
Optimization Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due October 18, in the discussion section.

Homework 3

Exercise 1. Let f ∈ C2. Assume that f has a local maximum at x ∈ Rn. Conclude that
∇f(x) = 0.

Exercise 2. Prove the following partial converse to a Proposition from the notes.

Let f ∈ C3. Assume that f has a local minimum at x ∈ Rn. Then ∇f(x) = 0 and all
eigenvalues of D2f(x) are nonnegative.

Exercise 3. The Gradient Descent algorithm can behave quite badly for nontrivial reasons.
Let f : R→ R be defined by f(x) = −x1000. Suppose we want to maximize f , starting at the
initial guess x(0) = 1 and using the parameter ε = 1/100. Show that the sequence of points
x(0), x(1), . . . does not converge to 0. In fact, show that this sequence of points diverges!

On the other hand, choose a smaller ε to use in the Gradient Descent Algorithm such that
the points x(0), x(1), . . . do converge to 0. (For the latter result you can freely use the following
fact from analysis: if a sequence of nonnegative numbers x(0), x(1), . . . is strictly decreasing,
i.e. if x(i+1) < x(i) for all i ≥ 1, then the sequence x(0), x(1), . . . converges to a nonnegative
real number.)

In this way, a less naive version of the Gradient Descent algorithm will use a small value of
ε exactly when the derivative of f is large. That is, the algorithm will adjust ε to depend
on ||∇f(x(n))||.
Exercise 4 (Optional). To see an illustration of Newton’s Method, see the Applet, Newton
Example. In many examples, it only takes a few iterations of the algorithm to get a good
approximation for a zero of f .

Write a Matlab program that plots the first few iterates of Newton’s method, as in the
above applet. (Or, use a different programming language if you prefer it.) You can test your
program using, e.g. the function f(x) = x2 − 1 with initial guess x0 = 2.

Exercise 5. Recall that Newton’s method is an algorithm for finding zeros of a function f .
It consists in iterating the map

ϕ(x) := x− (f ′(x))−1f(x) .

Thus, we start with some given x(0) and define x(1) := ϕ(x(0)), x(2) := ϕ(x(1)), etc.

This problem is devoted to an analysis of the convergence of Newton’s method. For simplicity,
we work in one dimension, i.e. we set n = 1. Without loss of generality, we assume that
the zero of f we are interested in is at the origin: f(0) = 0. We shall show that, assuming

http://de2de.synechism.org/dart/newton/web/newton.html
http://de2de.synechism.org/dart/newton/web/newton.html
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f ′(0) is invertible and f ∈ C2, the sequence x(0), x(1), . . . converges to 0 provided x(0) is close
enough to 0.

Let K > 1, R > 0 and suppose that

(1) K−1 ≤ |f ′(x)| ≤ K, |f ′′(x)| ≤ K, ∀ |x| ≤ R.

(i) Using Taylor’s Theorem, show that there exists ε > 0 such that, if |x| < ε, then

|f(0)− (f(x)− xf ′(x))| ≤ K |x|2 .
(ii) Suppose |x(0)| < ε. Then from part (i), |f(x(0))− x(0)f ′(x(0)))| ≤ K|x(0)|2. Using the

definition of x(1), deduce that

|x(1)| ≤ K|f(x(0))− x(0)f ′(x(0)))| ≤ K2|x(0)|2.
(iii) Let n ≥ 1. Suppose |x(n)| < ε. Show that

|x(n+1)| ≤ K2|x(n)|2.
(iv) Conclude that limn→∞ |x(n)| = 0, as desired.

Exercise 6 (Optional). Write a Matlab program to implement Newton’s Method for func-
tions of two variables. Test your implementation on Rosenbrock’s function: f(x, y) =
100(y − x2)2 + (1− x)2.

Exercise 7. Let A be an n× n symmetric positive definite matrix. Let y, z ∈ Rn. Define a
function 〈·, ·〉A : Rn ×Rn → R by

〈y, z〉A := yTAz.

Show that 〈·, ·〉A is an inner product on Rn. That is, show:

• For any y ∈ Rn with y 6= 0, 〈y, y〉A > 0.
• For any y, z ∈ Rn, 〈y, z〉A = 〈z, y〉A.
• For any y, z ∈ Rn, λ ∈ R, 〈λy, z〉A = λ〈y, z〉A.
• For any w, y, z ∈ Rn, λ ∈ R, 〈w + y, z〉A = 〈w, z〉A + 〈y, z〉A.

Then, a standard fact from linear algebra implies that the following function is a norm on
Rn.

||y||A :=
√
〈y, y〉A =

√
yTAy.

Exercise 8. At iteration i, the Conjugate Gradient (CG) Algorithm from the notes only re-
quires the values of x(i), x(i−1), r(i), r(i−1) and d(i), d(i−1). So, the memory storage requirement
of this algorithm is fairly small

Give a bound on the minimum amount of numbers that the CG Algorithm needs to store in
memory, over the entire duration of the algorithm.

Compared to the Basic CG Algorithm, the CG Algorithm requires a few less matrix multi-
plications at each iteration, which saves some time.

Give a bound on the total number of arithmetic operations that the CG Algorithm performs
over the duration of the entire algorithm. Your bound should depend on the size n of the
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matrix A and on the number m of nonzero entries of A. (Your bound should be something
like mn)

Exercise 9 (Optional). Implement the Conjugate Gradient Algorithm in Matlab. Compare
your algorithm to Matlab’s pcg function.


