
Optimization Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due October 25, in the discussion section.

Homework 4

Exercise 1. Let A be a real m × n matrix. Let x ∈ Rn and let b ∈ Rm. Show that the
function f : Rn → R defined by f(x) = 1

2
||Ax− b||2 is convex. Moreover, show that

∇f(x) = AT (Ax− b), D2f(x) = ATA.

Exercise 2. Let A be an m× n real matrix with m ≥ n. Then A has rank n if and only if
ATA is positive definite.

(Hint: ATA is automatically positive semidefinite by a previous exercise.)

Exercise 3. Show the following identity. Let A be an r×r real matrix, let U be an r×s real
matrix, and let V be an s× r real matrix. Assume that A is invertible and that I + V A−1U
is invertible, where I is the s× s identity matrix. Then A + UV is invertible and

(A + UV)−1 = A−1 − (A−1U)(I + V A−1U)−1(V A−1).

In particular, if s = 1, we get the Sherman-Morrison formula:

(A + UV)−1 = A−1 − A−1UV A−1

1 + V A−1U
.

Exercise 4. Give a bound for the number of arithmetic operations needed in Algorithm
??. Assume that Pn is known, so that computing Pn does not require any arithmetic op-
erations. (Hint: your bound should be something like (m − n)n2.) Compare this bound to
simply minimizing ||Ax− b||2 directly. (In that case, you should need about mn2 arithmetic
operations.)

The key point here is that, once Pn is known, recursive least squares is much better. For
example, if m − n = 10, then recursive least squares requires around 10n2 arithmetic op-
erations. But minimizing ||Ax− b||2 directly would require mn2 operations, which is much
larger.

Exercise 5. Let x(1), . . . , x(m) be vectors in R2 such that ||x(i)|| = 1 for all 1 ≤ i ≤ m. Show
that there exist i, j ∈ {1, . . . ,m} with i 6= j such that 〈x(i), x(j)〉 > 1− 100/m2.

Exercise 6 (Logistic Regression). Let x(1), . . . , x(m) ∈ Rn and let y1, . . . , ym ∈ {0, 1}. For
the sake of intuition, we can think of each vector x(i) as a vector of words in an email, and
yi classifies email i ∈ {1, . . . ,m} as either spam (yi = 1) or not spam (yi = 0). Given this
data, we would like to find a way to classify future emails as spam or not spam. (This is
what a spam filter does.) For any t ∈ R, define the logistic function g : R→ (0, 1) by

g(t) =
1

1 + e−t
.

2

The function g is meant to be a differentiable approximation to a function whose output is
either 0 or 1.

First, verify that g′(t) = g(t)(1 − g(t)) for any t ∈ R. Then, consider the log-likelihood
function L : Rn → R defined by

L(z) := log

(
m∏
i=1

[g(〈z, x(i)〉)]yi [1− g(〈z, x(i)〉)]1−yi
)
, ∀ z ∈ Rn.

We would like to maximize L. The idea here is that if L is large, then z is a set of parameters
(or “weights”) that accurately classifies known emails as spam or not spam. So, once we
find z, and if we have some new email x ∈ Rn, then g(〈z, x(i)〉) ≈ 0 means the new email is
probably not spam, and g(〈z, x(i)〉) ≈ 1 means the new email is probably spam.

Show that

∇L(z) =
m∑
i=1

(yi − g(〈z, x(i)〉))x(i), ∀ z ∈ Rn.

This computation then gives the formula for a gradient ascent method for maximizing L.

Exercise 7. Define

A =


1 2
3 4
1 3
2 3

 , b =


1
3
4
6

 .

Minimize the function ||Ax− b||2 over all x ∈ R2, either by hand, or using a computer
program that you write yourself. In either case, use the recursive least squares method.

Verify that the x you found does actually minimize ||Ax− b||2.

Exercise 8. Let c, x ∈ Rn, let b ∈ Rm, and let A be an m× n real matrix.

It is possible to essentially put all of the variables of a linear program into the constraint.
Show that the following linear program is equivalent to the standard one. (That is, the
minimum/maximum values and the x achieving the minimum/maximum value is the same
for both linear programs.)

maximize t subject to the constraints

{t ∈ R : t ≤ cTx, ∀x ∈ Rn such that Ax = b, x ≥ 0}.

Exercise 9. Let c, x ∈ Rn, let b ∈ Rm, and let A be an m× n real matrix. Show that the
linear program

minimize cTx subject to the constraints

Ax ≤ b.

is equivalent to the following linear program in standard form

minimize

 c
−c
0

T x+

x−

z

 subject to the constraints

3

(
A −A I

)x+

x−

z

 = b,

x+

x−

z

 ≥ 0.

By equivalent, we mean that if x ∈ Rn, and if we define x+ := max(x, 0), x− := max(−x, 0),
then x = x+ − x−. Similarly, if x+, x− ≥ 0, then we define x = x+ − x−. And the minimum
values and the x achieving the minimum value for both linear programs is the same. (Here
the maximum is defined component-wise, e.g. if x = (−1, 2, 3), then max(x, 0) = (0, 2, 3).)

