Optimization Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due October 11, in the discussion section.

Homework 2

Exercise 1. Let f: R™ — R be a strictly convex function. Show that f has at most one
global minimum.

Then, find a convex set K C R and a strictly convex function f: K — R such that f does
not have a global minimum.

Exercise 2. Let f: R® — R be a convex function. Let z € R" be a local minimum of f.
Show that x is in fact a global minimum of f.

Now suppose additionally that f € C1, and z € R" satisfies V f(z) = 0. Show that z is a
global minimum of f.

Exercise 3. In statistics and other applications, we can be presented with data points
(x1,91), - (Tn, yn). We would like to find the line y = ma + b which lies “closest” to all of
these data points. Such a line is known as a linear regression. There are many ways to
define the “closest” such line. The standard method is to use least squares minimization.
A line which lies close to all of the data points should make the quantities (y; — max; — b) all
very small. We would like to find numbers m, b such that the following quantity is minimized:

n

f(m,b) = Z(yZ —max; — b)%

i=1
Show that the global minimum value of f is achieved when

(i) (S5 w) = n (S o)
(Sl —n(Tet)
b= % (iyz —mi@) .

(In probabilistic terminlogy, —m is a covariance divided by a variance.)

m =

Exercise 4. Find a function f: R — R such that no local or global maximum of f exists,
and no local or global minimum of f exists.

Exercise 5. Let f: R* — R. A version of Taylor’s Theorem for functions on R" follows
from Taylor’s Theorem for functions on R in the following way. (For simplicity, we look at
the Taylor expansion of f at x = 0.) Let y € R", let t € R, and define g: R — R by
g(t) = f(ty). Then Taylor’s Theorem for g holds. Using the Chain rule, what are the first
two or three terms in the Taylor expansion of g, in terms of derivatives of f at x = 07
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Exercise 6. Maximize f(x,y) = z* + y* subject to the constraint 22 + 2y? = 1.

Exercise 7. Suppose that we have a probability distribution on the set {1,...,n}, i.e. a
sequence p = (py,...,p,) of probabilities in the set P,, where

P, = {pe[O,l]”: Zn:pizl}, P = {pE(O,l)": Zn:pizl}.

A fundamental quantity for a probability distribution p is its entropy
S(p) ==~ _pilogp:.
i=1

(We extend the function xlogx to 0 by continuity, so that 0log0 := 0.) The entropy of p
measures the disorder or lack of information in p.

(i) Using Lagrange multipliers, find the local maximum ¢ of S on the set P,. Compute
the value of S at q. o
(ii) Prove that S reaches its maximum on P, at q.

Exercise 8. Let A be a real symmetric positive definite n X n matrix. Let b € R™. Define
f: R™ = R so that, for any y € R",
1
fly) =gy Ay = by
Show that f is strictly convex. Conclude that f has exactly one global minimum. (Recall

that strict convexity alone does not guarantee that a global minimum exists.)

More generally, let 1 < k < n —1, let H C R" be a k-dimensional subspace of R", let
2z € R and let

K :={2© 4 h:hec H}.
Let fx: K — R by fr(y) := sy" Ay — bTy, V y € K. Then fx also has exactly one global
minimum zx € K. Moreover, V f(xx) = Azg — b is orthogonal to H. Conversely, if xx € K
satisfies Axg — b is orthogonal to H, then xg is the unique global minimum of f on K.

Exercise 9. Give an example of a function f: R* — R such that V f(0) = 0, all eigenvalues
of D?f(0) are nonnegative, but f does not have a local minimum at 0.

Exercise 10. Let f: R?> — R so that f(z,y) = 2* + y?(1 + x)3. Show that f has one
critical point which is a local minimum, but f has no global maximum, and f has no global
minimum.

That is, having only one critical point which is a local minimum does not imply that this
point is a global minimum.



