
Optimization Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due October 4, in the discussion section.

Homework 1

Exercise 1. Let A be an n × n real symmetric matrix. Show that the following three
conditions are equivalent:

• A is positive semidefinite
• All eigenvalues of A are nonnegative.
• There exists a real n× n matrix B such that A = BBT .

(Hint: you should probably use the Spectral Theorem for Symmetric Matrices.)

Exercise 2. Show that the two different versions of the Spectral Theorem for Symmetric
Matrices from the notes are equivalent. That is, show that the following statements are
equivalent:

• Let A be an n × n real symmetric matrix. Then there exists an orthogonal n × n
matrix Q whose columns are each eigenvectors of A, and there exists a real diagonal
matrix D whose diagonal entries are the eigenvalues of A such that Q−1AQ = D.
That is, A = QDQ−1.
• Equivalently, if λ1, . . . , λn ∈ C are the eigenvalues of A (where some eigenvalues are

allowed to be the same), then λ1, . . . , λn ∈ R, and there exist vectors v1, . . . , vn ∈ Rn

which are an orthonormal basis of Rn such that A =
∑n

i=1 λiviv
T
i .

Exercise 3. Let A be an n × n real symmetric matrix. Let λ1 ≥ · · · ≥ λn ∈ R be the
eigenvalues of A, ordered according to their size. Let x ∈ Rn. Show that

λ1 ||x||2 ≥ xTAx ≥ λn ||x||2 .

Exercise 4. Prove the Cauchy-Schwarz inequality: For any x, y ∈ Rn, we have

|〈x, y〉| ≤ ||x|| ||y|| .

(Hint: subtract the projection of y onto x. That is, if x 6= 0, let v := 〈x,y〉
〈x,x〉x, and expand out

the inequality ||y − v||2 ≥ 0.)

Exercise 5. Prove the triangle inequality: For any x, y, z ∈ Rn,

||x− y|| ≤ ||x− z||+ ||z − y|| .
(Hint: it may be conceptually easier to show ||x+ y|| ≤ ||x||+ ||y||. To show this inequality,
square both sides, and use the Cauchy-Schwarz inequality.) Then, deduce the reverse
triangle inequality:

||x− y|| ≥ | ||x|| − ||y|| | .



2

Exercise 6 (The Power Method). This exercise gives an algorithm for finding the eigenvec-
tors and eigenvalues of a symmetric matrix. The Power Method described below is not the
best algorithm for this task, but it is perhaps the easiest to describe and analyze.

Let A be an n× n real symmetric matrix. Let λ1 ≥ · · · ≥ λn be the (unknown) eigenvalues
of A, and let v1, . . . , vn ∈ Rn be the corresponding (unknown) eigenvectors of A such that
||vi|| = 1 and such that Avi = λivi for all 1 ≤ i ≤ n.

Given A, our first goal is to find v1 and λ1. For simplicity, assume that 1/2 < λ1 < 1, and
0 ≤ λn ≤ · · · ≤ λ2 < 1/4. Suppose we have found a vector v ∈ Rn such that ||v|| = 1
and |〈v, v1〉| > 1/n. (A randomly chosen v will satisfy |〈v, v1〉| > 1/(10

√
n), [which is a nice

optional exercise for those who have taken 170A], so this assumption is valid in practice.)
Let k be a positive integer. Show that

Akv

approximates v1 well as k becomes large. More specifically, show that for all k ≥ 1,∣∣∣∣Akv − 〈v, v1〉λk1v1
∣∣∣∣2 ≤ n− 1

16k
.

Since |〈v, v1〉|λk1 > 2−k/n, this inequality implies that Akv is approximately an eigenvector
of A with eigenvalue λ1. That is, by the triangle inequality,∣∣∣∣A(Akv)− λ1(Akv)

∣∣∣∣ ≤ ∣∣∣∣Ak+1v − 〈v, v1〉λk+1
1 v1

∣∣∣∣+ λ1
∣∣∣∣〈v, v1〉λk1v1 − Akv

∣∣∣∣ ≤ 2

√
n− 1

4k
.

Moreover, by the reverse triangle inequality,∣∣∣∣Akv
∣∣∣∣ =

∣∣∣∣Akv − 〈v, v1〉λk1v1 + 〈v, v1〉λk1v1
∣∣∣∣ ≥ 1

n
2−k −

√
n− 1

4k
.

In conclusion, if we take k to be large (say k > 10 log n), and if we define z := Akv, then z
is approximately an eigenvector of A, that is∣∣∣∣∣∣∣∣A Akv

||Akv||
− λ1

Akv

||Akv||

∣∣∣∣∣∣∣∣ ≤ 4n3/22−k ≤ 4n−4.

And to approximately find the first eigenvalue λ1, we simply compute

zTAz

zT z
.

That is, we have approximately found the first eigenvector and eigenvalue of A.

Remarks. To find the second eigenvector and eigenvalue, we can repeat the above procedure,
where we start by choosing v such that 〈v, v1〉 = 0, ||v|| = 1 and |〈v, v2〉| > 1/(10

√
n). To

find the third eigenvector and eigenvalue, we can repeat the above procedure, where we start
by choosing v such that 〈v, v1〉 = 〈v, v2〉 = 0, ||v|| = 1 and |〈v, v3〉| > 1/(10

√
n). And so on.

Google’s PageRank algorithm uses the power method to rank websites very rapidly. In
particular, they let n be the number of websites on the internet (so that n is roughly 109).
They then define an n× n matrix C where Cij = 1 if there is a hyperlink between websites
i and j, and Cij = 0 otherwise. Then, they let B be an n × n matrix such that Bij is 1
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divided by the number of 1’s in the ith row of C, if Cij = 1, and Bij = 0 otherwise. Finally,
they define

A = (.85)B + (.15)D/n

where D is an n× n matrix all of whose entries are 1.

The power method finds the eigenvector v1 of A, and the size of the ith entry of v1 is
proportional to the “rank” of website i.

Exercise 7 (This exercise is optional; any exercise in this course involving programming is
optional). Write a program in Matlab that computes the first, second, and third eigenvectors
and eigenvalues of a symmetric matrix A of arbitrary size. Compare your results with the
Matlab programs eigs and eig.

Then, under the assumptions of the previous exercise (1/2 < λ1 < 1, and 0 ≤ λn ≤ · · · ≤
λ2 < 1/4), provide an upper bound on the number of arithmetic operations that are required
to compute the first three decimal places of the first eigenvalue λ1. Your upper bound could
involve either the size n of the matrix A, or the number m of nonzero entries of A.

Note that the power method iteratively applies the matrix to a vector, instead of multiplying
matrices together. The latter operation can require many more arithmetic operations than
the former.

Exercise 8. Show that the intersection of two convex sets is convex.

Exercise 9. Let f : R→ R so that f(x) = x2. Show that f is convex.

Exercise 10. Let f : R→ R be a function with three continuous derivatives. Show that f
is convex if and only if f ′′(x) ≥ 0 for all x ∈ R. (Hint: for the reverse implication, you may
need to use Taylor’s Theorem with integral remainder.)

Exercise 11. Prove Taylor’s Theorem with Integral Remainder when k = 2:

Let f : R→ R be a function with three continuous derivatives. Then, for any x, y ∈ R,

f(x) = f(y) + (x− y)f ′(y) +

∫ x

y

f ′′(t)(x− t)dt.

(Hint: integrate by parts.)


