
167 Spring Midterm 2 Solutions1

1. Question 1

Recall the prisoner’s dilemma, which has the following payoffs.

Prisoner II
silent confess

silent (−1,−1) (−10, 0)

P
ri

so
n
er
I

confess (0,−10) (−8,−8)

Find all Correlated equilibria for this game.
Solution. Suppose we have a correlated equilibrium z, which is a 2×2 matrix of nonnegative

numbers such that
∑2

i,j=1 zij = 1. The conditions for a correlated equilibrium say the
following things:

−z11 − 10z12 ≥ −8z12, −8z22 ≥ −z21 − 10z22.

−z11 − 10z21 ≥ −8z21, −8z22 ≥ −z12 − 10z22.

Each of the second inequalities always holds, so we only need to find z such that

−z11 − 10z12 ≥ −8z12, −z11 − 10z21 ≥ −8z21.

Since z11 ≥ 0, these inequalities imply that

−10z12 ≥ −8z12, −10z21 ≥ −8z21.

The only nonnegative solution to these inequalities is z12 = z21 = 0. Then the remaining
inequalities imply that −z11 ≥ 0, so that z11 = 0 as well (since z11 ≥ 0). So, z11 = z12 =
z21 = 0, and consequently z22 = 1, since

∑2
i,j=1 zij = 1. So, z defined in the following way is

the only Correlated Equilibrium for the Prisoner’s Dilemma.

z =

(
0 0
0 1

)
= (0, 1)T (0, 1).

2. Question 2

Find the value of the two-person zero-sum game described by the payoff matrix
1 3 3 4
4 3 3 1
2 2 2 2
1 1 1 4


Solution. The average of the first two rows dominates the third row, so the third row can

be ignored in the computation of the value. Similarly, the first row dominates the fourth
row. So, we can equivalently compute the value of the matrix(

1 3 3 4
4 3 3 1

)
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The middle two columns dominate the average of the first and fourth column. So, the second
the third columns can be ignored. That is, we have reduced to computing the value of the
matrix (

1 4
4 1

)
= A.

Write x = (s, 1− s), y = (t, 1− t), s, t ∈ [0, 1]. Then using an Exercise from the notes,

max
x∈∆2

xTAy = max
i=1,2

(Ay)i = max(t+ 4(1− t), 4t+ (1− t)) = max(−3t+ 4, 3t+ 1).

And the minimum of this function over all t ∈ [0, 1] occurs when −3t+ 4 = 3t+ 1, i.e. when
6t = 3, or t = 1/2. So, the value of the game is

min
y∈∆2

max
x∈∆2

xTAy = min
t∈[0,1]

max(−3t+ 4, 3t+ 1) = 5/2.

3. Question 3

Prove the case d = 1 of Sperner’s Lemma: Suppose the unit interval [0, 1] is partitioned
such that 0 = t0 < t1 < · · · < tn = 1, where each ti is marked with a 1 or 2 whenever
0 < i < n, t0 is marked 1 and tn is marked 2. Then the number of ordered pairs (ti, ti+1),
0 ≤ i < n with different markings is odd.

Solution. Let f(ti) be the marking of ti, for any 0 ≤ i < n. Using a telescoping sum,
1 = 1−0 = f(tn)−f(t0) =

∑n−1
i=0 [f(ti+1)−f(ti)]. So, we have a sum of elements of {−1, 0, 1}

which add to 1. The total number of appearances of 1 and −1 must therefore be odd. The
total number of appearances of 1 and −1 is equal to the number of ordered pairs (ti, ti+1),
0 ≤ i < n, with different markings.

4. Question 4

(i) Give an example of a closed and convex subset K of Euclidean space, and give an
example of a continuous function f : K → K such that f has no fixed point.
Solution. Let K = R. Define f(x) = x + 1 for any x ∈ R. If f(x) = x, then x = x + 1,

so that 1 = 0, which is a contradiction. So, f(x) 6= x for all x ∈ R, so that f has no fixed
points. As discussed in class, R is closed and convex. Let f is a degree one polynomial, so
it is continuous.

(ii) Give an example of a bounded and closed subset K of Euclidean space, and give an
example of a continuous function f : K → K such that f has no fixed point.
Solution. Let C = {(x, y) ∈ R2 : x2 + y2 = 1}. Let f : C → C be a clockwise rotation by

π/2 radians. Then f is continuous (in fact it is linear). Also, C is closed (since it is the level
set of a polynomial). But f has no fixed points, since f(x, y) = (x, y) for (x, y) ∈ R2 is only
satisfied by (x, y) = (0, 0).

(iii) Give an example of a function f : R → R such that the only fixed point of f is the
point x = 1.

Solution. Define f(x) = 2x− 1 for any x ∈ R. Note that f(1) = 1, so that x = 1 is a fixed
point. Also, if f(x) = x, then 2x− 1 = x, so x = 1. That is, x = 1 is the only fixed point of
f .
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5. Question 5

Let A be an m× n real matrix. Prove:

min
y∈∆n

max
x∈∆m

xTAy = min
y∈∆n

max
i=1,...,m

(Ay)i.

Solution. It suffices to show that maxx∈∆m x
TAy = maxi=1,...,m(Ay)i. That is, it suffices

to show that, for any vector v ∈ Rm, we have maxx∈∆m x
Tv = maxi=1,...,m vi. Let 1 ≤ k ≤ m

such that vk = maxi=1,...,m vi. Let x = (x1, . . . , xm) ∈ ∆m. Then, for any 1 ≤ i ≤ m, we have
vixi ≤ vkxi since xi ≥ 0. Therefore,

xTv =
m∑
i=1

xivi ≤
m∑
i=1

xivk = vk

m∑
i=1

xi = vk,

using that x ∈ ∆m, so
∑m

i=1 xi = 1. So, taking the maximum over all x ∈ ∆m, we have

max
x∈∆m

xTv ≤ vk = max
i=1,...,m

vi.
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