
Optimization Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due November 29, in the discussion section.

Homework 8

Exercise 1. Let g : [0, 1]→ R be a continuous function. Assume that, for any C1 function
h : [0, 1]→ R with h(0) = h(1) = 0, we have∫ 1

0

g(x)h(x)dx = 0.

Conclude that g(x) = 0 for all x ∈ [0, 1]. (Hint: Argue by contradiction. Assume g is
nonzero somewhere. Use the definition of continuity of g to show that g is nonzero in some
interval. Then choose h such that h is only nonzero on this interval.)

Exercise 2. Let D = {(x, y) ∈ R2 : x2 + y2 ≤ 1} be the unit disc in the plane and let
∂D = {(x, y) ∈ R2 : x2 + y2 = 1} be the boundary of D. Let A be the set of all functions
f : D → R such that f is a C2 function, such that f(x) = 0 for all x ∈ ∂D, and f(0) = 1.
Show that there does not exist a function g ∈ A such that∫∫

D

||∇g(x)|| dx = min
f∈A

∫∫
D

||∇f(x)|| dx

(Hint: it suffices to find a sequence of functions f1, f2, . . . ∈ A where
∫∫

D
||∇fk(x)|| dx → 0

as k →∞. Why is this sufficient? Second hint: it may be easier to use polar coordinates.)

Exercise 3 (Isoperimetric Inequality in the Plane). Let t ∈ [0, 1]. Let s(t) = (x(t), y(t)) be
a parametrization of a curve in the plane. Assume that s(t) 6= s(t′) for all t, t′ ∈ [0, 1) with
t 6= t′. Assume also that s(0) = s(1). That is, the curve does not intersect itself except at
the points t = 0 and t = 1.

Assume that x, y are C1 functions. The length of the curve s is defined to be

L(s) :=

∫ 1

0

||s′(t)|| dt =

∫ 1

0

√
(x′(t))2 + (y′(t))2dt.

The area enclosed by the curve is defined to be

A(s) :=
1

2

∫ 1

0

x(t)y′(t)− y(t)x′(t) dt.

Let c > 0. Subject to the constraint L(s) = c, we wish to maximize A(s).

In order to solve this constrained maximization problem, we assume there exists a curve s of
maximal area and of length c. And we also assume that the Lagrange Multiplier Theorem



2

applies to this problem. That is, there exists λ ∈ R such that, if r(t) = (w(t), z(t)) is any
function with t ∈ [0, 1], and if sp(t) = s(t) + pr(t) for any p ∈ (−1, 1), then

d

dp
L(sp) = λ

d

dp
A(sp).

By investigating this equation, conclude that s is a circle. That is, there exists c, d ∈ R such
that (x− c)2 + (y − d)2 = λ2. Deduce the isoperimetric inequality: for any curve s such
that x, y ∈ C1, s(0) = s(1) and such that s does not intersect itself, we have

A(s) ≤ 1

4π
(L(s))2.

(Hint: first consider r where w(t) = 0 for all t ∈ [0, 1], and then consider r where z(t) = 0
for all t ∈ [0, 1]. Also, you may assume that s is a constant-speed parametrization, so that
||s′(t)|| is constant for all t ∈ [0, 1].)

Exercise 4. On a previous homework, we investigated the largest entropies on finite-
dimensional vector spaces. (The smallest possible entropy is zero, so minimizing entropy is
not so interesting.) The infinite-dimensional case is a bit different than the finite-dimensional
case.

Let A be the set of all f : R→ [0,∞) such that
∫∞
−∞ f(x)dx = 1. (In probability terminology,

f is a probability density function.) Maximize the entropy

−
∫ ∞
−∞

f(x) log f(x) dx

over the set A, subject to the constraint∫ ∞
−∞

x2f(x) dx = 1.

(You may assume that the maximum exists.) (Hint: if g ∈ A, what functions h can we add
to g so that g + h ∈ A?)


