Optimization Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due November 1, in the discussion section.

Homework 5

Exercise 1. Is $\{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 \le 1\}$ a polytope? Prove your assertion.

Exercise 2. Find all extreme points of the set $\{(x_1, x_2) \in \mathbf{R}^2 : 0 \le x_1 \le 1, 0 \le x_2 \le 1\}$. Then, find all extreme points of the set $\{(x_1, x_2) \in \mathbf{R}^2 : x_1^2 + x_2^2 \le 1\}$.

Exercise 3. Prove that a polytope is convex. Then, draw the following polytopes in the plane:

$$\{(x_1, x_2) \in \mathbf{R}^2 \colon x_1 \ge 0, \ x_2 \ge 0, \ x_1 + x_2 \le 2, \ x_2 \le 1\}.$$

$$\{(x_1, x_2) \in \mathbf{R}^2 \colon x_1 \ge 0, \ x_2 \ge 0, \ x_1 + x_2 \le 1, \ x_1 + 2x_2 = 1\}.$$

$$\{(x_1, x_2) \in \mathbf{R}^2 \colon x_1 \ge 0, \ x_2 \ge 0, \ x_1 + x_2 = 1, \ x_1 + 2x_2 = 1\}.$$

Exercise 4. Let $K \subseteq \mathbf{R}^n$ be a polytope formed by the intersection of m > n half spaces. Assume that K is nonempty and bounded. Show that K has at most $\binom{m}{n} = \frac{m!}{(m-n)!n!}$ vertices.

(Hint: first show that a vertex of the polytope must be in the boundary of at least n half spaces, using linear algebra. That is, for any vertex of K, there exist at least n of the half spaces that define K such that equality occurs in the definition of that half space.)

Exercise 5. Let $K \subseteq \mathbf{R}^n$ be a polytope. Let $f: K \to \mathbf{R}$ be a concave function (so that -f is convex). Assume that a minimum value of f exists. That is, there exists $x \in K$ such that $f(x) \leq f(k)$ for all $k \in K$. Conclude that there exists an extreme point $y \in K$ such that f attains its minimum value at y.

Exercise 6. Let K be a bounded polytope and let $f: K \to \mathbf{R}$ be a linear function. Show that the minimum value of f is attained at a vertex of K. (Hint: a linear function is concave. Also, from Exercise 4, there are only finitely many vertices of K. Using the definition of a vertex, show that: for any point $k \in K$, there exists a vertex $x \in K$ where $f(x) \leq f(k)$.)

Exercise 7. Using the Simplex Algorithm, solve the following linear program:

minimize
$$-4x_1 - 2x_2$$
 subject to the constraints
$$x_1 + x_2 + x_3 = 5$$
$$2x_1 + x_2/2 + x_4 = 8, \qquad x \ge 0.$$

(Hint: start at the point $(x_1, x_2, x_3, x_4) = (0, 0, 5, 8)$)

Exercise 8. Let $H_n := \{(x_1, \ldots, x_n) \in \mathbf{R}^n : 0 \le x_i \le 1, \forall 1 \le i \le n\}$. The set H_n is the n-dimensional cube. First, show that H_n is a polytope which is formed by the intersection of 2n half spaces. Then, show that H_n has 2^n vertices.

Exercise 9. Let $C \subseteq \mathbb{R}^n$. Let A be a positive semidefinite matrix. Show that

$$vol(AC) = vol\{Ax \in \mathbf{R}^n : x \in C\} = \det(A)vol(C).$$

Exercise 10. Let A be a positive definite $n \times n$ matrix. Let $y \in \mathbf{R}^n$ and define the ellipsoid $E(A,y) := \{x \in \mathbf{R}^n \colon (x-y)^T A^{-1} (x-y) \leq 1\}$. Let $z \in \mathbf{R}^n$, $z \neq 0$, and define the half-ellipsoid

$$E'(A, y, z) := E(A, y) \cap \{x \in \mathbf{R}^n \colon \langle z, (x - y) \rangle \le 0\}.$$

Define

$$d := \frac{1}{\sqrt{z^T A z}} A z.$$

$$y' := y - \frac{1}{n+1} d.$$

$$A' := \frac{n^2}{n^2 - 1} \left(A - \frac{2}{n+1} d d^T \right).$$

Show that $E'(A, y, z) \subseteq E(A', y')$. The set E(A', y') is called the **Löwner-John ellipsoid** of E'(A, y, z). Justify why A' is positive definite?

(For simplicity, you may assume that A is the identity matrix, y = 0 and z = (1, 0, ..., 0). The case of general A, y, z is left as an optional challenge problem. For the general problem, the Sherman-Morrison formula may be helpful.)

Exercise 11. By taking logarithms, show that for any positive integer n,

$$\left(\frac{n}{n+1}\right)^{n+1} \left(\frac{n}{n-1}\right)^{n-1} \le e^{-1/n}.$$

(Hint:)

$$(n+1)\log(1+1/n) + (n-1)\log(1-1/n)$$

$$= \sum_{k=1}^{\infty} (-1)^{k+1} (n+1) n^{-k} k^{-1} - \sum_{k=1}^{\infty} (n-1) n^{-k} k^{-1}$$

$$= \sum_{k=1}^{\infty} (-1)^{k+1} 2n^{-k} k^{-1} + \sum_{k=1}^{\infty} (-1)^{k+1} (n-1) n^{-k} k^{-1} - \sum_{k=1}^{\infty} (n-1) n^{-k} k^{-1} = \cdots$$