
167 Final Solutions1

1. Question 1

(a) Every two-player general sum game has a Nash equilibrium such that this Nash equi-
librium is evolutionarily stable.

False. Rock paper scissors has only one nash equilibrium, and it is not evolutionarily
stable. (We showed this on the homework.)

(b) Every two-player general sum game has at least two correlated equilibria.
False. The Prisoner’s Dilemma has only one correlated equilibrium. (We showed this on

the homework.)
(c) There exists a symmetric two-person general-sum game such that all of its Nash equi-

libria are not symmetric.
False. Every symmetric game has at least one symmetric Nash equilibrium. (This was a

Corollary of Nash’s Theorem, or more precisely, it follows by repeating the proof of Nash’s
theorem.)

(d) Let f : {−1, 1}n → {−1, 1} be a function. Suppose we do a Condorcet election with
f (so that if we just look at the votes between any pair of two candidates, the aggregate
preference is decided using the function f). Suppose a Condorcet winner always exists. Then
there exists i ∈ {1, . . . , n} such that f(x1, . . . , xn) = xi for all (x1, . . . , xn) ∈ {−1, 1}n.

False. it could occur that f(x1, . . . , xn) = −xi for all (x1, . . . , xn) ∈ {−1, 1}n.
(e) Let f, g : {−1, 1}n → {−1, 1} be functions. Assume that n is odd and f is the majority

function (f(x1, . . . , xn) = sign(x1 + · · ·+ xn)). Assume f 6= g. Then, for any ρ ∈ (0, 1), the
noise stability of f exceeds the noise stability of g.

False. The constant function f = 1 has the largest noise stability among all such functions
(which is 1).

2. Question 2

Consider the two-person zero-sum game defined by the following payoff matrix

Player II
1 2 3 4 5 6 · · · n

1 0 -1 2 2 2 2 · · · 2
2 1 0 -1 2 2 2 · · · 2
3 -2 1 0 -1 2 2 · · · 2

P
la

ye
r
I

4 -2 -2 1 0 -1 2 · · · 2
5 -2 -2 -2 1 0 -1 · · · 2
...

...
...

. . .
...

n− 1 -2 -2 · · · 1 0 -1
n -2 -2 · · · 1 0

Compute the value of the game. Also, find at least one pair of optimal strategies for both
players.
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Solution. The value is zero, and the optimal strategy is (1/4, 1/2, 1/4, 0, . . . , 0) for both
players. each row with index at least 4 is dominated by the first row. That is, (Ay)1 ≥ (Ay)i
for any 4 ≤ i ≤ n. From an Exercise from class, the value of the game is equal to

min
y∈∆n

max
x∈∆n

xTAy = min
y∈∆n

max
i=1,...,n

(Ay)i = min
y∈∆n

max
i=1,2,3

(Ay)i.

That is, for the purpose of computing the value of the game, we can ignore all rows except
for the first three. Similarly, each column with index at least 4 dominates the first column.
That is, (xTA)1 ≤ (xTA)j for any 4 ≤ j ≤ n. From the Exercise mentioned before, the value
of the game is equal to

max
x∈∆n

min
y∈∆n

xTAy = max
x∈∆n

min
j=1,...,n

(xTA)j = max
x∈∆m

min
j=1,2,3

(xTA)j.

That is, for the purpose of computing the value of the game, we can ignore all columns
except for the first three.

In summary, the value of the original game has the same value as the following game

Player II
1 2 3

1 0 -1 2
2 1 0 -1

P
la

ye
r
I

3 -2 1 0

Let A denote this 3× 3 payoff matrix. Note that A = −AT . That is, A is antisymmetric.
We first claim that the value of the game corresponding to A is zero. To see this, note that
the value is

min
y∈∆3

max
x∈∆3

xTAy = min
y∈∆3

max
x∈∆3

xT (−AT )y = min
y∈∆3

max
x∈∆3

−(yTAx)T = min
y∈∆3

[− min
x∈∆3

yTAx]

= −max
y∈∆3

min
x∈∆3

yTAx = − min
x∈∆3

max
y∈∆3

yTAx = −min
y∈∆3

max
x∈∆3

xTAy.

In the penultimate equality, we used von Neumann’s Minimax Theorem. So, the value is
equal to the negative of itself, so it must be zero. Now, using an exercise from the notes, the
value is

0 = max
x∈∆3

min
j=1,2,3

(xTA)j = max
x∈∆3

min(x2 − 2x3,−x1 + x3, 2x1 − x2).

So, if x ∈ ∆3 is the optimal strategy for Player I, we have min(x2−2x3,−x1+x3, 2x1−x2) = 0,
so that (x2 − 2x3,−x1 + x3, 2x1 − x2) ≥ (0, 0, 0), i.e. x2 ≥ 2x3, 2x3 ≥ 2x1 and 2x1 ≥ x2.
If any of these inequalities were strict, their combination would say x2 > x2, which is false.
So, each of these inequalities must be an equality. That is, x2 = 2x3 = 2x1 = x2. Since
x1 + x2 + x3 = 1, we conclude that x3 = x1 = 1/4 and x2 = 1/2. So, the optimal strategy
for player I is (1/4, 1/2, 1/4).

Using similar reasoning for y, the optimal strategy for player II is also (1/4, 1/2, 1/4).

3. Question 3

Recall the Game of Chicken has the following payoff matrix
Find all Nash equilibria for the Game of Chicken. Prove that these are the only Nash

equilibria.
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Player II
C D

C (6, 6) (2, 7)

P
la

ye
r
I

D (7, 2) (0, 0)

Solution. Let (x, y) be a Nash equilibrium. Write x = (x1, x2) = (s, 1− s), y = (y1, y2) =
(t, 1− t) where s, t ∈ [0, 1]. Then

xTAy = 6x1y1 + 2x1y2 + 7x2y1 = 6st+ 2s(1− t) + 7(1− s)t = −3st+ 2s+ 7t.

Let f(s, t) = −3st+ 2s+ 7t. Then ∂f/∂s = −3t+ 2. So, if t = 2/3, f is maximized for any
s. If t > 2/3, f(s, t) is maximized over s by s = 0. If t < 2/3, f(s, t) is maximized over s by
s = 1.

We split into three cases: either t = 2/3, t > 2/3 (so that s = 0, by definition of Nash
equilibrium), or t < 2/3 (so that s = 1, by definition of Nash equilibrium).

xTBy = 6x1y1 + 7x1y2 + 2x2y1 = 6st+ 7s(1− t) + 2(1− s)t = −3st+ 7s+ 2t.

Let g(s, t) = −3st + 7s + 2t. If t > 2/3, then s = 0, so g(s, t) = 2t which is maximized
over t only when t = 1. So, (0, 1), (1, 0) is a Nash equilibrium. If t < 2/3, then s = 1, so
g(s, t) = −3t + 7 which is maximized over t only when t = 0. So, (1, 0), (0, 1) is a Nash
equilibrium. In the case t = 2/3, note that ∂g/∂t = −3s + 2, which as above, splits into
three cases. Two of the cases have already been discussed, and the remaining case occurs
when s = 2/3. And we can verify that (2/3, 1/3), (2/3, 1/3) is the only remaining Nash
equilibrium.

4. Question 4

Prove the following generalization of Brouwer’s fixed point theorem:
Let K be a convex, closed, bounded subset of Euclidean space Rn. Let L be any subset

of Euclidean space Rn. Suppose there exist continuous functions S : K → L and T : L→ K
such that S(T (x)) = x for all x ∈ L and T (S(x)) = x for all x ∈ K. Let f : L → L be
continuous. Show that f has at least one fixed point. That is, there exists some x ∈ L with
f(x) = x. (Hint: apply Brouwer’s fixed point theorem to K.)
Solution. Consider the function TfS : K → K which is continuous, since it is a composi-

tion of continuous functions. By Brouwer’s Theorem, TfS has a fixed point. That is, there
exists y ∈ K such that (TfS)(y) = y. Applying S to both sides, we have (fS)(y) = S(y),
that is, f(S(y)) = S(y). That is, S(y) is a fixed point for f . And since y ∈ K and S : K → L,
we have S(y) ∈ L, as desired.

5. Question 5

Prove that any Nash equilibrium is a Correlated Equilibrium. (That is, if m,n are positive
integers, and if (x̃, ỹ) is a Nash equilibrium with x̃ ∈ ∆m and ỹ ∈ ∆n, then x̃ỹT is a correlated
equilibrium.) (Here we regard x̃ and ỹ as column vectors.)
Solution. We argue by contradiction. Suppose (x̃, ỹ) is a Nash equilibrium. Let z = x̃ỹT .

Suppose for the sake of contradiction that z is not a correlated equilibrium. Then the
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negation of the definition of correlated equilibrium holds. Without loss of generality, the
negated condition applies to player I. That is, there exists i, k ∈ {1, . . . ,m} such that

n∑
j=1

zijaij <

n∑
j=1

zijakj.

That is,

x̃i

n∑
j=1

ỹjaij < x̃i

n∑
j=1

ỹjakj. (∗)

This inequality suggests that Player I can benefit by switching from strategy i to strategy
k in the mixed strategy x̃. Let ei ∈ ∆m denote the vector with a 1 in the ith entry and zeros
in all other entries. Define x ∈ ∆m so that x = x̃− x̃iei + x̃iek. Observe that

xTAỹ − x̃TAỹ = (−x̃iei + x̃iek)TAỹ = −x̃i
n∑

j=1

aij ỹj + x̃i

n∑
j=1

akj ỹj
(∗)
> 0.

But this inequality contradicts that (x̃, ỹ) is a Nash equilibrium.

6. Question 6

Suppose we have a two person general sum game. Let K be the set of all Correlated
equilibria for the game. Prove that K is a convex set.

Solution. Let w, z be Correlated equilibria. Let t ∈ [0, 1]. We are required to show that
tz + (1− t)w is a Correlated equilbrium. Fix i, k ∈ {1, . . . ,m}. It is given than

n∑
j=1

zijaij ≥
n∑

j=1

zijakj,
n∑

j=1

wijaij ≥
n∑

j=1

wijakj. (∗)

So, using t, (1− t) ≥ 0,
n∑

j=1

(tzij + (1− t)wij)aij = t
n∑

j=1

zijaij + (1− t)
n∑

j=1

wijaij

(∗)
≥ t

n∑
j=1

zijakj + (1− t)
n∑

j=1

wijakj =
n∑

j=1

(tzij + (1− t)wij)akj.

The analogous inequality holds for the matrix bij using the same argument. That is, tz +
(1− t)w is a Correlated equilibrium.

7. Question 7

Define v : 2{1,2,3} → R so that v({1, 2}) = v({1, 3}) = v({2, 3}) = v({1, 2, 3}) = 1, whereas
v({1}) = v({2}) = v({3}) = v(∅) = 0.

Arguing directly using the axioms for the Shapley value, compute all of the Shapley
values of v.

Solution. We first claim that φ1(v) = φ2(v) = φ3(v). This will follow by an application
of Axiom (i). We need to check the assumption of Axiom (i) holds for all eight subsets
S of {1, 2, 3}. When S = ∅, it is given that v({1}) = v({2}) = v({3}). When S = {1},
we know v({1, 2}) = v({1, 3}); similarly the assumption of Axiom (i) holds for S = {2}
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and S = {3}. The remaining assumptions of Axiom (i) hold vacuously (in the case that
|S| ≥ 2). We conclude that Axiom (i) tells us φ1(v) = φ2(v) = φ3(v). Now, from Axiom
(iii), φ1(v) + φ2(v) + φ3(v) = v({1, 2, 3}) = 1. In conclusion, φ1(v) = φ2(v) = φ3(v) = 1/3.

8. Question 8

Ten people are standing together in a room. They are presented with the following prob-
lem: each person chooses a real number between (and including) 0 and 100. (So, someone
could guess: 20, 51.5, π,

√
2, 99.999, etc.) The person who chooses the number clos-

est to two-thirds of the average of all of the numbers wins. That is, if the numbers are
0 ≤ a1, . . . , a10 ≤ 100, each person wants to choose a number closest to (2/3)(1/10)

∑10
i=1 ai.

The people do not communicate with each other in any way. It is common knowledge that
every person wants to win the game, and every person is rational. Explain what number
each person will choose.

Solution. Every person will choose 0.
To see why, consider the actions of the first person. Since every bid will be at most 100,

we have

(2/3)(1/10)
10∑
i=1

ai ≤ (2/3)(1/10)
10∑
i=1

100 = (2/3)100.

That is, the largest bid any person will rationally choose is (2/3)100. However, all players
are aware of this fact, so all players know everyone will rationally bid at most (2/3)100.
Consequently,

(2/3)(1/10)
10∑
i=1

ai ≤ (2/3)(1/10)
10∑
i=1

(2/3)(100) = (2/3)2100.

So, the largest bid any person will rationally choose is (2/3)2100. And all players are aware
of this fact. And so on.

In general, if there is some upper bound T with 0 ≤ T ≤ 100 on all guesses that all
players will make, and if T is common knowledge, then the largest bid any rational person
will consider making is

(2/3)(1/10)
10∑
i=1

ai ≤ (2/3)(1/10)
10∑
i=1

T = (2/3)T.

And this fact is also common knowledge. So, the largest bid any person will rationally make
is limN→∞(2/3)NT = 0.

9. Question 9

Suppose we have two buyers, and f(v) = 1 for any v ∈ [0, 1] in a sealed-bid second price
auction. That is, the private values V1 and V2 are uniformly distributed in the interval [0, 1].
Show that an equilibrium strategy is β1(v) = v, β2(v) = v, ∀ v ∈ [0, 1]. That is, each player
will bid exactly their private value.

Solution 1. Suppose buyer 2 uses this strategy, and suppose buyer 1 has private value
v ∈ [0, 1]. Suppose buyer 1 submits the bid b ∈ [0, 1]. Since buyer 2 will bid V2, buyer 1 wins
the auction only when b > V2. Since V2 is uniformly distributed in [0, 1], we have b > V2

with probability
∫ b

0
dx = b.
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The expected profit of buyer 1 is the expected value of v − V2 multiplied by the function
which is 1 when b > V2 and 0 otherwise. That is, the expected profit of buyer 1 is∫ b

0

(v − x)dx = vb− b2/2.

So, buyer 1 maximizes her profit by choosing b = v (since the function b 7→ vb − b2/2 is
maximized at b = v.). That is, we must have β1(v) = v. Using a similar argument, if
β1(v) = v, then buyer 2 maximizes her profit by choosing β2(v) = v. That is, the strategy
β1(v) = v, β2(v) = v, ∀ v ∈ [0, 1] is a symmetric equilibrium.
Solution 2. Suppose buyer 2 uses this strategy. Suppose buyer 1 has private value v1 ∈

[0, 1]. Suppose buyer 1 submits the bid b ∈ [0, 1], and suppose buyer 2 has private value
v2 ∈ [0, 1]. Then buyer 2 bids v2. We consider two different cases.

(Case 1) If v2 > v1, then buyer 1 can only win the auction when b > v2, resulting in a
profit of v1 − b ≤ v1 − v2 ≤ 0. So, if v2 > v1, buyer 1 maximizes her profit by choosing b
such that b = v1 (achieving a profit of zero whether or not she wins the auction).

(Case 2) If v1 ≥ v2, and if buyer 1 wins the auction (which occurs when b > v2), then
buyer 1 gets a positive profit of v1 − v2. So, if v1 ≥ v2, buyer 1 maximizes her profit by
choosing b such that b = v1 (thereby winning the auction).

So, in any case, buyer 1 maximizes her profit by choosing b = v1. That is, buyer 1 should
choose β1(v) = v for all v ∈ [0, 1]. A similar argument applies to buyer 2, so that β1(v) = v,
β2(v) = v is an equilibrium. (Note that this solution did not use any of the properties
of the random variables V1, V2. That is, this strategy maximizes the profit for each player
before taking any expectations, so this strategy also maximizes the profit for each player
after taking expectations.)

10. Question 10

Let f : {−1, 1}n → {−1, 1}. Assume that f̂(S) = 0 whenever S ⊆ {1, . . . , n} and |S| 6= 1.
Show that there exists i ∈ {1, . . . , n} such that f(x) = f(x1, . . . , xn) = xi for all x ∈ {−1, 1}n,
or f(x) = −xi for all x ∈ {−1, 1}n.
Solution. It is given that there exist c1, . . . , cn ∈ R such that f(x1, . . . , xn) =

∑n
i=1 cixi

for all (x1, . . . , xn) ∈ {−1, 1}n. We know that at least one of the numbers c1, . . . , cn is
nonzero, since if all of them were zero, then f(1, . . . , 1) would be zero as well, contradicting
our assumption that |f(1, . . . , 1)| = 1.

For any x ∈ R, define sign(x) = 1 if x > 0, sign(x) = −1 if x ≤ 0. Let v =
(sign(c1), . . . , sign(cn)). Then f(v) =

∑n
i=1 cisign(ci) =

∑n
i=1 |ci| > 0 (since at least one

of the numbers c1, . . . , cn is nonzero.) Also, v ∈ {−1, 1}n. Therefore, f(v) = 1. That is,∑n
i=1 |ci| = 1

Also, by Plancherel’s Theorem (from Section 7.1 in the notes), 1 =
∑

S⊆{1,...,n} |f̂(S)|2 =∑n
i=1 c

2
i . In particular, |ci| ≤ 1 for all i ∈ {1, . . . , n}

In summary,
∑n

i=1 |ci| = 1 and
∑n

i=1 |ci|
2 = 1. But |ci| ≤ 1 for all i ∈ {1, . . . , n}, so

|ci|2 ≤ |ci| for all i ∈ {1, . . . , n}, with equality if and only if |ci| = 1. So
∑n

i=1 |ci|
2 ≤

∑n
i=1 |ci|,

with equality only if |cj| = 1 for some j ∈ {1, . . . , n}. Since
∑n

i=1 |ci|
2 =

∑n
i=1 |ci|, we

conclude that there must be some j ∈ {1, . . . , n} with |cj| = 1, and the other ci are zero, as
desired.
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11. Question 11

Explain in detail the Condorcet voting paradox. You should probably use an example of
three voters ranking three candidates in order to explain the paradox.

Solution. Consider the following ranking of three candidates a, b, c between three voters
1, 2, 3.

Voter Rank 1 Rank 2 Rank 3
1 a b c
2 b c a
3 c a b

If we ignore candidate b, then voters 2 and 3 prefer c over a, while voter 1 prefers a over
c. So, using a majority rule for these preferences, the voters prefer c over a. If we ignore
candidate c, then voters 1 and 3 prefer a over b, while voter 2 prefers b over a. So, using a
majority rule again, the voters prefer a over b. Finally, if we ignore candidate a, then voters
1 and 2 prefer b over c, while voter 3 prefers c over b. So, using a majority rule, the voters
prefer b over c.

In conclusion, given the above ranking, if we use a majority rule for every comparison
between two candidates, the voters prefer a over b, they prefer b over c, and they prefer c
over a. So, no one has won the election, if we conduct a Condorcet election.
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