
Optimization Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due October 11, in the discussion section.

Homework 2

Exercise 1. Let f : Rn → R be a strictly convex function. Show that f has at most one
global minimum.

Then, find a convex set K ⊆ R and a strictly convex function f : K → R such that f does
not have a global minimum.

Exercise 2. Let f : Rn → R be a convex function. Let x ∈ Rn be a local minimum of f .
Show that x is in fact a global minimum of f .

Now suppose additionally that f ∈ C1, and x ∈ Rn satisfies ∇f(x) = 0. Show that x is a
global minimum of f .

Exercise 3. In statistics and other applications, we can be presented with data points
(x1, y1), . . . , (xn, yn). We would like to find the line y = mx + b which lies “closest” to all of
these data points. Such a line is known as a linear regression. There are many ways to
define the “closest” such line. The standard method is to use least squares minimization.
A line which lies close to all of the data points should make the quantities (yi−mxi− b) all
very small. We would like to find numbers m, b such that the following quantity is minimized:

f(m, b) =
n∑

i=1

(yi −mxi − b)2.

Show that the global minimum value of f is achieved when
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(In probabilistic terminlogy, −m is a covariance divided by a variance.)

Exercise 4. Find a function f : R→ R such that no local or global maximum of f exists,
and no local or global minimum of f exists.

Exercise 5. Let f : Rn → R. A version of Taylor’s Theorem for functions on Rn follows
from Taylor’s Theorem for functions on R in the following way. (For simplicity, we look at
the Taylor expansion of f at x = 0.) Let y ∈ Rn, let t ∈ R, and define g : R → R by
g(t) = f(ty). Then Taylor’s Theorem for g holds. Using the Chain rule, what are the first
two or three terms in the Taylor expansion of g, in terms of derivatives of f at x = 0?
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Exercise 6. Maximize f(x, y) = x2 + y2 subject to the constraint x2 + 2y2 = 1.

Exercise 7. Suppose that we have a probability distribution on the set {1, . . . , n}, i.e. a
sequence p = (p1, . . . , pn) of probabilities in the set Pn, where

Pn :=

{
p ∈ [0, 1]n :

n∑
i=1

pi = 1

}
, Pn :=

{
p ∈ (0, 1)n :

n∑
i=1

pi = 1

}
.

A fundamental quantity for a probability distribution p is its entropy

S(p) := −
n∑

i=1

pi log pi .

(We extend the function x log x to 0 by continuity, so that 0 log 0 := 0.) The entropy of p
measures the disorder or lack of information in p.

(i) Using Lagrange multipliers, find the local maximum q of S on the set Pn. Compute
the value of S at q.

(ii) Prove that S reaches its maximum on Pn at q.

Exercise 8. Let A be a real symmetric positive definite n× n matrix. Let b ∈ Rn. Define
f : Rn → R so that, for any y ∈ Rn,

f(y) :=
1

2
yTAy − bTy

Show that f is strictly convex. Conclude that f has exactly one global minimum. (Recall
that strict convexity alone does not guarantee that a global minimum exists.)

More generally, let 1 ≤ k ≤ n − 1, let H ⊆ Rn be a k-dimensional subspace of Rn, let
x(0) ∈ Rn and let

K := {x(0) + h : h ∈ H}.
Let fK : K → R by fK(y) := 1

2
yTAy − bTy, ∀ y ∈ K. Then fK also has exactly one global

minimum xK ∈ K. Moreover, ∇f(xK) = AxK−b is orthogonal to H. Conversely, if xK ∈ K
satisfies AxK − b is orthogonal to H, then xK is the unique global minimum of f on K.

Exercise 9. Give an example of a function f : R2 → R such that ∇f(0) = 0, all eigenvalues
of D2f(0) are nonnegative, but f does not have a local minimum at 0.

Exercise 10. Let f : R2 → R so that f(x, y) = x2 + y2(1 + x)3. Show that f has one
critical point which is a local minimum, but f has no global maximum, and f has no global
minimum.

That is, having only one critical point which is a local minimum does not imply that this
point is a global minimum.


