Optimization Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due November 29, in the discussion section.

## Homework 8

**Exercise 1.** Let  $g: [0,1] \to \mathbf{R}$  be a continuous function. Assume that, for any  $C^1$  function  $h: [0,1] \to \mathbf{R}$  with h(0) = h(1) = 0, we have

$$\int_0^1 g(x)h(x)dx = 0.$$

Conclude that g(x) = 0 for all  $x \in [0,1]$ . (Hint: Argue by contradiction. Assume g is nonzero somewhere. Use the definition of continuity of g to show that g is nonzero in some interval. Then choose h such that h is only nonzero on this interval.)

**Exercise 2.** Let  $D = \{(x,y) \in \mathbf{R}^2 : x^2 + y^2 \le 1\}$  be the unit disc in the plane and let  $\partial D = \{(x,y) \in \mathbf{R}^2 : x^2 + y^2 = 1\}$  be the boundary of D. Let A be the set of all functions  $f : D \to \mathbf{R}$  such that f is a  $C^2$  function, such that f(x) = 0 for all  $x \in \partial D$ , and f(0) = 1. Show that there does not exist a function  $g \in A$  such that

$$\iint_{D} ||\nabla g(x)|| \, dx = \min_{f \in A} \iint_{D} ||\nabla f(x)|| \, dx$$

(Hint: it suffices to find a sequence of functions  $f_1, f_2, \ldots \in A$  where  $\iint_D ||\nabla f_k(x)|| dx \to 0$  as  $k \to \infty$ . Why is this sufficient? Second hint: it may be easier to use polar coordinates.)

**Exercise 3** (Isoperimetric Inequality in the Plane). Let  $t \in [0,1]$ . Let s(t) = (x(t), y(t)) be a parametrization of a curve in the plane. Assume that  $s(t) \neq s(t')$  for all  $t, t' \in [0,1]$  with  $t \neq t'$ . Assume also that s(0) = s(1). That is, the curve does not intersect itself except at the points t = 0 and t = 1.

Assume that x, y are  $C^1$  functions. The length of the curve s is defined to be

$$L(s) := \int_0^1 ||s'(t)|| \, dt = \int_0^1 \sqrt{(x'(t))^2 + (y'(t))^2} \, dt.$$

The area enclosed by the curve is defined to be

$$A(s) := \frac{1}{2} \int_0^1 x(t)y'(t) - y(t)x'(t) dt.$$

Let c > 0. Subject to the constraint L(s) = c, we wish to maximize A(s).

In order to solve this constrained maximization problem, we assume there exists a curve s of maximal area and of length c. And we also assume that the Lagrange Multiplier Theorem

applies to this problem. That is, there exists  $\lambda \in \mathbf{R}$  such that, if r(t) = (w(t), z(t)) is any function with  $t \in [0, 1]$ , and if  $s_p(t) = s(t) + pr(t)$  for any  $p \in (-1, 1)$ , then

$$\frac{d}{dp}L(s_p) = \lambda \frac{d}{dp}A(s_p).$$

By investigating this equation, conclude that s is a circle. That is, there exists  $c, d \in \mathbf{R}$  such that  $(x-c)^2 + (y-d)^2 = \lambda^2$ . Deduce the **isoperimetric inequality**: for any curve s such that  $x, y \in C^1$ , s(0) = s(1) and such that s does not intersect itself, we have

$$A(s) \le \frac{1}{4\pi} (L(s))^2.$$

(Hint: first consider r where w(t) = 0 for all  $t \in [0, 1]$ , and then consider r where z(t) = 0 for all  $t \in [0, 1]$ . Also, you may assume that s is a constant-speed parametrization, so that ||s'(t)|| is constant for all  $t \in [0, 1]$ .)

**Exercise 4.** On a previous homework, we investigated the largest entropies on finite-dimensional vector spaces. (The smallest possible entropy is zero, so minimizing entropy is not so interesting.) The infinite-dimensional case is a bit different than the finite-dimensional case.

Let A be the set of all  $f: \mathbf{R} \to [0, \infty)$  such that  $\int_{-\infty}^{\infty} f(x) dx = 1$ . (In probability terminology, f is a probability density function.) Maximize the entropy

$$-\int_{-\infty}^{\infty} f(x) \log f(x) \, dx$$

over the set A, subject to the constraint

$$\int_{-\infty}^{\infty} x^2 f(x) \, dx = 1.$$

(You may assume that the maximum exists.) (Hint: if  $g \in A$ , what functions h can we add to g so that  $g + h \in A$ ?)