < n.

In general, a linear program is the maximization or minimization of a linear function, with
some linear equality and/or inequality constraints on the variables. More formally, we begin
with the standard definition of a linear program. The definition we give will begin with
linear constraints, but inequality constraints can also be accommodated in a standard way.

Definition 4.3 (Linear Program, Standard Form). Let ¢ € R" let b € R™, and let
A be a real m x n matrix. Let z € R" be a variable vector. Then a linear program in
standard form is a minimization problem of the following form:

minimize ¢’z subject to the constraints

Ax =b,x > 0.

The set {x € R": z > 0, Ax = b} is called the feasible set of the linear program. If
the feasible set is empty, the linear program is called infeasible. If there exist a sequence
M, 2@ of points in the feasible set such that ¢’z — —co as i — 0o, we say the linear
program is unbounded.

If the linear program is infeasible or unbounded, then no minimum exists for the linear
program.

Remark 4.4. Sometimes, a linear program can be written with inequality constraints, such

as

minimize ¢’z subject to the constraints

Ax < b, x> 0.
We can convert this to a linear program in standard form as follows
minimize ¢’z subject to the constraints
Ar=b—y, x>0,y > 0.
Here y € R™. Note that Az = b — y for some y > 0 if and only if Ax < b. So,
{reR":FJyeR™" Ax=b—y, >0,y >0} ={zcR": Az <b, x > 0}.

Therefore, these two linear programs are equivalent. That is, they have the same minimum
value, and this minimum value is achieved at the same vectors x € R".

Note that the constraint x > 0,y > 0 is equivalent to requiring a single concatenated
vector to satisfy (x,y) > 0. So, the second linear program is in standard form.

Here the variable y which is added to the constraint is called a slack variable.
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Exercise 4.5. Let ¢,z € R", let b € R™, and let A be an m X n real matrix.

It is possible to essentially put all of the variables of a linear program into the constraint.
Show that the following linear program is equivalent to the standard one. (That is, the
minimum/maximum values and the z achieving the minimum /maximum value is the same
for both linear programs.)

maximize ¢ subject to the constraints
{teR: t< 'z, Yo € R" such that Az = b, x > 0}.
Exercise 4.6. Let ¢,z € R", let b € R™, and let A be an m X n real matrix. Show that the

linear program
minimize ¢’z subject to the constraints

Ax < b.
is equivalent to the following linear program in standard form
e\ [zt
minimize —c x~ subject to the constraints
0 z
xt xt
(A —A I) x~ | =b, x= | >0.
z z
By equivalent, we mean that if z € R™, and if we define * := max(x,0), 2~ := max(—=z,0),

then x = 2t — 7. Similarly, if %, 2~ > 0, then we define x = 27 — 7. And the minimum
values and the z achieving the minimum value for both linear programs is the same. (Here
the maximum is defined component-wise, e.g. if z = (—1,2,3), then max(z,0) = (0,2, 3).)

Linear programs can also be interpreted geometrically.

Definition 4.7 (Half Space). Let z € R" and let t € R. A (closed) half space is any set
of the form
{x € R": (x,2) > t}.

That is, a half space is a any set of points lying on one side of a hyperplane.

Definition 4.8 (Polytope). A polytope is a subset of R™ which is the intersection of a
finite number of half spaces.

Remark 4.9. A polytope is a convex set.
Exercise 4.10. Is {(x,75) € R?: 22 4+ 23 < 1} a polytope? Prove your assertion.

Definition 4.11 (Extreme Point/ Vertex). Let K C R" be a convex set. Let x € K.
We say that z is an extreme point or a vertex of K if x is not contained in any open line
segment in K. That is, for any y, 2 € K with y # 2, we have

ré¢f{ty+(1—t)z:t € (0,1)}.

Exercise 4.12. Find all extreme points of the set {(z1,22) € R?: 0 <2, < 1,0 < xy < 1}.
Then, find all extreme points of the set {(z1,x) € R?: 2?2 + 22 < 1}.
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Exercise 4.13. Prove that a polytope is convex. Then, draw the following polytopes in the
plane:
{(z1,72) ER*: 2y >0, 29 >0, 11 + 29 < 2, 25 < 1},
{(z1,29) ER*: 21 >0, 29 >0, 1 + 25 < 1, 11 + 229 = 1}
{(z1,25) €ER*: 2, >0, 29 >0, 21 + 29 = 1, 21 + 225 = 1}
Definition 4.14. Let K C R". We say that K is bounded there exists some r > 0 such
that ||z|| <r for all z € K.

Note that a polytope may or may not be bounded.

Remark 4.15. A linear program in standard form is the minimization of a linear function
on a polytope. To see this, note that the set {x € R™: x > 0} is the intersection of n half
spaces. More specifically, if ey, ..., e, € R" are the standard basis vectors (so that for any
1 <i<mn,e; has a1 in the /" coordinate, and all other coordinates are zero),

{r e R": $20}=ﬁ{$6R”: (x,e;) >0},

i=1

Also, if a®” denotes the i*" row of an m x n real matrix A for any 1 < i < m, then

{r eR": Ax = b} = (ﬁ{x eR": (a9 z) > bl}> ﬂ (ﬁ{x eER™: (—a? ) > —bi}> :

i=1
So, the set {z € R": © > 0, Ax = b} is a polytope, since

{r eR": 2>0, Az =b} = (ﬁ{xeanxiZO})

i=1

N (ﬂ{a: eR": (¥, z) > bl-}) N (ﬂ{x eR": (= z) > —bi}> .
i=1 =1

Remark 4.16. At first glance, a linear program may not seem difficult to solve, since we are

simply optimizing a linear function on a convex set. If a solution to the problem exists, then

we should be able to find it. However, the difficulty of a solving a linear program arises from

the feasible set. For example, if there are 100 constraints, it seems essentially impossible to

satisfy all of these constraint by hand, or even by computer.

4.2. The Simplex Method.

Exercise 4.17. Let K C R" be a polytope formed by the intersection of m > n half spaces.
Assume that K is nonempty and bounded. Show that K has at most (’:) = #n'),n, vertices.

(Hint: first show that a vertex of the polytope must be in the boundary of at least n half
spaces, using linear algebra. That is, for any vertex of K, there exist at least n of the half
spaces that define K such that equality occurs in the definition of that half space.)

Exercise 4.18. Let K C R" be a polytope. Let f: K — R be a concave function (so that
—f is convex). Assume that a minimum value of f exists. That is, there exists x € K such
that f(z) < f(k) for all £ € K. Conclude that there exists an extreme point y € K such
that f attains its minimum value at y.
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Exercise 4.19. Let K be a bounded polytope and let f: K — R be a linear function. Show
that the minimum value of f is attained at a vertex of K. (Hint: a linear function is concave.
Also, from Exercise 4.17, there are only finitely many vertices of K. Using the definition of
a vertex, show that: for any point k € K, there exists a vertex v € K where f(z) < f(k).)

The Simplex Method is based upon Exercises 4.19 and 4.17. As shown in Remark 4.15, a
linear program in standard form is the minimization of a linear function on a polytope K.
If K is a nonempty and bounded polytope, then the minimum of the linear program exists
by Exercise 4.19. In order to minimize the linear function on K, the simplex method moves
through the vertices of the polytope, eventually finding the minimizing vertex. By Exercise
4.17, there are only finitely many vertices of the polytope. So, eventually, we will find the
vertex minimizing the given linear function.

Though there are sensible ways of choosing how to move between the vertices of the feasible
set, unfortunately the simplex method may require checking the value of all vertices of the
polytope. We discuss this issue further below, since it demonstrates that the simplex method
is highly inefficient in the worst-case.

Below we will assume that the feasible set Ax = b, x > 0 has an m x n matrix A with full
row rank. In practice, this assumption is reasonable. If A does not have full row rank, then
the constraint Az = b has redundancy, which can be removed by row operations, resulting
in a matrix with less rows and with full row rank.

Definition 4.20 (Basic Feasible Solution). Let m,n be positive integers with m < n.
Let A be a real m x n matrix with full row rank, and let b € R™. For any 1 <i < n, let A;
denote the " column of A. A vector z € R" is a basic feasible solution if the following
conditions are satisfied:

e Ax =band x > 0.

e There is a subset S C {1,...,n} such that S has size m. We write S = {s1,..., S}
o If i € {1,...,n} satisfies i ¢ S, then z; = 0.

e The m x m matrix B := (As,, ..., As,,) is an invertible matrix.

The following Lemma shows that basic feasible solutions and vertices are the same.

Lemma 4.21. Let m,n be positive integers with m < n. Let A be a real m x n matriz with
full row rank, and let b € R™. Let K = {w € R": w > 0, Aw = b}. Then x is a vertex of K
if and only if x is a basic feasible solution.

Proof. Let © € R™ be a basic feasible solution. Let S C {1,...,n} have size m so that
x; = 0 for any ¢ ¢ S. Without loss of generality, S = {1,...,m}. Let 0 <t < 1 and let
y,z € K. Assume that x =ty + (1 —t)z. Sincet >0, (1—¢) >0,y > 0 and z > 0, we must
have y; = z; = 0 for any i ¢ S. Let 2/ := (z1,...,7,)7, and similarly define ¢/, z’. We can
therefore rewrite Ar = Ay = Az = b as Bx' = By’ = BZ'. Since B is invertible, we conclude
that ' =y = 2/, so that x = y = z. That is, x is a vertex of K.

We now prove the converse. Let z € R™ be a vertex of K. Without loss of generality,
assume ,...,T, are the only nonzero components of x, where p > 1. If the columns
Ay, ..., A, of A are linearly dependent, then without loss of generality, there exist scalars

t1,...,t,—1 such that —A, + Zf:_ll t;A; = 0. Let ¢ € (—1,1) and note that the vector
y(e) i==x +e(ty, ..., tp1,—1,0,...,0)"
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satisfies Ay(e) = b. Since xy,...,x, > 0, there exists § > 0 such that, if |¢| < §, then y > 0.
In particular, y(e) and y(—¢) are both in the feasible set K. And z = $(y(¢) +y(—¢)). Since
this equality contradicts that z is a vertex of K, we conclude that the columns A;,..., A,
are linearly independent. Since A is an m X n matrix with m < n, we conclude that p < m.
If p = m, then x is a basic feasible solution with S = {1,...,m}. If p < m, then since A has
full row rank m, A also has column rank m, so we can add more indices to the set {1,...,p}
to form a set S of size m such that {4;};cs form a basis of R™. In any case, x is a basic
feasible solution. O

Definition 4.22 (Degeneracy). Let m,n be positive integers with m < n. Let A be a
real m x n matrix with full row rank, and let b € R™. A linear program with feasible region
{w e R": w >0, Aw = b} is said to be degenerate if there exists a basic feasible solution
x € R™ with corresponding subset S C {1...,n} of size m, and there exists i € S with
x; = 0. If the linear program is not degenerate, we say it is non-degenerate.

As mentioned above, the simplex method amounts to moving between vertices of the
feasible set. Put another way, the simplex method involves moving from one basic feasible
solution to another. We now describe how to make such a move, assuming that the linear
program is non-degenerate.

Suppose we have one basic feasible solution = with corresponding set S = {s1,...,8n} C
{1,...,n}. As above, let B := (Ay,,..., A, ). In linear algebra terminology, B is a change
of basis matrix. Let ¢ € {1,...,n} with ¢ ¢ S. Let S’ := (SU{i}) ~ {s1}. Then S’ also has
size m, and S’ is obtained by replacing one index in S with another index not in S.

Write A; = Z;n:l 145 As; for some real numbers (7, . .. ,Tim)T =: 7). These real numbers
exist since A,,,..., A, is a basis of R™. (Note that Br) = A; so r® = B~1'4,.) Since
ZTzl ry, As, = Ar = b, if € € R, we add two equations to get

€AZ‘ + Z(.TS]. — 5Tij)As]~ =b.
j=1

For any 1 < i < n, let ¢; € R" denote the vector with a 1 in the 7*" entry and a 0 in all other
entries. Then, the vector

m
z(e) = ce; + Z(a:sj — £Ty5)€s, -
j=1
satisfies Az(g) = 0.
Since the linear program is not degenerate and z is a basic feasible solution, there exists
§ > 0 such that, for all |¢| < 0, z,, —ery; > 0. That is, if || < §, then z(¢) is in the feasible
set. We then increase € until there exists some 1 < k < m such that x5, —ery = 0. (Such an
£ may not exist, but for now suppose it does.) For such an e, we have Az(¢) = b, z(g) > 0.
So, we might hope that (S~ {k}) U {i} and z(e) are another basic feasible solution, where

we can compare ¢! z(g) to ¢l'z. We summarize the above discussion.

Algorithm 4.23 (Simplex Method/ Simplex Algorithm). Let m,n be positive integers
with m < n. Let A be a real m x n matrix with full row rank, and let b € R™. The Simplex
Method solves the linear program in standard form

minimize ¢’z subject to the constraints
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Ar =0b, x> 0.

We assume that this linear program is non-degenerate.
We are given a basic feasible solution y in the feasible region with associated set S =
{s1,...,8m} C{L,...,n} of size m and invertible matrix B = (As,, ..., As,,)-
e Let y be a basic feasible solution with corresponding set S = {s1,...,$n} C {1,...,n}.
Let T:={1,...,n} \S.
o Letic{l,...,n} withi € T. (If T = (), terminate the algorithm.) Let ) € R™ so
that r(® := B7'A,;. (Alternatively, let v = (r;1,...,73,)7 solve Br(® = A, using
e.g. the Conjugate Gradient Method of Algorithm 3.13.)
e Define ¢ := min{y,, /ri;: j = 1,...,m, rj; > 0}, and let k so that y, /ry = €. Define

INgE

2= ¢ce; + (ys, — erij)es,;.

1

J

(If no such ¢ exists, terminate the algorithm. The feasible set is unbounded.)

o If cTy > Tz, return to the first step, redefining y to be z, and redefining S to be
(SU{i}) ~ {sr}. If on the other hand ¢’y < ¢z, return to the first step, keep y as
it is, and redefine T to be T~ {i}.

Theorem 4.24. Suppose we have a linear program whose feasible set is nonempty and
bounded. Then one step of the simplex algorithm moves from one basic feasible solution
to another. After a finite number of steps, the algorithm terminates at the minimum value
of the linear program.

Proof. First, if r;; <0 for all 1 < j < m, then ¢ is undefined. That is, for every ¢’ > 0, the
vector

z—seﬁ—g ETU €s;

satisfies Az = b. Letting ¢’ — oo shows that the feasible region is unbounded.

So, if the feasible region is nonempty and bounded, we must have 7;; > 0 for some
1 < j < m, so that ¢ is well-defined.

By definition of z, Az = b and 2z has at most m + 1 nonzero entries. Since y > 0, the
definition of € implies that z > 0 and z has at most m nonzero entries. Let k € {1,...,m} be
the unique integer such that ys, /ry = min{ys, /ri;: j =1,...,m, r;; > 0}. (The uniqueness
of k follows since the linear program is assumed to be non-degenerate.) We claim that
{A;}je(sufiy)qsi } 1s a linearly independent set of vectors. Recall that {A;},cg is a linearly

independent set. Also,
m
Ai = Z rijAsj = TikAsk -+ Z Tl'jA
j=1 J#k
Since r;, > 0, we have

Ai — Z];ﬁk TijASj

Tik '
Since {As,, ..., As,, } is a basis, and any vector in its span can be written as a linear combi-
nation of {A;}jcsufiy)gsi }» We conclude that {A;} c(sufi){s,} is also a basis.

A

Sk
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In summary, {A;};c(sufip)~s: } and z > 0 has at most m nonzero entries. Since the linear
program is not degenerate, z has exactly m nonzero entries, and z is a basic feasible solution.

If the fourth step of the algorithm occurs, then we have moved from one vertex of the
feasible region to another, while decreasing the value of the linear program. From Exercises
4.19 and 4.17, the minimum value of the program is attained at a vertex of the feasible
region, and there are only finitely many vertices to visit. By the definition of the fourth step
of the algorithm, the algorithm never returns to a previously visited vertex. So, eventually,
we will reach the second step of the algorithm with 7' = (). That is, we have found a basic
feasible solution x and compared it to other possible basic feasible solutions, all of which
have a larger or equal value than x in the linear program.

Without loss of generality, x is a basic feasible solution with S = {1,...,m}. By assump-
tion, for any € > 0, and forany m+1<i<n

cfz(e) — 'z = c"2(e) — ¢ '2(0) Zr”e] ( — Zﬁ‘j%‘) > 0. ()

Jj=1 Jj=1

We now show that x is the global minimum of the linear program. Let y € R™ satisfy
the equation Ay = b. Applying B~! to both sides, we get (I, B~*A")y = B~'b, where I is
the m x m identity matrix, and A" := (A,41,...,An). So, if we write y = (w,y’)T where
w € R™ and y € R"™™, then we have w + B™'A'y’ = B™'b, so w = B7!(b — A’y’). Since
Az = b, we similarly have (I,0)z = (I, B"'!A")z = B~'b. In summary, any solution to the
equation Ay = b is of the form

_BflA/y/

y:(I,O):L‘—}-( y/ )7 y/GRn—m'

Also, using the notation above, r; = (BflA')j(i_m) foranym+1<i:<n,1<j7<m. So

m
T T —1 5/ /
cYy—cr=-— E ( A § yz mC

7j=1 i=m-+1

n m n m
—1 4/ /
== § : § :CJ A (i—m) yz m + § yz mC E Yiom | Ci — E :erij :
i=m+1 j=1 i=m+1 i=m+1 7j=1

If y is in the feasible set, then Ay = b and y > 0, so that ¥’ > 0. By (x), we therefore
conclude that ¢y — ¢’z > 0. That is, z is the global minimum of the linear program, as
desired. U

Exercise 4.25. Using the Simplex Algorithm, solve the following linear program:
minimize — 4x; — 2x5 subject to the constraints
1+ Tg+ X3 = 5
2$1+$2/2+$4:8, JIZO

(Hint: start at the point (xq, 29, x3,24) = (0,0,5,8))
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4.3. The Ellipsoid Method. The strategy of the simplex method can be summarized as:
move through the vertices of the feasible region. Unfortunately, the simplex method has
several problems.

First, in general, how can we start with a basic feasible solution? For some problems it
is easy, but for others it may not be so easy. In fact, finding a basic feasible solution for a
general problem is equivalent to finding the minimum value of a general linear program!

Proposition 4.26 (Equivalence of Separation and Optimization). Let P C R™ be a
polytope formed by the intersection of m half spaces. Suppose there is an algorithm that, in a
time polynomial in n and m, can either find some x € P or state that P is empty. Suppose
we have a linear program in standard form whose minimum value v is in [0,1]. Then for any
e > 0, there is an algorithm that finds x in the feasible region of the linear program in time
polynomial in n,m and log(1/¢). Moreover, c'x < v+e. That is, x is € close to minimizing
the linear program.

Proof. From Exercise 4.5, any linear program in standard form can be equivalently written
as: maximize t € R subject to the constraint: {t € R: t < ¢’'z, Vo € R" such that Ar =
b,z > 0}. For any ¢ € [0, 1], define

R(t):={x €R": Ax =b,2>0,t>c"x}. (%)

We now perform a binary search in ¢. Let t; := 1/2. If R(t;) = ), we let t5 := 3/4 and then
check if R(t2) is empty or not. If R(t1) # 0, we then let ¢y := 1/4 and check if R(1/4) is
empty or not. In general, at the n'® step of this procedure, 27" < t, < 1 — 27" is given.
If R(t,) =0, we then let ¢,y :=t, + 271 If R(t,) # 0, we then let t,,, :=t, — 27",
We continue this procedure a total of N := 10log(1/¢) steps. Each step requires time
polynomial in n and m. So, the total run time is a polynomial in n,m and log(1/¢). Also,
R(ty —¢/2) =0 and R(ty +¢/2) # 0. So, if we let x € R(ty + ¢/2), then by definition (x)
we have ¢’z <ty +¢/2, and v >ty — /2. So, ¢’z < v +e. d

The second and more significant issue with the Simplex Method is that it may take an
exponentially long time to terminate!

Exercise 4.27. Let H,, := {(z1,...,2,) € R": 0 < xz; < 1,V1 <i<n}. The set H, is the
n-dimensional cube. First, show that H, is a polytope which is formed by the intersection
of 2n half spaces. Then, show that H, has 2" vertices.

In summary, H, is described by 2n inequalities on n variables, but H,, has 2" vertices. If
we perturb the half spaces defining H,, slightly, and if we e.g. try to maximize x,,, then it
is possible that the simplex method will visit all 2™ vertices of the perturbed cube. That
is, the simplex method may need an exponential number of steps to terminate, even though
the feasible region is described by a linear number of inequalities and variables.

Thankfully, there are algorithms that are guaranteed to solve linear programming problems
in a polynomial amount of time in the number of inequalities and variables of the problem.
One such algorithm is the Ellipsoid method. This algorithm has nice theoretical properties
but it is not often used in practice. As far as I know, interior point methods (which we
describe in the next section) are typically implemented to solve linear programming problems.
Interior point methods behave well in practice and in theory.
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We now describe the Ellipsoid method. From Proposition 4.26, in order to find the min-
imum of a linear program, it suffices to find an algorithm that can check whether or not a
given feasible region is empty.

Definition 4.28. The Euclidean ball of radius r > 0 and center y € R" is the following
set

B,(y) :=={z e R": [lx —y| <r}.
In particular, By(0) € R™ is the unit ball centered at the origin. For any C' C R", let vol, (C)
denote the volume of C"

vol, (C) = /C dz.

Let A be a symmetric positive definite n x n matrix and let y € R". Define an ellipsoid to
be any set of the form

E=FEAy) ={zecR": (v —y)TA(z —y) <1}
(v e R A2 (e — )P <1} = {4V 4 y € R Jaf2 < 1} = AV2By(0) + .
Equivalently, an ellipsoid is the invertible linear image of the unit ball By (0).
From the last equality and the change of variables formula
vol,(E(A,y)) = y/det(A) - vol,(B1(0)).
Exercise 4.29. Let C' C R". Let A be a positive semidefinite matrix. Show that
vol, (AC) = vol,{ Az € R": x € C'} = det(A)vol,(C).

Remark 4.30. Recall that if A is a positive semidefinite matrix, then the Spectral Theorem,
Theorem 2.22, says there exists an orthogonal matrix () and a diagonal matrix D with
nonnegative entries such that A = QDQ~'. We therefore define A2 = QD'?Q~'. Note
that (AY/2)2 = A,

In the ellipsoid method, we will be given an arbitrary ellipsoid, cut in half by a half space
which passes through the ellipsoid’s center. We then wish to find another ellipsoid of small
volume that encloses the resulting half-ellipsoid. It turns out one can find explicit formulas
to do this.

Exercise 4.31. Let A be a positive definite n x n matrix. Let y € R™ and define the
ellipsoid E(A,y) :={z € R": (x —y)TA Y (x —y) < 1}. Let 2 € R, 2 # 0, and define the
half-ellipsoid

E'(Ayy,z) = E(Ajy) N{z e R": (z,(x —y)) <0}.
(Note that y is the center of E(A,y), and y lies on the boundary of E’(A, vy, z).) Define

1
d:= Az.
VT Az
1
Yy’ ::y—n+1d.
n? 2
A = A— ).
n2—1< n—i—ldd)

Show that E'(A,y,z) C E(A",y’). The set E(A’,y') is called the Léwner-John ellipsoid
of E'(A,y, z). Justify why is A" positive definite.
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We are now in a position to describe the Ellipsoid method.

Theorem 4.32. (The Basic Central-Cut Ellipsoid Method) Suppose P C R™ is a
nonempty polytope that contains a Euclidean ball of any center and radius. Let A be an
m X n real matriz and let b € R™. We then write P as

P:={zeR": (", z) <b,V1<i<m}={xecR": Az <b}.

Suppose also that we begin with some Fuclidean ball B such that P C B and the volume
ratio vol,(B)/vol,(P) is bounded above by some absolute constant ¢ > 1. Then there ezists
an algorithm that explicitly finds a point x € P, and such that the time to run this algorithm
is a polynomial expression in n, m, and log(c).

Proof. The algorithm uses a divide and conquer strategy.

Begin with the ellipsoid Ej := B, and let us then define an iterative procedure. Suppose
B has center yo € R", and let Ag := I be the n x n identity matrix. Let £ > 0 be an integer.
We define the k' step of the algorithm. We are given Ey, = E(Ag,y:), and we inductively
assume that P C Ej. We then check whether or not y, € P (i.e. check if Ay, < b). If
yr € P, then the algorithm terminates, since we have found a point in P. If y, ¢ P, then
suppose the 5 inequality of Az < b is violated, i.e. (a9, ) > b; for some 1 < j < m. By
definition of P, PN {z € R™: (a9 x) > b;} = (). Since P C E}, we conclude that

PC E.N{reR": (aV, 2) <b;} C By n{z € R": (V) x) < (a9 y;)}
= Ek N {.T € R™: <a(j)7$ - yk) S O} = E/(Almyk?a(j))'
Finally, define Ej,; to be the Lowner-John ellipsoid of E'(Ay,yx,a") from Exercise 4.31,
so that P C Ej4;. The k' step of the algorithm is now complete. A calculation shows

vol, (Ey+1) < e 1/2n
VOln(Ek)

So, suppose we perform the above procedure with N > 2nlog(c) iterations where N is a
positive integer. Then

<1, Yk>0. (¥

N-1
l,(E l,(E l,(E ) / _
Vo ( N) _ Vo ( ];7)) _ H Vo ( k’+1> (<) (6 1/2n)2nlog(c) _ (C,) 1

vol,(B)  vol,(E, vol,, (Ey)

That is, vol,(Ey) < vol,(B)()~!. On the other hand, vol,(B)/vol,(P) < ¢, so vol,(P) >
(¢)~'vol,(B). That is, vol,(Ey) < vol,(P). So, it is not possible that P C Ey. That is, the
algorithm terminates after at most N steps. At termination, we must have found a point in
P, as desired.

To justify the calculation (x), note that the change of variables formula implies that the

VOln (Ek+1)
VOln (Ek)

to By and to Fg.i. So, for the purposes of the computation (%), we may assume that
Er =B1(0), A=1T1 and z = (—1,0,...,0). Then we have from Exercise 4.31,

volume ratio is unchanged if we apply the same invertible linear transformation

2

Gp O 0

1 0 n 0
'=——,0,...,0 A= wl

y (n+17 Y 7)7 E E .'. 3

0 0 2
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which leads to

v - (i) - () 62

Then Exercise 4.33 completes the proof. 0

Exercise 4.33. By taking logarithms, show that for any positive integer n,

n+1 n—1
i i < e,
n—+1 n—1 -
(Hint:)

(n+1)log(l1+1/n) + (n — 1)log(l — 1/n)

o0

=> ()" n+DnFEt = (n - Dn kT
k=1 k=1

=S (D2 T Y (D) = DR =Y (- DR =
k=1 k=1 k=1

Remark 4.34. Strictly speaking, Theorem 4.32 and Proposition 4.26 do not show that every
linear program can be solved in a polynomial amount of time. For example, if P is very
small, then ¢’ in Theorem 4.32 may need to be very large, in which case the Ellipsoid Method
would run for a long time. However, once € > 0 is fixed, if we want to minimize the linear
program within an additive error of €, then we can adjust the procedure in Proposition 4.26
as follows. We can select the values of ¢,, to instead be t,, = ¢, thereby increasing the volume
of R(t, +¢) in order to ensure that ¢ > ¢’27"" in Theorem 4.32. We omit the details of this
argument, and we will not discuss this issue further.

The following combinatorial problem is a well-known application of linear programming.

Example 4.35 (Minimum Vertex Cover). Suppose we have a set of vertices V :=
{1,...,n} and a set of undirected edges E C {{i,j}: 4,5 € V}. The goal of the mini-
mum vertex cover problem is to find the smallest subset S C V such that every {i,j} € E
satisfies 1 € S or 7 € S. More generally, for any ¢ € V', let ¢; € R, ¢; > 0. We are asked to

minimize

o

i€s
over all S C V such that every {i,j} € E satisfiesi € S or j € S. For a somewhat contrived
example, we could think of the vertices as cities, and the set S as a subset of cities where cell
phone towers are placed. And each cell phone tower is designed to cover the city in which it
resides, and any adjacent cities.

This problem is known to be NP-complete. That is, if we could solve this problem in time
polynomial in n, then P = NP and we would solve one of the Millennium Prize Problems.
Since it is widely believed that P # NP, it is doubtful that the Minimum Vertex Cover
problem can be solved in time polynomial in n.

However, we can approzimately solve this problem in polynomial time, using linear pro-
gramming. In order to do this, we first rephrase the problem. Let ¢ := (cy,...,c,)T. The
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Minimum Vertex Cover problem is:
minimize ¢’z subject to the constraints
r; €{0,1}, VieV
ri+x; >1, V{i,j}€E

This optimization problem is not a linear program, since the first constraint is not a linear
function of the variables. However, there is a natural way to create a linear program from this
optimization problem, by relaxing the first constraint. That is, we replace the constraint
x; € {0,1} Vi € V with another less stringent constraint, namely 0 < x; <1V ¢ € V. Since
any x satisfying the previous constraint also satisfies the new constraint, we say that the
new constraint is a relaxation of the previous constraint. Crucially, the new constraint is
linear, so that the following problem is a linear programming problem:

minimize ¢’z subject to the constraints

0<z; <1, VieV
xz‘"'.fj > 1, V{Z,j}EE

Theorem 4.36. Let * minimize the above linear program. Let x minimize the minimum
vertex cover problem. Then
AT < e <27
That is, ' approzimates the minimum value of the minimum vertex cover problem within
a multiplicative factor of 2. And c¢'Z can be computed in time polynomial in n.
We therefore say that the above linear program is a factor 2 approximation algorithm
for the minimum vertex cover problem.

Proof. First, note that x exists since there are only a finite number of vectors that are feasible
for the minimum vertex cover problem. Also, note that the linear program above is bounded
and feasible.

Since z is feasible for the minimum vertex cover problem, x is also feasible for the associated
linear program. So, by definition of Z, we have ¢f'Z < ¢'x. We now prove the other inequality.

We know that each entry of Z is in the interval [0, 1], but we would like to somehow
associate the vector T to a vector whose entries are either 0 or 1. To do this, we “round”
the entries of = to either 0 or 1, whichever is closest. That is, define y € R" so that, for any
1< <n,

o Lifm <12
A EEE TS VT

We claim that y is feasible for the minimum vertex cover problem. To see this, let {i, j} € E.
Since 7 is feasible for the linear program, z; +2; > 1. That is, max(z;, ;) > 1/2. Therefore,
by definition of y, y; +y; > 1. In conclusion, y is feasible for the minimum vertex cover
problem. Therefore, ¢’z < c'y.
Now, by the definition of y, we have y; < 2x; for all 1 < i < n. Since ¢ > 0, we conclude
'y <277,

O
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Remark 4.37. The above approximation algorithm for the minimum vertex cover problem is
relatively simple, but it is conjecturally the best that can be done! That is, it is conjectured
that, for every € > 0, it is impossible to create a 2 — ¢ approximation algorithm for the
minimum vertex cover problem that runs in polynomial time.

Exercise 4.38. Using any method you want to use, minimize
T2 — I
subject to the constraints
2120, 2020, 21 +29 <2, 29 < 1.
(Note that only drawing a picture is insufficient justification.)

4.4. Interior Point Methods. The simplex method moves between the vertices of the
feasible region in the direction of decrease of the given linear function. The ellipsoid method
simply looks for a single point in the feasible region itself, by constructing a smaller and
smaller ellipsoids which enclose the feasible region. Interior point methods are somewhat
similar to the simplex method, but interior point methods actually avoid the boundary of
the feasible region altogether. These methods always stay in the interior of the polytope.

If we try to move in the directions of decrease on the boundary of the feasible region,
we must deal directly with the constraints of the feasible region. Interior point methods
somehow avoid this issue, by always staying away from the boundary of the feasible region.
This way, the constraints on the feasible region are less burdensome, and we do not have to
worry about potentially checking all of the vertices of the feasible region (which led to the
simplex method being inefficient).

Let A be a real m x n matrix with m > n. Let z,c € R™ and let b € R™. Consider the
linear program

maximize ¢’z subject to the constraints

Ax > b.

Instead of maximizing ¢’z directly, we maximize a modified function. This function is
modified to “penalize” points that are close to the boundary of the feasible region. There
are many versions of this method. Below we present one such version.

For any 8 € R, let Dg := {x € R": Ax > b, ¢’z > 8} and define the function f5: Dg — R

fa(z) == mlog(c"z — 3 Zlog Az); — b;), Va € Dg.

Note that Dg is a convex set, and f3 is a str1ct1y concave function which goes to —oo on the
boundary of Dg. So, if Dg is nonempty and bounded, then fz has a unique maximum in

Dyg.
Algorithm 4.39 (An interior point method). Start with 3, € R, (¥ € R™.
o Let 3; := ;- 1+\F<C xU~ D —B;_1), where j > 1.
e Perform one step of Newton’s Method for maximizing fg,, starting at U1 and

ending at the point which we define to be ).
e If j < 1004/m, return to step 1. Otherwise, stop.
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4.5. Duality. A linear program has another linear program naturally associated to it, called
the dual linear program. The relation of these two linear programs gives us a deeper under-
standing of the original linear program.

Definition 4.40 (Dual Linear Program). Let ¢ € R™, let b € R™, and let A be a real
m x n matrix. Let € R™ be a variable vector. Recall the linear program in standard form,
which we refer to as the primal problem:

minimize ¢’z subject to the constraints
Ax =0,z > 0.
Given this linear programming problem, we define the dual problem as follows: let y € R™
be a variable vector, and define the linear program:
maximize b’y subject to the constraints

ATy <.

Exercise 4.41. Show that the dual problem of the dual problem is the primal problem.
(Hint: first write the constraint ATy <cas ATy +z=r¢, 2>0.)

Definition 4.42. Let y € R™. Let R > 0. We define the ball of radius R centered at y
to be the set
Br(y) :=={z € R": |lz —yl| < R}.
Definition 4.43. Recall that a sequence of points (), 23, ... in R” converges to a point
z € R" if lim;_, o, |29 — 2|| = 0.
Let K C R™. We say that K is closed if the following condition is satisfied. If ("), 2 ...
is any sequence of points in K, and if this sequence converges to some point x € R", then

we must have z € K.
Recall also that K is bounded there exists some R > 0 such that K C Bg(0).

Definition 4.44. Let f: R" — R be a function. We say that f is continuous if, for any
z € R™ and for any sequence of points ), 2 ... in R" that converges to z, we have

lim; o | f(2V) = f(z)] = 0.
The following theorem is proven in Math 131B, so we will not give its proof.

Theorem 4.45 (Extreme Value Theorem). Let K C R™ be a closed and bounded set.
Let f: R" — R be a continuous function. Then f achieves its maximum and minimum on
K. That is, there ezist points a,b € K such that f(a) < f(x) < f(b) for allz € K. We
denote f(a) = mingeg f(z) and f(b) = max,cx f(x).

Exercise 4.46. Show that the intersection of two closed sets is a closed set.

Exercise 4.47. Let b € R™. Define f: R® — R by f(z) := ||z —b||. Show that f is
continuous. (Hint: show that it suffices to consider the case b = 0. In the case b = 0, use a
triangle inequality.)

Lemma 4.48 (Farkas’ Lemma, Version 1). Let A be an m xn real matriz and let b € R™.
Then exactly one of the following statements holds.

e dz e R" x>0 such that Ax = b.

e 3y € R™ such that y* A > 0 and y*'b < 0.
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Remark 4.49. Geometrically, Farkas’ Lemma says that either b belongs to the convex set
K := {Az: x > 0}, or there exists a vector y which separates b from K, in the sense that
y'k >0 for every k € K and y'b < 0.

Proof. First, note that both conditions cannot be satisfied. If both conditions were satisfied,
then Az = b, but then z > 0 and y7A > 0 mean 0 < y" Az = y7b < 0, a contradiction.

It remains to show that if the first condition is not satisfied, then the second condition is
satisfied. So, assume the first condition is not satisfied. Define K := {Az: z > 0}. Note
that K is a convex set. Since the first condition is not satisfied, b ¢ K.

Let k be any point in K. Choose R := 1 4+ max(||k||,2]/b||). Then k& € Bg(0), so that
Bgr(0) has nonempty intersection with K. Note that Br(0) is a closed set, so K N Bg(0) is
also closed by Exercise 4.46. Also, KN Bg(0) is bounded, since (K NBr(0)) C Bg(0). Define
f:R* = R by f(z) := ||z —b||. Then f is continuous by Exercise 4.47. Since K N Bg(0)
is closed and bounded, f achieves its minimum value on K N Bg(0), by Theorem 4.45. In
particular, there exists z € K such that ||z — b|| < [[z — b]| < R, for all z € K N Br(0). Any
point z ¢ Bgr(0) satisfies ||z|] > 2|b|| 4+ 1, so using the reverse triangle inequality and 0 € K,

|z =0l = flz|l = ol = [[oll + 1 = f(0) = f(2) = ||z — 0] .
So, for any x € K, we have
[z =0l < flz =0, VeeK  (x

Also, from Exercise 2.61 applied to the function f(z) := 3§ ||z — bH2, f: K—>R Vf(z)=2-b

is orthogonal to any vector in K. Since z € K, we have
(2 —b)=0 (%)

Let z € K and let 0 < t < 1. Since K is convex, we have tx + (1 —t)z € K. So, applying
(%), we have

(z=b0)T(z=b)=|z=b <|tx+ (1 —t)z—b|> = (t(x —2) + 2= D) (t(x — 2) + 2z — b)
=tz — 2|+ 2t(z — 2)T (2 = b) + (2 = )T (2 — b).
That is,
0<t?|z—z|*+2t(x — 2)7 (2 = b).
Dividing by ¢, letting ¢ go to zero,
0< (x—2)"(z-0) ) 7 (2 —b), VreK. ( * )
So, define y 1= z — b. Since z € K and b ¢ K, we have y # 0. And
(%)
yo=yT(z—y) = (z =0Tz —yTy = —y|* <0.

We finally claim that 47 A > 0. Since yT2 > 0 for all x € K by (x* ), we have y Aw > 0
for all w > 0. If there exists i € {1,...,n} with (y*A); < 0, then we could choose w € R"
such that w; = 1 and w; = 0 for all j # 4, j € {1,...,n}. Then w > 0 but y" Aw < 0, a
contradiction. We conclude that y* A > 0.

O
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Exercise 4.50 (Farkas’ Lemma, Version 2). Let A be an m X n real matrix and let
b € R™. Then there exists x € R", such that Az < b if and only if: for all y € R™ with
y >0 and y'A = 0, we have y'b > 0.

(Hint: Az < b has a solution if and only if Az™ — Az~ 42 = b, where 7,27, 2 > 0. Apply
Farkas’ Lemma, Version 1, to the equality.)

Lemma 4.51 (Weak Duality for Linear Programming). Consider the primal and dual
linear programs defined in Definition 4.40. If x,y are in the feasible sets of the primal and
dual, respectively, then cTx > bly.

Proof. Since z,y are feasible we have Az = b, > 0 and ATy < ¢, so that 27 ATy < 2Tc and
y'h=yT Az < 27c.
L]

The following theorem gives a strong relation between the primal and dual problems in
linear programming

Theorem 4.52 (Strong Duality for Linear Programming). Consider the primal and
dual linear programs defined in Definition 4.40. FEzxactly one of the following four things
0CCUTS.

e The primal and dual are infeasible.
e The primal is unbounded and the dual is infeasible.
e The dual is unbounded and the primal is infeasible.
(%) The primal and dual are feasible, and there exist x,y which are feasible for the primal
and dual respectively such that ¢z = bTy.

Proof. First, note that all four of these situations are exclusive.

Suppose the primal problem is unbounded. Then there are a sequence of points ™, 22 ..
which are feasible for the primal problem such that ¢’z®) — —oo as i — oo. So, if there
exists y € R™ which is feasible for the dual problem, Lemma 4.51 says that b’y < ¢’z® for
all 2 > 1, a contradiction. In conclusion, if the primal problem is unbounded then the dual
problem is infeasible. A similar argument implies: if the dual problem is unbounded then
the primal problem is infeasible.

So, the only remaining case to consider is that the primal and dual are not unbounded
and one of them is feasible. We assume that the dual problem is feasible. By Exercise 4.41,
assuming instead that the primal problem is feasible results in an identical argument.

Suppose the dual problem is feasible and its maximum value is t € R. If y is feasible for
the dual problem, then —b%y > —t. Then for any € > 0, the set

{yeR™: ATy <c¢, by < —(t+¢)}
is empty. Equivalently, there does not exist y € R™ with

()= (Cefia)

From Farkas’ Lemma Version 2, Exercise 4.50, there exists x € R", A € R with x > 0,

A > 0 such that .,
(7 ) ( j‘bT> —0, (a7 ) (_ (ﬁ@) <0,
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That is, T AT — AT =0 and 27c — A\(t +¢) < 0.

If A\ =0, then 27AT =0, x > 0 and z”c < 0. Since the dual is feasible, let y € R™
with ATy < c. From Farkas’ Lemma Version 2, Exercise 4.50, every z > 0 with 27 AT = 0
satisfies 7¢c > 0, a contradiction. We therefore conclude that A # 0, so that A > 0. Define
T :=x/\. Then 7 > 0, AT = b and 27c < (t +¢). That is, 7 is feasible for the primal
problem, and the minimum value of the primal problem is at most ¢ 4+ . Since ¢ > 0 is
arbitrary, the minimum value of the primal problem is at most ¢. Since t is the maximum
of the dual problem, Lemma 4.51 implies that the maximum of the dual problem and the
minimum of the primal problem are equal. 0

Exercise 4.53. Give an example of a linear program where both the primal and dual
problems are infeasible.

Exercise 4.54. Consider the linear program

maximize y; subject to the constraints

Y1 =20, 9220, y1 + 12 < 1.

Draw the feasible region, and draw the point where the maximum occurs.
Find the dual problem, draw the feasible region for the dual problem, and draw the point
where the minimum occurs.

Exercise 4.55. Using the Strong Duality for Linear Programming, prove von Neumann’s
Minimax Theorem from Game Theory:
Let m,n be positive integers. Let A be an m x n real matrix. Define

Ay, ={z = (21,...,2,) ER™: inzl, x; >0, V1 <i<m}.
i=1
Then

max min 27 Ay = min max 27 Ay.
TEAM YEA, YyEA, TEA,

(Hint: consider the linear program of maximizing ¢ subject to the constraints: t—zgzl a;Y; <
0 forall 1 <i<m, Z?:NJJ‘ <1l,y>0)

(Hint: First show that max,ea,, 7 Ay = max;—;__n(Ay); = maxi—1__m Z?:1 a;;yj. So,
the linear program mentioned above should compute the term on the right side of the equal-
ity.)

Strong Duality, Theorem 4.52 has many nice consequences, including the max flow /min
cut theorem.

Let V- = {1,...,n} be vertices, which we can think of as n cities. We think of 1 € V
as the “source” of some product, and n € V as the “sink,” or destination for the products.
For every 7,5 € V with ¢ # j there is some maximum amount ¢;; > 0 of product that can
be routed from 7 to j. The goal of the maximum flow problem is to maximize the amount
of product that can be routed from the source to the sink. Let P be the set of non-self-
intersecting paths that start at vertex 1 and end at vertex n. That is, p € P is an ordered
sequence of distinct points (v, ve, ..., vk_1, V%) Where vy, ..., v, € V are distinct, v; = 1 and
v = n. We write (i,7) € p to denote that the elements i,j € V appear adjacent to each
other in the ordered list of points in p.
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For every p € P, we let f, € R, f, > 0 be the amount of product that travels along the
path p. That is, we can think of a box containing an amount of product traveling along the
path p. Then the maximum flow problem is:

maximize Z fp subject to the constraints
peP

> <, Vije{l... n}withi#j
peP: (i,5)€p

fp >0, VpeP.

Exercise 4.56. Let E := {(i,j) € {1,...,n}: i # j}. Show that the dual of the maximum
flow problem is:

minimize E cijry; subject to the constraints
(i.j)eE

Z Tij > 1, Vp e P
(i.4)ep

Tij > O, V(Z,]) € FE.

The value of the primal problem is the maximum amount of product that can flow from
the source to the sink. It turns out that we can interpret the dual problem in a different but
enlightening way. Let S C V with 1 € S and n ¢ S. Define

c(S) = Z Cij-

(i,j)€E: i€S, j€8°
That is, ¢(S) is the amount of product that is flowing outwards from S into S°. For this
reason, we refer to the ordered pair of sets (5, 5¢) as a cut.

Lemma 4.57. Let C' be the minimum value of the dual problem for the max flow problem.
Then
C< min  ¢(9).
SCV: 1€S,n¢S

Proof. For any S C V with 1 € S, n ¢ S, define x so that z;; = 1if i € S and j ¢ 5,
and z;; = 0 otherwise. Note that x is feasible for the dual problem, since any path that
begins at 1 and ends at n must eventually exit the set S (since 1 € S and n ¢ S). And
c(S) = i jyer Cij%ij- The Lemma follows by the definition of C'. O

Corollary 4.58 (Max Flow/ Min Cut Theorem). Let f be the mazimum value of the
maximum flow problem. Then

f= min  ¢(9).

SCV: 1e8,n¢S
That is, the mazimum flow is equal to the minimum cut.

Proof. (Optional reading, since it uses some probability). First, note that the primal prob-
lem is bounded and feasible, so Strong Duality, Theorem 4.52, implies that the primal and
dual problem are both bounded and feasible.

Let x achieve the minimum value of the dual problem. For any v € V, let P, be
the set of non self-intersecting paths from 1 to v. Define d: V' — R so that d(v) =
min{}_; e, %ij: p € Py} Note that d(1) = 0 and d(n) > 1, by the first constraint of
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the dual problem. For any ¢ € [0,1) define S; := {v € V: d(v) <t}. Then1 € S; and n ¢ S,
for any ¢ € [0, 1).

It turns out that a randomly chosen set S; will minimize ¢(-). Let T" be a random variable
which is uniformly distributed in [0,1). For any ¢ € V, define ¢’ := min{t > 0: ¢ € S;}. For
any t < t’ we have ¢ ¢ S;. And, by definition of ¢, for any ¢ > ' + x;;, we have i,j € S,.
Therefore, for any (i, 7) € E we have P(i € Sr, j ¢ Sr) < x;;. So,

EC(ST) = Z CUP(Z € ST, J gé ST> < Z CijTij.

(i,9)EF (i,5)EE

Therefore, there exists some ¢ € [0,1) such that ¢(S;) < 3, »cp ¢ijTi;. Lemma 4.57 then
implies that ¢(S;) = Z(i’ e CijTij- Finally, Strong Duality, Theorem 4.52(x), concludes the
proof. [l

Exercise 4.59 (Set Cover Problem). Let U be a finite set, and let S, ..., .S, be subsets
of U such that U} |.S; = U. The goal of the set cover problem is to find the minimum number
of sets S1,...,.5, whose union is still all of U. For example, we could think of Si,...,S,
as time intervals for shifts of workers, and we want to minimize the number of shifts that
occur, while always having at least one person on the job.

For each 1 <1 < n, let x; = 1 if we want to keep the set S;, and x; = 0 if we do not keep
the set S;. Then we can state the set cover problem as follows:

n

minimize E x; subject to the constraints
i=1

1€{1,...,n}: uES;

z; € {0,1}, Vie{l,...,n}.
Show that the first constraint implies that Ujei,.. n}: 2,215 = U.
We relax this integer program to a linear program:

n
minimize Z x; subject to the constraints

i=1

> m>1, Vuel
i€{l,...,n}: u€S;
0<z; <1, Vie{l,...,n}.

Find the dual of the linear program.

(Optional challenge: can you modify what we did for the minimum vertex cover problem,
and create an approximation algorithm for the set cover problem? If so that would be nice,
since the minimum vertex cover problem is also NP-complete.)
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5. SEMIDEFINITE PROGRAMMING

Recall that linear programming involves minimizing a linear function on a polytope. Ex-
ercises 4.19 and 4.17 show that we only need to look through a finite number of extreme
points of the polytope in order to minimize the linear function.

A semidefinite program involves minimizing a linear function on linear subsets of the cone
of positive semidefinite matrices. Such a subset of positive semidefinite matrices could have
infinitely many extreme points, so the simplex method cannot be used to solve a semidefinite
program.

Exercise 5.1. Let K be the following set of positive semidefinite 2 x 2 matrices

K:{(Z Zé) ZO:a,b,cER,a—i—c:l}.

First, show that K is convex and nonempty. Then show that K has infinitely many extreme
points.
(Hint: which matrices in K have determinant zero?)

5.1. Introduction. Now that we have described the ellipsoid method in the setting of linear
programming, it is a short step to apply the method to semidefinite programming. With
this analysis, we see the (often-observed) fact that semidefinite programming is a slight
generalization of linear programming. In semidefinite programming, we are still optimizing
a linear function, but the constraints are much different. We consider the following problem:

Definition 5.2. A Semidefinite Program is an optimization problem of the following
form
minimize ¢’z subject to the constraint

F(x) > 0.

where ¢ € R™ is fixed, x € R™ | and F(z) is an n X n matrix with

F(z):=F+Y =k, FeR" F'=F, VY0<i<m.
i=1
Here the notation F'(xz) > 0 means that F'(z) is positive semidefinite.
One can also define a semidefinite program as follows.

Remark 5.3. The following optimization problem is a special case of a semidefinite program,
which is often seen in the literature:

minimize Tr(CTY) subject to the constraints
Tr(D]Y) <7, V1 <i <m, Y > 0.
where C,Y, D; are real symmetric n x n matrices for all 1 < ¢ < m, and 7, € R for all

1 <i < m. As above, the number of constraints m may exceed n.

To see that this program is a special case of Definition 5.2, for any 1 < ¢ < 7 < n, let
F;; be an n x n symmetric matrix all of whose entries are zero except for the entries (7, j)
and (j,7), which are 1. Then Y = 7, .. v;;Fi;, and the program in Remark 5.3 can be
written as

minimize ¢’y subject to the constraint
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A 0
> 0.
(0 21§i§j§n Fijyz’j) o

where A is a diagonal matrix such that A; = —Tr(DI'Y) +;, V1 <i < n, and ¢ is a vector
whose entries are the entries of C, so that Tr(CTY) = Z” L Ci;Yi; = 'y, and y is a vector
whose entries are the entries of Y.

Remark 5.4. A linear program max{c’z: Ax +b > 0} is a special case of a semidefinite
program, since we can write the condition Ax + b > 0 equivalently as:

(Az +b)y 0 e 0
N E
0 0 - (Azib),
Or, equivalently,
b+ D5 Avjz; 0 e 0
_ e by + Z?.ZI Asjx; - e -
0 0 - by + Z?; Apjz;

Put another way, semidefinite programming is a generalization of linear programming. Re-
markably, the Ellipsoid method and Interior Point Methods can still solve semidefinite pro-
gramming problems in a polynomial amount of time.

We briefly mention how the Ellipsoid method can be applied to semidefinite programs.

5.2. Algorithms. As noted in Proposition 4.26, “solving” a semidefinite program reduces
to finding a point in any given nonempty feasible set.

Theorem 5.5. (Solvability of Semidefinite Programs) Suppose we have a semidefinite
program with a feasible region P C R™. (In particular P is a convex subset of R™). Let
e > 0. Assume that B C R™ is a Fuclidean Ball such that P C B. Assume that P contains
a Fuclidean ball B C R™ of any center and radius. Let ¢ > 1 so that vol,,,(B)/vol,,(P) < ¢.
Then there exists an algorithm that runs in time polynomial in m,n and log(c") which either
finds some p € P or concludes that P = ).

Proof. We need only slightly modify our use of the Ellipsoid method in Theorem 4.32. The
proof proceeds in essentially the same way. The only change that we require is to describe
how to cut the ellipsoid.

Consider the condition F'(x) = Fo+> i, x;F; > 0. Suppose at the k' step of the Ellipsoid
Method, the center of the current ellipsoid Ej is x € R™ violates this inequality. Then 3
u € R™ with T F(z)u < 0. Define g € R™ by g; := —u’ Fyu, i = 1,...,m. Then for any
z € R™ with (g, (z — z)) > 0 we have

u® u® <F + (2 — x,))E) u=u"F(z)u—(g,(z — 1)) <0.

That is, {z € R™: F(2) > 0} C {z € R™: (g,(z—x)) < 0}. But z = z is on the boundary of
the half space {z € R™ ( (z —x)) <0} Therefore, we have found a hyperplane through
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x that cuts R™ into two regions, one of which contains {z: F(z) > 0}. That is, from the
ellipsoid Ej, we then define the half-ellipsoid Ex N {z € R™: (g, (2 — z)) < 0}. The rest of
the proof proceeds as written. O

5.3. MAX-CUT. The MAX-CUT problem asks for the partition of the vertices of an undi-
rected graph into two sets S and S¢ that maximizes the number of edges that go from S to
S¢. For a graph on n vertices, it is expected that in general we cannot solve the MAX-CUT
problem in time which is polynomial in n. More specifically, MAX-CUT is an NP-complete
problem. Fortunately, one can approximately solve the MAX-CUT problem in time polyno-
mial in n, within a multiplicative factor of .87856.

Definition 5.6 (M AX-CUT). We define the weighted MAX-CUT problem for any positive
integer n. In this problem, we are given a symmetric matrix {aij}?,jzl with a;; > 0 for all
i,j € {1,...,n}. We can think of a;; as the weight of an edge connecting vertices i and j.
The goal of the MAX-CUT problem is to find the quantity:

max E Q5.
Sg{]‘7"'7n} o .
3,5€{1,....,n}:
€8, j¢S
Written another way, we want to compute

1 n
max o Z a;;(1—ee;). (7)

€1,.en€{—1,1}

i,j=1

(Given S C {1,...,n}, define 1,...,e, such that e;, = 1if i € S, and g; = =1 if i ¢ S.
Then (1 —¢e;)/2=1ifi€ Sand j ¢ S and (1 —¢;e;)/2=0ifie€ Sand je€S.)

We now want to adjust this problem in order to apply semidefinite programming. Note
that the function in (7) is quadratic in the e1,...,¢, terms, so we cannot hope to apply
linear programming. We approximate (7) by replacing the numbers &; by unit vectors v; in
the unit sphere S"~! := {x € R": ||z|| = 1}, and by maximizing the same quantity.

n

1
o 55 2 oL (o)) g
Then (8) defines a semidefinite program! Given vy,...,v, € S" !, we can define a matrix
Y = (v1,...,0.)(v1,...,v,)T, which is positive semidefinite by Exercise 2.21, with Y;; = 1
for all 1 < ¢ < n. Conversely, if YV is a real positive semidefinite matrix with Y;; = 1 for
all 1 < i < n, then by Exercise 2.21, Y = BB” for some n x n matrix B. Since Y;; = 1
for all 1 < i < n, we conclude that the columns of B are in S"~!. That is, the constraint
vi,...,v, € S" ! can be equivalently written as Y > 0, Y;; = 1 for all 1 < i < n. That is,
the expression in (8) is a semidefinite program in the form of Remark 5.3.
Since unit vectors in S"~! include unit vectors in {—1,1}, the quantity (8) exceeds the
quantity (7).
1 n 1 n
max 5 Z aij(l - <UZ',’U]'>) Z max Z (lm’(]. - €i€j). (9)

7)1,...7’Un€S”71 . 517“-’5716{7171} 2 S
1,j=1 4,j=1

Finally, the vectors achieved by solving (8) can be related back to (7) using a randomized
rounding method.
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Theorem 5.7 (Approximation Algorithm for MAX-CUT). There ezists a random-
1zed polynomaal time algorithm whose input is a real symmetric matric {aij}ijl of mon-
negative numbers, and whose output is 6y, ...,0, € {—1,1}, such that the expected value of
5 2 iy aig(1 = 8:0;) is at least

n

1
(87856) - max = a;(l—ee).

e1,en€{—1,1} 2 &
,j=1

(Optional reading, since some probability is used). Let ry,...,7, € S™ 1 achieve the max-
imum in (8). These vectors can be found in polynomial time since (8) is a semidefinite
program. Let z be a uniformly random element of S*~!. For any 1 < i < n, we “round” the
vectors r; to an element §; € {—1,1} as follows:

1 ifzTr >0
52‘ = . T
-1 ,ifz'r; <O0.

In expectation, we then compute

1 o cos ™ {r;, r;)
E§ Z aij(l — 515J) = Z aij—]

< - T
3,j=1 3,j=1
2 0 1
> in -~ | = (1 — .
> [Orsnelé17r i COSQ] 3 2. ai (1 — (ri,r;))
n . (10)
1
~ [87856]5 Z GiJ'(l — <7”i,7”j>)
ij=1
1 n
— [.87856] L omax o jzl ag (1 — (vg,v;)).
Finally, combining (10) and (9),
1 ¢ 1 ¢
B ; ai(1 = 6idy) > [87856]  max o i;(l — ci€;)- (11)
O

In summary, we used semidefinite programming to approximately solve MAX-CUT in
polynomial time within a multiplicative factor .87856, as shown by (11). No one has been
able to improve upon this approximation factor, and there is strong evidence that it may
never be improved at all.

Exercise 5.8. Let u,v € R? be vectors such that |Ju]| = ||v]| = 1. Let S? = {x € R3: ||z|| =

1}. For any ¢ € R, define
ian () 1 yift >0
sign(t) :=
& 1 ift<o.
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Let dS denote the surface area element on S2. Show the following calculation, which was
used in the analysis of the MAX-CUT semidefinite program.

Jq2 sign((u, z)) - sign((v, z))dS(x) 2

=1—"cos ({u,v)).
[ d5@) - ((u,v))
Exercise 5.9 (Optional). Using any numerical method you wish to use, compute
.2 0
min

0<6<r 7 1 — cos 6
to ten decimal places of accuracy.

6. CALCULUS OF VARIATIONS

Up until this point, we have focused on optimization problems, mostly in the finite-
dimensional vector space R™. Certain optimization problems are naturally phrased in infinite-
dimensional vector spaces. For example, the set of functions {f: [0,1] — R: f(0) = f(1) =
0} is an infinite-dimensional vector space, and perhaps we want to maximize or minimize
some integral quantity over this set of functions. Due to the infinite number of dimensions,
some issues become more subtle. Most importantly, the existence of a minimum or maximum
becomes more difficult to justify.

Optimization in infinite-dimensional vector spaces is called the calculus of variations, or
variational calculus. Rather than providing a broad theory of the calculus of variations, we
will focus on a few specific examples.

6.1. Shortest Paths in the Plane.

Exercise 6.1. Let g: [0,1] — R be a continuous function. Assume that, for any C''function
h:[0,1] — R with A(0) = h(1) = 0, we have

/01 g(x)h(x)dx = 0.

Conclude that g(z) = 0 for all z € [0,1]. (Hint: Argue by contradiction. Assume g is
nonzero somewhere. Use the definition of continuity of g to show that ¢ is nonzero in some
interval. Then choose h such that h is only nonzero on this interval.)

Exercise 6.2. Let D = {(z,y) € R*: 22 + y? < 1} be the unit disc in the plane and let
0D = {(z,y) € R?: 2% + y* = 1} be the boundary of D. Let A be the set of all functions
f: D — R such that f is a C? function, such that f(z) = 0 for all z € D, and f(0) = 1.
Show that there does not exist a function g € A such that

/[ 19tz =min [ [ 19 s

(Hint: it suffices to find a sequence of functions fi, fo,... € A where [[ ||V fi(x)|| dz — 0
as k — oo. Why is this sufficient? Second hint: it may be easier to use polar coordinates.)

Proposition 6.3 (Shortest Paths in the Plane). Let f: [0,1] — R be a C function.
Assume f(0) =0 and f(1) =1. Then

V2 < /01 \/1+ (%f(x))de.
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So, the shortest path between (0,0) € R? and (1,1) € R? is the straight line between them.

Proof. We use the following fact, which we will not prove. There exists a function g: [0, 1] —
R such that g is C*, g(0) =0, g(1) = 1, and such that

/01 \/1 + (%g(x))zdx = min / \/ 2dx )

f(0)= Of(l =1, fec!

In general, assuming the existence of an extremum is not allowed, since the extremum may
not exist, as we saw in Exercise 6.2.

Let t € R, and let h: [0,1] — R such that h(0) = k(1) = 0 and such that h is a C!
function. Let g, := g + th. Then ¢,(0) =0, g,(1) = 1. So, since g minimizes the length, the
following derivative is zero:

1/2

— %H /01 \/1 + (dixgt(x)>2dx = /01 (1 + (%g(x))2>_ %g(x)%h(flf)dflf
-/ o (1 ‘ (d%g(:c)f)_ Q%gm h(a)de.

In the last line, we integrated by parts. Then, by Exercise 6.1,
~1/2

d (H(%g@y) L )| =0

That is, there exists a constant ¢ € R such that
1/2

(1 + (%g(;ﬁ)f)_ %g(m) —c.

(%gm)Q (1-@)=¢

If ¢> = 1 we get a contradiction 0 = 1. So, we can divide both sides by 1 — ¢? to conclude
that |(d/dz)g(x)| is constant. Since (d/dx)g(z) is continuous, we conclude that Lg(z) is

constant. Since g(0) = 0 and g(1) = 1, we must therefore have g(x) = x for all z € [0,1].
Equation (x) therefore concludes the proposition. O

Rearranging a bit,

6.2. Curves of Quickest Descent. Suppose we have an object in the plane that falls from
the point (0,1) to the point (1,0) under the influence of gravity (which acts in the negative
vertical direction). Suppose also the object moves along a path f. That is, f: [0,1] — R,
f(0) =1, f(1) = 0. If the object has mass m and velocity v(z) at the point z € R?, and if
G is the gravitational constant, then the law of conservation of energy says

1

§m(v(x))2 +mGf(x) =mGf(0) =mG.
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Using that velocity is distance over time, then solving for v(z), the time that the object

takes to traverse f is
[,
—_——dx =
o v 2G Jo

(Since the object falls under the influence of gravity, it is sensible to assume that f(z) <1
for all x > 0, so that we do not divide by zero.)

The Brachistochrone problem asks for the path f that takes the shortest amount of time
to fall from one point to another. For example, what is the path f that takes the shortest
amount of time to fall from (0,1) to (1,0)? For the purpose of intuition, we could think of
a small bead traveling along the rigid path f. (And we neglect any frictional forces.) Your
first guess might be to take f to be a straight line between the two points: f(z) = —z + 1
for all x € [0,1]. However, this is not the quickest path! The fastest path is a cycloid.

Theorem 6.4 (Brachistochrone Problem). Let A be the set of all functions f: [0,1] — R
such that f is a C' function on (0,1), f(0) =1, f(1) =0 and f(x) <1 for all0 <z < 1.
Assume there exists g € A satisfying

[,y [,

Then g is a cycloid.

Proof. Let t € R, and let h: [0,1] — R such that h(0) = h(1) = 0 and such that h is a C*
function. Let g, := g + th. Then ¢,(0) =1, ¢;(1) = 0. So, since g minimizes the length, the

following derivative is zero:
d:pgt
dx.
0
‘t / \/ 1 —gi(w

Instead of differentiating under the integral expllcltly as before, we differentiate symboli-

cally. Let a,b € R and define L(a,b) := 4/ % We use prime notation to denote derivatives

with respect to x, and we omit the arguments of L for brevity. Then

0= jt‘t 0/ L(g;(z), g())dz

:/01 (h'( )g—[’ aa/;h( )) d:)s:/ol (—%2—5+2—§) h(z)dz.

In the last line, we integrated by parts. Then, by Exercise 6.1,

d OL OL
ot ¥

Instead of working with (x) directly, we investigate a related conserved quantity H. For

any a,b € R, let H(a,b) := a2t (a,b) — L(a,b). We now show that

ot (foha@)) 0.
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From the Chain rule and (x),

@) = 5 (/05 - 1)

o v / e
d OL 0L
=gz )<%%—%> =0.
So, (*x) holds. That is, there exists ¢ € R such that H(¢'(z),g(z)) = c¢. Using the
definition of H and L,

(9'(x))? 1+ (@) —1
V1t (g(@)?V1-g(x) L=g(@) 1+ (g(2))*V1-g(2)
Squaring both sides and rearranging (and noting that ¢ = 0 cannot occur),
(1= g(@)(1+ (¢'(2))*) =™

We can solve this differential equation by separation of variables. We have
dg [ 1 fimea-ge) _ [e— (g
dx (1 —g(x)) (1= g(z)) l—g(x)

l—yg
=V am g

The proof then concludes via the following exercise. 0

c=H(g'(z) 9(x)) =

That is,

Exercise 6.5. Assume that g: [0,1] — R with g(x) < 1 for all 0 < z < 1, ¢(0) = 1, and
g(1) = 0. Assume that for some ¢ > 0 we have

o [,

By substituting 1 — g = ¢ 2sin?(6/2) = ¢ %(1 — cos /2 conclude that

r=12(0) = ¢ 2(0 —sinf).
In summary, (z(0),9(0)) = (¢c72(0 — sinf),1 — ¢ 2(1 — cos#)/2). That is, the curve is a
cycloid.

Exercise 6.6 (Isoperimetric Inequality in the Plane). Let ¢ € [0,1]. Let s(t) =
(z(t),y(t)) be a parametrization of a curve in the plane. Assume that s(t) # s(t’) for all
t,t' €[0,1) with ¢ # t'. Assume also that s(0) = s(1). That is, the curve does not intersect
itself except at the points t =0 and t = 1.

Assume that x,y are C! functions. The length of the curve s is defined to be

/ I/ (1) dt = / N(E O)dt.
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The area enclosed by the curve is defined to be

1

AW =5 [ 2oy - v

Let ¢ > 0. Subject to the constraint L(s) = ¢, we wish to maximize A(s).

In order to solve this constrained maximization problem, we assume there exists a curve s
of maximal area and of length ¢. And we also assume that the Lagrange Multiplier Theorem
applies to this problem. That is, there exists A € R such that, if r(t) = (w(t), 2(¢)) is any
function with ¢ € [0, 1], and if s,(¢) = s(t) + pr(t) for any p € (—1,1), then

d d
d_pL(Sp) = /\d_pA(Sp)'

By investigating this equation, conclude that s is a circle. That is, there exists ¢, d € R such
that (r — ¢)? + (y — d)*> = A%, Deduce the isoperimetric inequality: for any curve s such
that z,y € C*', s(0) = s(1) and such that s does not intersect itself, we have

1 2
Als) < 4 (L(s))*

(Hint: first consider r where w(t) = 0 for all ¢ € [0,1], and then consider r where z(t) = 0
for all ¢ € [0,1]. Also, you may assume that s is a constant-speed parametrization, so that
|8’ (t)]| is constant for all ¢ € [0, 1].)

Exercise 6.7. In Exercise 2.60, we investigated the largest entropies on finite-dimensional
vector spaces. (The smallest possible entropy is zero, so minimizing entropy is not so inter-
esting.) The infinite-dimensional case is a bit different than the finite-dimensional case.

Let A be the set of all f: R — [0,00) such that [*° f(z)dz = 1. (In probability termi-

nology, f is a probability density function.) Maximize the entropy

- / " (@) log f(x) d

over the set A, subject to the constraint

/_00 2 f(x)dr = 1.

o0

(You may assume that the maximum exists.) (Hint: if ¢ € A, what functions h can we add
to g so that g+ h € A?)
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7. APPENDIX: NOTATION

Let n,m be a positive integers. Let A, B be sets contained in a universal set €2
R denotes the set of real numbers

7 denotes the set of integers

€ means “is an element of.” For example, 2 € R is read as “2 is an element of R.”
YV means “for all”

34 means “there exists”

R" = {(z1,29,...,2,): z; € RV1 <7 <n}

f: A— B means f is a function with domain A and range B. For example

f: R? — R means that f is a function with domain R? and range R
() denotes the empty set

A C BmeansV a € A, we have a € B, so A is contained in B
ANB:={acA:a¢ B}

A= QN A, the complement of Ain (2

AN B denotes the intersection of A and B
A U B denotes the union of A and B

Let aq,...,a, be real numbers. Let n be a positive integer

Zai:al+a2+"'+an—l+an-

Haz—al Qg+ Qp—1 * Ap.

Let A be a real matrix. Let n be a positive integer. Let K be a closed and bounded subset
of R". Let f: R® — R be a continuous function

AT denotes the transpose of A.
I denotes the n x n identity matrix.

A" denotes the inverse of A (if A~! exists), so that AA™?

=AtA=1
det(A) denotes the determinant of A.
b

)
min(a, b)
max(a, b)
min / (2)

()

denotes the minimum of ¢ and b.
denotes the maximum of ¢ and b.
n f(z denotes the minimum value of f on K
TE

max f(x) denotes the maximum value of f on K

Let z,y € R". We write z = (x1,...,2,), so that z; € R for all 1 <i <n. Let r > 0.
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n
(x,y) = Z%?Jz , the dot product, or standard inner product, of z and y
i=1

||| = /(z,x) = (Z x7) , the length of the vector x
i=1

B.(y) ={x € R": ||z —y|| < r}., the ball of radius r centered at y
x> 0meansz; > 0V1 <i<n.
Let A be an n x n real symmetric matrix. We write A > 0 to denote that A is positive
semidefinite.

Let f: R" — R. Let z € R". Let ¢ € {1,...,n}. Let v € R" be a vector. Let k be a
positive integer.

gf (x) = fi,(z), denotes the partial derivative of f at x in the x;-direction
Z;
af of
Df(x) = (8_x1(x)’ . -,87(55)>
r_ (9f of 2\ .
Vf(z)=(Df(x)) = a—%(as), e %(SB) , denotes the gradient vector of f at x

D,f(x) =V f(x)-v, denotes the derivative of f at x in the direction v

02 f o2 f
a_z%(x) U Doy ("E)
D?*f(z) = : : , denotes the Hessian, of f at .
9? 02
amla};n () - ﬁ(l‘)

f € C* means that all iterated partial derivatives of f up to order k exist and are continuous.

UCLA DEPARTMENT OF MATHEMATICS, LOS ANGELES, CA 90095-1555
FE-mail address: heilman@math.ucla.edu

56



	1. Introduction
	2. Review of Calculus and Linear Algebra
	2.1. Optimization on the Line
	2.2. Linear Algebra
	2.3. Convex Geometry, Convex Functions
	2.4. Lagrange Multipliers
	2.5. Second Derivative Test

	3. Optimization of Real Functions
	3.1. Gradient Ascent/Descent
	3.2. Newton's Method
	3.3. Conjugate Gradient Methods
	3.4. Least Squares

	4. Linear Programming
	4.1. Introduction
	4.2. The Simplex Method
	4.3. The Ellipsoid Method
	4.4. Interior Point Methods
	4.5. Duality

	5. Semidefinite Programming
	5.1. Introduction
	5.2. Algorithms
	5.3. MAX-CUT

	6. Calculus of Variations
	6.1. Shortest Paths in the Plane
	6.2. Curves of Quickest Descent

	7. Appendix: Notation

