
164 Midterm 2 Solutions1

1. Question 1

Let n ≥ 1. Let A be an n × n symmetric positive definite matrix. Let b ∈ Rn. Suppose
you want to solve for x ∈ Rn in the equation Ax = b.

Consider (i) inverting the matrix A and setting x = A−1b, or (ii) using the Conjugate
Gradient Method.

Describe the benefit of method (ii) over method (i), in terms of the number of arithmetic
operations that can be required of each method (in the worst possible case). (It is possible to
answer this question in around three sentences.) (In this question you can freely cite things
we did in class.)

Solution. Inverting the matrix A using Gaussian elimination can require around n3 arith-
metic operations. On the other hand, the Conjugate Gradient method requires only around
nmax(m,n) = max(nm, n2) arithmetic operations, where m is the number of nonzero entries
of A. So, the Conjugate Gradient method is much faster. There are even faster algorithms
than the Conjugate Gradient method, but we will not discuss these in this class.

2. Question 2

Let A be an m× n real matrix with m ≥ n. Assume that A has rank n. Show that ATA
is positive definite.

Solution. Suppose A has rank n. Note that ATA is a real symmetric n × n matrix
(since (ATA)T = ATATT = ATA), so ATA has n real eigenvalues. Also, for any x ∈ Rn,
xTATAx = (Ax)TAx ≥ 0. Therefore, all eigenvalues of ATA must be nonnegative. (If ATA
had a negative eigenvalue λ with corresponding eigenvector x 6= 0, then xTATAx = xTλx =
λ(xTx) < 0, a contradiction.) So, we know that ATA is positive semidefinite. It remains
to show that ATA has no zero eigenvalues. We argue by contradiction. Suppose ATAx = 0
for some x ∈ Rn with x 6= 0. Since A has rank n, the rank-nullity theorem says that A has
nullity zero. That is, Ax 6= 0 if x 6= 0. But then 0 = xTATAx = (Ax)TAx > 0 since Ax 6= 0,
a contradiction. We conclude that ATA is positive definite.

3. Question 3

Using the Simplex Algorithm, solve the following linear program:

minimize − 4x1 − 2x2 subject to the constraints

x1 + x2 + x3 = 6

2x1 + x2/2 + x4 = 8, x ≥ 0.

(Hint: start at the point (x1, x2, x3, x4) = (0, 0, 6, 8).) (You may assume without proof that
this linear program is non-degenerate.)

Solution. We will first check that (0, 0, 6, 8) is a basic feasible solution. LetA =

(
1 1 1 0
2 1/2 0 1

)
and let b =

(
6
8

)
. Let S = {3, 4}, and let x = (0, 0, 6, 8)T . Note that Ax = b, x ≥ 0, xi = 0
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when i /∈ S, and the matrix B =

(
1 0
0 1

)
is invertible. Therefore, (0, 0, 6, 8) is a basic feasible

solution, which allows us to begin the simplex method.
Let Ai denote the ith column of A, 1 ≤ i ≤ 4. We can now proceed in two different ways.

Method 1. We pivot on the first column. Then A1 = A3 + 2A4, so A(1, 0,−1,−2)T = 0, and
for any t ∈ R, A[(0, 0, 6, 8) + t(1, 0,−1,−2)] = b. Since x ≥ 0 in the feasible set, we choose
t = 4, to get A(4, 0, 2, 0) = b. Then, if we define S := {1, 3} and set x := (4, 0, 2, 0), then the

matrix B = (A1, A3) =

(
1 1
2 0

)
is invertible, and xi = 0 when i /∈ S. Therefore, (4, 0, 2, 0)

is a basic feasible solution. At the previous basic feasible solution, we had −4x1 − 2x2 = 0,
and we now have −4x1 − 2x2 = −16. So, the new basic feasible solution is smaller, so we
maintain this solution and continue the algorithm.

We now pivot on the second column. Then A2 = (1, 1/2)T = (1/4)(1, 2)T + (3/4)(1, 0)T ,
and for any t ∈ R, A[(4, 0, 2, 0) + t(−1/4, 1,−3/4, 0)] = b. Since x ≥ 0 in the feasible set,
we choose t = 8/3, to get A(10/3, 8/3, 0, 0) = b. Then, if we define S := {1, 2} and set

x := (10/3, 8/3, 0, 0), then the matrix B = (A1, A2) =

(
1 1
2 1/2

)
is invertible, and xi = 0

when i /∈ S. Therefore, (10/3, 8/3, 0, 0) is a basic feasible solution. At the previous basic
feasible solution, we had −4x1−2x2 = −16, and we now have −4x1−2x2 = −40/3−16/3 =
−56/3 < −48/3. So, the new basic feasible solution is smaller, so we maintain this solution
and continue the algorithm.

We have so far checked three basic feasible solutions. We will now show that (10/3, 8/3, 0, 0)
achieves the minimum value of the linear program. From Proposition 4.24 in the notes, we
know the Simplex Algorithm will terminate at the minimum value. So, it suffices to show
that the simplex algorithm terminates. We consider the two available pivots. If we pivot on
the third column, we will return to (4, 0, 2, 0), which must increase the linear program. And
if we pivot on the last column, we have A4 = (0, 1)T = (2/3)[(1, 2)T − (1, 1/2)T ], and for any
t ∈ R, A[(10/3, 8/3, 0, 0) + t(−2/3, 2/3, 0, 1)] = b. We choose t = 5 and consider the point
x = (0, 6, 0, 5). This is a basic feasible solution, but −4x1 − 2x2 = −12 > −56/3. That is,
moving from (10/3, 8/3, 0, 0) to any other basic feasible solution (as in the Simplex Algo-
rithm) produces a point that increases the linear program. We conclude that (10/3, 8/3, 0, 0)
is the minimal point.

Note. The set of all basic feasible solutions is: (0, 0, 6, 8), (4, 0, 2, 0), (10/3, 8/3, 0, 0),
(0, 6, 0, 5). (We cannot use S = {1, 4}, since then x1 = 6, and then no solution x ≥ 0 exists
with x2 = x3 = 0. Also, we cannot use S = {2, 3}, since then x2 = 16, and then no solution
x ≥ 0 exists with x1 = x4 = 0.)

4. Question 4

Describe in detail how the ellipsoid method works. In your description you should answer
the following questions.

• What is a polytope? What is an ellipsoid?
• What are the input and output of the algorithm?
• What problem does the ellipsoid method solve?
• Under what assumptions does the algorithm terminate?
• What happens in “one step” of the algorithm?
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(You do not have to provide every single detail as we did in class, but try to include as
much detail as you can. Your goal to try to convince the grader, as best you can, that
you understand how the ellipsoid method works.) (Only answering the above five questions
does not constitute a complete answer.) (Also drawing a picture might be helpful, though a
correct answer can be given without drawing any pictures.)

Solution. A polytope is the intersection of a finite number of half spaces. An ellipsoid is
a set of the form {x ∈ Rn : xTAx ≤ 1} where A is a real symmetric positive definite n × n
matrix. The input of the algorithm is a nonempty polytope P , given in the form

P = {x ∈ Rn : Ax ≤ b}
where A is an m × n matrix and b ∈ Rm. We are also given a Euclidean ball B such
that P ⊆ B. The goal of the algorithm is to find a point p ∈ P . It is assumed that
voln(B)/voln(P ) ≤ c′ for some c′ ≥ 1. Under this assumption, the algorithm terminates
after at most 2n log(c′) steps.

The algorithm begins with the Euclidean ball B. We then ask if the center c of this
ellipsoid B is in P or not. If the center is in P , we are done, since we have found a point in
P . If the center is not in P , then one of the inequalities of Ax ≤ b has been violated. That
is, there exists some row a(j) of A, 1 ≤ j ≤ m, such that 〈a(j), x〉 > bi. By definition of P ,
P ∩ {x ∈ Rn : 〈a(j), x〉 > bj} = ∅. Since P ⊆ B, we conclude that

P ⊆ B ∩ {x ∈ Rn : 〈a(j), x〉 ≤ bj} ⊆ B ∩ {x ∈ Rn : 〈a(j), x〉 ≤ 〈a(j), yk〉}
= B ∩ {x ∈ Rn : 〈a(j), x− yk〉 ≤ 0}.

That is, P is contained in the half ellipsoid B ∩ {x ∈ Rn : 〈a(j), x − yk〉 ≤ 0}. (This set is
called a half ellipsoid, since it is the intersection of the ellipsoid B with the half space.) We
then let E1 be the Löwner-John ellipsoid of B ∩ {x ∈ Rn : 〈a(j), x− yk〉 ≤ 0}. That is, E1 is
an ellipsoid E1 ⊇ B ∩ {x ∈ Rn : 〈a(j), x− yk〉 ≤ 0}, so that P ⊆ E1. And the volume of E1

decreases relative to B, i.e. voln(E1)/voln(B) < e−1/n, as shown on the homework. We now
repeat the above procedure, replacing E1 with B. We repeat this procedure N > 2n log(c′)
steps. Then

voln(EN)

voln(B)
=

voln(EN)

voln(E0)
=

N−1∏
k=0

voln(Ek+1)

voln(Ek)

(∗)
< (e−1/2n)2n log(c′) = (c′)−1.

That is, voln(EN) < voln(B)(c′)−1. On the other hand, voln(B)/voln(P ) ≤ c′, so voln(P ) ≥
(c′)−1voln(B). That is, voln(EN) < voln(P ). So, it is not possible that P ⊆ EN . That is, the
algorithm terminates after at most N steps. At termination, we must have found a point in
P , as desired.
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