167 Midterm 1 Solutions ${ }^{1}$

1. Question 1

(i) Give an example of a game mentioned in class, or the notes, or any course textbook, such that: the first player has a winning strategy. (You only need to mention the game; you do not need to prove anything.)

Solution. Hex, Connect Four, and Chomp on a finite rectangle of size larger than 1×1 are all valid answers.
(ii) Give an example of a game mentioned in class, or the notes, or any course textbook, such that: the second player has a winning strategy. (You only need to mention the game; you do not need to prove anything.)

Solution. Chomp played on a $2 \times \infty$ board, or on an $n \times \infty$ board for $n>2$.
(iii) Give an example of a game mentioned in class, or the notes, or any course textbook, such that: both players have a strategy guaranteeing at least a draw. (You only need to mention the game; you do not need to prove anything.)

Solution. Tic-tac-toe and Checkers are valid answers.

2. Question 2

Consider the game of Nim, where the game starts with four piles of chips. These piles have $1,5,3$ and 15 chips, respectively. Which player has a winning strategy from this position, the first player, or the second? Describe a winning first move.

Solution. In binary, the piles have $0001,0011,0101$ and 1111 chips. So, the nim sum of the game position is $1000 \neq 0$. From Bouton's Theorem (Theorem 2.26 in the notes), the first player therefore has a winning strategy, and a winning first move is to force the nim sum to be zero. Such a move can be achieved by removing 8 chips from the pile that has 15 chips. The resulting game position will be $(1,3,5,7)$. Or, in binary, the piles have 0001, 0011,0101 and 0111 chips. So, the nim sum of this game position is zero.

3. Question 3

Describe the optimal strategies for both players for the two-person zero-sum game described by the payoff matrix. That is, at t optimal strategy, with what probability does player I play C, with what probability does player I play D, with what probability does player $I I$ play A, with what probability does player $I I$ play B ?

Prove that these strategies are optimal.
Solution. Let P denote the payoff matrix. By the Minimax Theorem and by definition of optimal strategy, the optimal strategies are vectors achieving $\max _{x \in \Delta_{2}} \min _{y \in \Delta_{2}} x^{T} P y=$ $\min _{y \in \Delta_{2}} \max _{x \in \Delta_{2}} x^{T} P y$. For example, the function $x \mapsto \min _{y \in \Delta_{2}} x^{T} P y$ achieves its maximum at an optimal strategy vector $x \in \Delta_{2}$. Write $x=(a, 1-a)$ and $y=(b, 1-b)$ where $a, b \in[0,1]$.

[^0]Then $x^{T} P y=(a, 1-a)^{T}(1-b, 2 b+(1-b))=(a, 1-a)^{T}(1-b, b+1)=a(1-b)+(1-a)(b+1)=$ $1+b-2 a b$. So,

$$
\max _{x \in \Delta_{2}} \min _{y \in \Delta_{2}} x^{T} P y=\max _{a \in[0,1]} \min _{b \in[0,1]}(1+b-2 a b) .
$$

Let $f(a, b)=1+b-2 a b$. Then $\nabla f(a, b)=(-2 b, 1-2 a)$. So, if $a \leq 1 / 2, \frac{\partial f}{\partial b} \geq 0$, and if $a \geq 1 / 2, \frac{\partial f}{\partial b} \leq 0$. That is, if $a \leq 1 / 2$, we have $\min _{b \in[0,1]}(1+b-2 a b)=1+(0)-2 a(0)=1$. And if $a \geq 1 / 2$, we have $\min _{b \in[0,1]}(1+b-2 a b)=1+(1)-2 a(1)=2-2 a$. So, if

$$
g(a):= \begin{cases}1 & \text { if } a \leq 1 / 2 \\ 2-2 a & \text { if } a \geq 1 / 2\end{cases}
$$

Then

$$
\max _{x \in \Delta_{2}} \min _{y \in \Delta_{2}} x^{T} P y=\max _{a \in[0,1]} g(a)=1
$$

And this maximum is achieved for any $a \in[0,1 / 2]$. Also,

$$
\min _{y \in \Delta_{2}} \max _{x \in \Delta_{2}} x^{T} P y=\min _{b \in[0,1]} \max _{a \in[0,1]}(1+b-2 a b)=\min _{b \in[0,1]}(1+b)=1 .
$$

So, the minimax occurs when $b=0$ and when $a \in[0,1 / 2]$. That is, there are infinitely many optimal strategies, corresponding to $y=(0,1)$ and $x=(a, 1-a)$, where $a \in[0,1 / 2]$. That is, player $I I$ will always play B, and for any $a \in[0,1 / 2]$, player I will play C with probability a and player I will play D with probability $1-a$.

4. Question 4

Let Y be a random variable such that: $Y=2$ with probability $1 / 2, Y=3$ with probability $1 / 2$.

Let Z be a random variable such that: $Z=1$ with probability $1 / 2$ and $Z=2$ with probability $1 / 2$. Assume that Z and Y are independent. What is the probability that: $Y=3$ and $Z=2$? What is the expected value of $Y \cdot Z$?

Solution. We know $Y=3$ and $Z=2$ with probability equal to: the probability $Y=3$, multiplied by the probability $Z=2$. So, the probability $Y=3$ and $Z=2$ is $(1 / 2) \cdot(1 / 2)=$ $1 / 4$, since Y and Z are independent, so these probabilities multiply.

Using similar reasoning, the expected value of $Y \cdot Z$ is $(1 / 4)(2 \cdot 1)+(1 / 4)(2 \cdot 2)+(1 / 4)(3 \cdot$ $1)+(1 / 4)(3 \cdot 2)=(1 / 4)(2+4+3+6)=15 / 4$.

5. Question 5

Explicitly define some function $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ such that

$$
\min _{y \in[0,1]} \max _{x \in[0,1]} f(x, y) \neq \max _{x \in[0,1]} \min _{y \in[0,1]} f(x, y) .
$$

Prove that the function f satisfies this property.
Solution. There are many possible ways to solve this problem. Here is one way. Let $(x, y) \in[0,1]^{2}$. Define

$$
f(x, y)= \begin{cases}1 & \text { if } x>1 / 2 \text { and } y>1 / 2 \\ 1 & \text { if } x \leq 1 / 2 \text { and } y \leq 1 / 2 \\ 0 & \text { if } x>1 / 2 \text { and } y \leq 1 / 2 \\ 0 & \text { if } x \leq 1 / 2 \text { and } y>1 / 2\end{cases}
$$

Note that the graph of f resembles a 2×2 checkerboard.
For any $y \in[0,1]$, there is an $x \in[0,1]$ such that $f(x, y)=1$, so $\max _{x \in[0,1]} f(x, y)=1$ for any $y \in[0,1]$, so $\min _{y \in[0,1]} \max _{x \in[0,1]} f(x, y)=1$.

On the other hand, for any $x \in[0,1]$, there is an $y \in[0,1]$ such that $f(x, y)=0$, so $\min _{y \in[0,1]} f(x, y)=0$ for any $x \in[0,1]$, so $\max _{x \in[0,1]} \min _{y \in[0,1]} f(x, y)=0$.

[^0]: ${ }^{1}$ April 6, 2016, © 2016 Steven Heilman, All Rights Reserved.

