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1. Question 1

True/False
(a) Let f : R → R be a C3 function such that f(x) ≥ 0 for all x ∈ R. Then the gradient

descent algorithm started at the point 0 will find the global minimum of f .
FALSE. The gradient descent algorithm may only terminate at a local minimum of a

function. Let x ∈ R and consider f(x) = (x− 1)2(x+ 1)2. Note that f(x) ≥ 0 for all x ∈ R.
Then f ′(x) = (x−1)22(x+1)+(x+1)22(x−1) = 2(x+1)(x−1)(x+1+x−1) = 4x(x+1)(x−1).
So, f ′(0) = 0, and the gradient descent algorithm cannot move anywhere, since x0 = 0, and
x1 = x0 + εf ′(0) = x0, for any ε > 0, and more generally xn = x0 for any n ≥ 0. So,
f(xn) = 1 for all n ≥ 0, but f(1) = 0. That is, the algorithm has not found the global
minimum of f .

(b) Let A be a 5× 5 real symmetric matrix. Let x ∈ R5. As usual, define ‖x‖ = (xTx)1/2.
Assume that, for any x ∈ R5, we have limn→∞ ‖Anx‖ = 0. Then any eigenvalue λ of A must
satisfy |λ| < 1.

TRUE. If A has an eigenvalue λ with |λ| ≥ 1 with eigenvector x ∈ R5, x 6= 0, then λ ∈ R
by the Spectral Theorem (Theorem 2.22 in the notes), and Anx = λnx, so ‖Anx‖ = ‖λnx‖ =
|λ|n ‖x‖.

(c) Let n ≥ 2 be an integer. Let f : Rn → R be a function. Assume that f ∈ C3. Fix

x ∈ Rn. As usual, define the matrix of second derivatives D2f(x) so that (D2f(x))ij = ∂2f(x)
∂xi∂xj

for any 1 ≤ i, j ≤ n. Assume that ∇f(x) = 0 and all eigenvalues of D2f(x) are nonnegative.
Then x is a local minimum of f .

FALSE. Let f(x, y) = x4 − y4. Then ∇f(0, 0) = 0, D2f(0) = 0, so all eigenvalues of
D2f(0) are nonnegative, but f(0, 0) = 0 while f(0, t) < 0 for all t 6= 0. Therefore, (0, 0) is
not a local minimum of f .

(d) Let A be a 2× 2 real matrix. For any x, y ∈ R2, define 〈x, y〉A := xTAy. Then for any
x ∈ R2, 〈x, x〉A ≥ 0.

FALSE. Let A =

(
−1 0
0 −1

)
. Let x =

(
1
0

)
. Then xTAx = −1 < 0.

(e) Suppose we have a primal linear program which is infeasible. Then the dual linear
program is unbounded.

FALSE; it is possible for both the primal and dual to be infeasible, from the first item in the
Strong Duality Theorem for Linear Programming. For example, if c = −1, b = −1, A = 0,
the primal problem with x ∈ R has feasible set 0 · x = −1, x ≥ 0, and the dual problem has
feasible set 0 · y ≤ −1. Both feasible regions are therefore empty.

(f) Suppose both the primal and dual linear program are feasible, where both the primal
and dual are defined in the Reference Sheet. Then there exist x, y which are feasible for the
primal and dual problems respectively such that cTx = bTy.

TRUE; it is the last part of the strong duality theorem.
(g) Let m,n be positive integers with m ≤ n. Let A be a real m× n matrix with full row

rank, and let b ∈ Rm. Let K = {x ∈ Rn : x ≥ 0, Ax = b}. Then x is a vertex of K if and
only if x is a basic feasible solution.
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TRUE; Lemma 4.21 from the notes.
(h) Suppose we have a bounded, feasible linear program in standard form given by an

m×n matrix A, c ∈ Rn, b ∈ Rm. Then the Simplex algorithm will find the minimum of this
linear program in a number of steps which is a polynomial in n and in m.

FALSE; we mentioned this in class. If the feasible region is the (bounded, nonempty)
hypercube P = {x ∈ Rn : 0 ≤ xi ≤ 1, ∀ 1 ≤ i ≤ n}, then P has 2n vertices, and the Simplex
algorithm may need to visit all of these vertices. That is, for any n ≥ 1, the algorithm might
need 2n steps to terminate, and 2n exceeds any polynomial in n.

2. Question 2

If the statement below is true, prove it. If the statement below is false, do your best to
explain why it is false (a counterexample would be best, but a counterexample would not be
required.)

Let f : R2 → R be a C3 function with exactly one critical point x ∈ R2. Assume that x is
a local minimum of f . Then x is a global minimum of f .

Solution. This statement is false. Let f(x, y) = x2 + y2(1 + x)3 for any x, y ∈ R. Then
∇f(x, y) = (2x+3(1+x)2y2, 2y(1+x)3) = 0 only when 2y(1+x)3 = 0 and 2x = −3(1+x)2y2.
From the first equation, either y = 0 or x = −1. If y = 0, then 2x = 0, so x = 0.
If x = −1, then 2x = 0 so x = 0. So, the only critical point of f is (0, 0). We have
∂2f/∂x2 = 2 + 6(1 + x)y2, ∂2f/∂y2 = 2(1 + x)3, and ∂2f/∂x∂y = 6y(1 + x)2. So, at (0, 0),

we have D2f(0, 0) =

(
2 0
0 2

)
. So, (0, 0) is a local minimum of f . However, (0, 0) is not a

global minimum of f since f(0, 0) = 0, and f(−2, 3) < 0.

3. Question 3

Let f : R → R be a function with three continuous derivatives. Assume that f ′′(x) ≥ 0
for all x ∈ R. Show that f is convex. (You can freely use Taylor’s Theorem with integral
remainder.)

Solution. From Taylor’s Theorem, for any x, y ∈ R, we have

f(x) = f(y) + (x− y)f ′(y) +
1

2

∫ x

y

f ′′(t)(x− t)dt ≥ f(y) + (x− y)f ′(y). (∗)

Let a, b ∈ R and let t ∈ (0, 1). Set y := ta+ (1− t)b. From (∗), we deduce

tf(a) ≥ tf(y) + t(a− y)f ′(y), (1− t)f(b) ≥ (1− t)f(y) + (1− t)(b− y)f ′(y)

Note that t(a− y) + (1− t)(b− y) = ta+ (1− t)b− y = 0 by definition of y. So, adding the
inequalities,

tf(a) + (1− t)f(b) ≥ f(y) + f ′(y)[t(a− y) + (1− t)(b− y)] = f(y) = f(ta+ (1− t)b).

4. Question 4

Let m ≥ n be positive integers. Let A be a real m× n matrix with rank n. Let b ∈ Rm.
Show that the global minimum of ‖Ax− b‖2 among all x ∈ Rn occurs when

x = (ATA)−1AT b.

(You may assume without proof that ATA is invertible. As usual ‖x‖ = (xxT )1/2. )
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Solution. Let x ∈ Rn and define

f(x) := ‖Ax− b‖2 = (Ax− b)T (Ax− b) = xTATAx− bTAx− xTAb+ bT b

=
n∑

i,j=1

xi(A
TA)ijxj −

n∑
i=1

(bTA)ixi −
n∑

i=1

(Ab)ixi + bT b.

For any 1 ≤ i, j ≤ n,

∂f

∂xi
= 2

∑
j : j 6=i

(ATA)ijxj + 2xi(A
TA)ii − (bTA)i − (Ab)i.

∂2f

∂xi∂xj
= (ATA)ij.

That is, ∇f(x) = 2ATAx − 2AT b and D2f(x) = 2ATA. In particular, if x = (ATA)−1AT b,
then ∇f(x) = 0.

We now show that f is a convex function. Let t ∈ (0, 1) and let x, y ∈ Rn. Then

tf(x) + (1− t)f(y)− f(tx+ (1− t)y)

= t ‖Ax− b‖2 + (1− t) ‖Ay − b‖2 − ‖A(tx+ (1− t)y)− b‖2

= t ‖Ax− b‖2 + (1− t) ‖Ay − b‖2 − ‖t(Ax− b) + (1− t)(Ay − b)‖2

= t ‖Ax− b‖2 + (1− t) ‖Ay − b‖2 − t2 ‖Ax− b‖2 − (1− t)2 ‖Ay − b‖2 − 2t(1− t)(Ax− b)T (Ay − b)
= t(1− t) ‖Ax− b‖2 + t(1− t) ‖Ay − b‖2 − 2t(1− t)(Ax− b)T (Ay − b)

= t(1− t)
(
‖Ax− b‖2 + ‖Ay − b‖2 − 2(Ax− b)T (Ay − b)

)
= t(1− t) ‖(Ax− b)− (Ay − b)‖2 ≥ 0, since 0 < t < 1.

That is, f is convex.
So, f is convex, and the point x = (ATA)−1AT b satisfies ∇f(x) = 0. We conclude that

this point x is the global minimum of f , since if y ∈ Rn, and if we define g(t) := f(x + ty),
t ∈ R, then Taylor’s Theorem with integral remainder implies that

g(t) = g(0) + (y − x)g′(0) +
1

2

∫ x

y

g′′(t)(x− t)dt.

Then g′(0) = 〈y,∇f(x)〉 = 0 since ∇f(x) = 0, and g′′(t) = yT [D2f(x+ ty)]y = 2yAATAy =
2(Ay)TAy ≥ 0. Therefore,

g(t) ≥ g(0) = f(x).

That is, f(z) ≥ f(x) for all z ∈ Rn.

5. Question 5

For a linear program in standard form, show that the dual problem of the dual problem
is the primal problem.
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The dual problem is maximize bTy subject to ATy ≤ c. Equivalently, the dual problem is
minimize −bTy subject to ATy ≤ c. We rewrite the constraint as

minimize

−bb
0

T y+y−
z

 subject to the constraints

(
AT −AT I

)y+y−
z

 = c,

y+y−
z

 ≥ 0.

By the definition of the dual, the dual of this problem is

maximize cTx subject to the constraints

(
AT −AT I

)T
x ≤

−bb
0

 .

The constraint now says Ax ≤ −b and −Ax ≤ b, i.e. Ax ≥ −b. That is, Ax = −b and
x ≤ 0. Equivalently, this linear program is to minimize cT (−x) subject to the constraints
A(−x) = b and x ≤ 0. Relabeling −x as x, this linear program can be written as: minimize
cTx subject to the constraints Ax = b and x ≥ 0, as desired.

6. Question 6

Give an example of a linear program in standard form where the primal problem is
unbounded, and the dual problem is infeasible. Or, prove that no such linear program
exists.

Solution. We use the following linear program where c = −1, A = 0, b = 0:

minimize − x1 subject to the constraint 0 · x1 = 0, x1 ≥ 0.

This problem is unbounded since every positive integer n is feasible, and −n → −∞ as
n→∞

The dual of this problem is:

maximize 0 subject to the constraint 0 · y1 ≤ −1.

Since no real number y1 satisfies 0 · y1 ≤ −1, the dual problem is infeasible.

7. Question 7

Let K be the following set of positive semidefinite 2× 2 matrices

K =

{(
a b
b c

)
≥ 0: a, b, c ∈ R, a+ c = 1

}
.

Show that K has infinitely many extreme points. (Hint: which matrices in K have determi-
nant zero?)
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Solution. Show that K has infinitely many extreme points. Let a, b ∈ R and consider a

matrix of the form

(
a b
b 1− a

)
For a matrix in K, note that

det

(
a b
b 1− a

)
= a(1− a)− b2.

So, this matrix has determinant zero when a(1 − a) = b2. So, let 0 ≤ a ≤ 1, and consider

matrices of the form

(
a

√
a(1− a)√

a(1− a) 1− a

)
. This matrix has determinant zero and trace

1, so its eigenvalues x, y satisfy xy = 0 and x+ y = 1. That is, one of the eigenvalues is zero,

and the other is one. We claim that every matrix of the form

(
a

√
a(1− a)√

a(1− a) 1− a

)
,

0 ≤ a ≤ 1 is an extreme point of K. This claim completes the problem. We have already
verified that each of these matrices is in K.

So, consider any such matrix A. Let x ∈ R2 be the zero eigenvector of C, x 6= 0. We argue
by contradiction. Suppose there exist B,C ∈ K, 0 < t < 1 such that A = tB + (1 − t)C
and B 6= C, then 0 = xTAx = xT (tB + (1 − t)C)x = txTBx + (1 − t)xTCx. Since B ≥ 0,
C ≥ 0, we have xTBx ≥ 0 and xTCx ≥ 0. Since t > 0 and (1 − t) > 0, we conclude
that xTBx = xTCx = 0. That is, x is also a zero eigenvector for B and C. That is, both
B,C have a zero eigenvalue. So, both B,C have zero determinant. In summary, there exist
0 ≤ a, b, c ≤ 1 such that

A =

(
a

√
a(1− a)√

a(1− a) 1− a

)
B =

(
b

√
b(1− b)√

b(1− b) 1− b

)
, C =

(
c

√
c(1− c)√

c(1− c) 1− c

)
.

Define a function f(a) :=
√
a(1− a) =

√
a− a2, 0 ≤ a ≤ 1. Then f ′(a) = (1/2)[a(1 −

a)]−1/2[−2a+ 1], and

f ′′(a) = −[a(1− a)]−1/2 + (−2a+ 1)(1/2)(−1/2)[a(1− a)]−3/2(−2a+ 1)

= [a(1− a)]−3/2[−a(1− a)− (1/4)(1− 2a)(−2a+ 1)] = [a(1− a)]−3/2[−1/4]

= −[a(1− a)]−3/2/4.

So, f ′′(a) < 0 for all 0 < a < 1, f(0) = f(1) = 0. So, f is strictly concave on [0, 1]. That
is, if 0 < t < 1, and if b 6= c, (which is true since B 6= C), then tf(b) + (1 − t)f(c) <

f(tb + (1 − t)c). By assumption A = tB + (1 − t)C, so a = tb + (1 − t)b,
√
a(1− a) =

t
√
b(1− b) + (1− t)

√
c(1− c). But tf(b) + (1− t)f(c) < f(tb+ (1− t)c) says

√
a(1− a) >

t
√
b(1− b) + (1− t)

√
c(1− c). We have found a contradiction. The proof is complete.

8. Question 8

Let g : [0, 1]→ R be a continuous function. Assume that, for any C1 function h : [0, 1]→ R
with h(0) = h(1) = 0, we have ∫ 1

0

g(x)h(x)dx = 0.

Conclude that g(x) = 0 for all x ∈ [0, 1].
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Solution. We argue by contradiction. Assume g(x) 6= 0 for some x ∈ [0, 1]. Without loss of
generality, g(x) > 0. By the definition of continuity, ∀ ε > 0, there exists δ > 0 such that, for
all y ∈ [0, 1] with 0 < |y − x| < δ, we have |g(x)− g(y)| < ε. So, choosing ε := g(x)/2, we
get some δ > 0 such that, for all y ∈ [0, 1]∩[x−δ, x+δ], we have g(y) > g(x)−ε > g(x)/2 > 0.
Choosing some smaller interval inside [0, 1]∩ [x−δ, x+δ] if necessary, there is some z ∈ (0, 1)
such that (z, 4z) ⊆ [0, 1] and for all y ∈ (z, 4z) we have g(y) > g(x)/2 > 0. Let h : [0, 1]→ R
so that

h(t) =


0 , if 0 ≤ t ≤ z

(t− z)2(t− 4z)2 , if z ≤ t ≤ 4z

0 , if t > 4z.

Then h(0) = h(1) = 0, h ∈ C1, h(y)g(y) ≥ 0 for all y ∈ [0, 1], and h(y)g(y) > g(x)z4/2 for
all y ∈ [2z, 3z]. Therefore,∫ 1

0

h(y)g(y)dy ≥
∫ 3z

2z

h(y)g(y)dy > z5g(x)/2 > 0,

a contradiction. We conclude that g(x) = 0 for all x ∈ [0, 1].

9. Question 9

Let f : [0, 1]→ R be a C1 function. Assume f(0) = 0 and f(1) = 2. Show that

√
5 ≤

∫ 1

0

√
1 +

(
d

dx
f(x)

)2

dx.

You may assume that there exists a function g : [0, 1] → R such that g is C1, g(0) = 0,
g(1) = 2, and such that∫ 1

0

√
1 +

(
d

dx
g(x)

)2

dx = min
f : [0,1]→R,

f(0)=0, f(1)=2, f∈C1

∫ 1

0

√
1 +

(
d

dx
f(x)

)2

dx. (∗)

Solution. Let t ∈ R, and let h : [0, 1]→ R such that h(0) = h(1) = 0 and such that h is a
C1 function. Let gt := g + th. Then gt(0) = 0, gt(1) = 1. So, since g minimizes the length,
the following derivative is zero:

0 =
d

dt
|t=0

∫ 1

0

√
1 +

(
d

dx
gt(x)

)2

dx =

∫ 1

0

(
1 +

(
d

dx
g(x)

)2
)−1/2

d

dx
g(x)

d

dx
h(x)dx

= −
∫ 1

0

d

dx

(1 +

(
d

dx
g(x)

)2
)−1/2

d

dx
g(x)

h(x)dx.

In the last line, we integrated by parts. Then, by Question 8,

d

dx

(1 +

(
d

dx
g(x)

)2
)−1/2

d

dx
g(x)

 = 0.
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That is, there exists a constant c ∈ R such that(
1 +

(
d

dx
g(x)

)2
)−1/2

d

dx
g(x) = c.

Rearranging a bit, (
d

dx
g(x)

)2

(1− c2) = c2.

If c2 = 1 we get a contradiction 0 = 1. So, we can divide both sides by 1 − c2 to conclude
that |(d/dx)g(x)| is constant. Since (d/dx)g(x) is continuous, we conclude that d

dx
g(x) is

constant. Since g(0) = 0 and g(1) = 2, we must therefore have g(x) = 2x for all x ∈ [0, 1].
Equation (∗) therefore concludes the proposition.
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