
167 Final Solutions1

1. Question 1

(a) There is a two-person zero sum game with two Nash equilibria and one optimal strategy.
FALSE. In zero sum games, Nash equilibria are equivalent to optimal strategies, i.e. the

number of each must be the same. (We showed this on the homework.)
(b) Any correlated equilibrium is a convex combination of Nash equilibria.
FALSE. In the game of chicken, we showed there is a correlated equilibrium which is not

a convex combination of Nash equilibria. (We showed this on the homework.)
(c) Every two-person zero sum game has at least one pure Nash equilibrium.
FALSE. The Rock-Paper-Scissors game has only one Nash equilibrium, which is not pure.

(We showed this on the homework.)
(d) Every Evolutionarily Stable Strategy (ESS) is a Nash equilibrium.
TRUE. The first condition in the definition of ESS implies that this strategy is a Nash

equilibrium. If x is an ESS, then wTAx ≤ xTAx for all pure strategies w. Any mixed strategy
y can be expressed as a convex combination of pure strategies y1, . . . , yn, i.e. y =

∑n
i=1 tiyi,

where 0 ≤ ti ≤ 1 for all i ∈ {1, . . . , n} and
∑n

i=1 ti = 1. So, yTAx =
∑n

i=1 tiy
T
i Ax ≤∑n

i=1 tix
TAx = xTAx, so that x is a Nash equilibrium.

(e) The Condorcet paradox no longer occurs if we consider an election between four can-
didates. That is, the Condorcet paradox only occurs in Condorcet elections between three
candidates.

FALSE. Consider the exact same example we did in class which demonstrated the Con-
dorcet paradox, which consisted of three voters. Suppose the voters rank candidates a, b, c
just as in that example, but they all rank candidate d last. Then society still prefers a over
b, b over c, and c over a. So the paradox still occurs.

2. Question 2

State the two-dimensional case of Sperner’s Lemma. (Make sure to include all of the
assumptions.) (You do not have to prove Sperner’s Lemma.)

Solution. Suppose we divide a large triangle into smaller triangles, such that the inter-
section of any two adjacent triangles is a common edge of both. All vertices of the smaller
triangles are labelled 1, 2 or 3. The three vertices of the large triangle are labelled 1, 2 and
3. Vertices of small triangles that lie on an edge of the large triangle must receive a label of
one of the endpoints of that edge. Given such a labeling, the number of small triangles with
three differently labeled vertices is odd; in particular, this number is nonzero.

3. Question 3

Let A,B ⊆ R2 with A ∩ B = ∅. We say that A,B can be separated if the following
property holds. There exists z ∈ R2 and there exists c ∈ R such that zTa < c < zT b for all
a ∈ A and for all b ∈ B. We say that A,B cannot be separated if it does not hold that A,B
can be separated.

Give an example of two closed, convex sets A,B ⊆ R2 with A ∩ B = ∅, such that A,B
cannot be separated. (As usual, you have to justify your answer. Also, all of the required
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conditions on A,B must be satisfied. Lastly, drawing a picture might be helpful, but it will
not constitute a complete answer.)

Solution. There are several examples that work. Here is one example.
Let A = {(x, y) ∈ R2 : y ≤ 0} and let B = {(x, y) ∈ R2 : y ≥ e−x}. Then A ∩ B = ∅ since

y > 0 whenever (x, y) ∈ B, whereas y < 0 whenever (x, y) ∈ A. Now, let z ∈ R2. Since
zTa = zT b holds when z = 0, assume that z 6= 0. If x = 0 then y 6= 0, and since (1, 0) ∈ A
we have zT (1, 0) = 0, and since (t, e−t) ∈ B for any t > 0, we have zT (t, e−t) = ye−t. Letting
t → ∞, then zT (t, e−t) decreases to 0. That is, there does not exist a c ∈ R such that
zTa < c < zT b for all a ∈ A and for all b ∈ B. Now, if x 6= 0, then since (t, 0) ∈ A for any
t ∈ R, we have zT (t, 0) = xt. So, as t varies over all t ∈ R, zT (t, 0) can take any real number
value. So, there does not exist c ∈ R such that zTa < c for all a ∈ A. In any case, z does
not exist satisfying the condition for A,B being separated.

Lastly, note that A is closed and convex, since it is a closed half plane. Also B is closed
since limits preserve nonstrict inequalities (that is, the inequality y ≥ e−x is preserved by
taking a limit). And B is convex since if (v, w), (r, u) ∈ B, then w ≥ e−v, u ≥ e−r, and
we are required to show: for any 0 < t < 1, (tw + (1 − t)u) ≥ e−(tv+(1−t)r). To prove this
inequality, it then suffices to show that te−v + (1 − t)e−r ≥ e−(tv+(1−t)r). Since the function
x 7→ e−x has strictly positive second derivative for any x ∈ R, Taylor’s Theorem implies
that, if b = tv + (1 − t)r, and if h(b) = e−b, h : R → R, then h(b + x) ≥ h(b) + h′(b)x.
Choosing x = −tv + tr gives h(r) ≥ h(b) + h′(b)t(r− v). Choosing x = −(1− t)r + (1− t)v
gives h(v) ≥ h(b) + h′(b)(1 − t)(v − r). Adding these two inequalities, we get the required
inequality:

te−v + (1− t)e−r ≥ h(b) + h′(b)t(1− t)(v − r) + h′(b)t(1− t)(r − v) = h(b).

4. Question 4

Prove that any Nash equilibrium is a Correlated Equilibrium. (That is, if m,n are positive
integers, and if (x̃, ỹ) is a Nash equilibrium with x̃ ∈ ∆m and ỹ ∈ ∆n, then x̃ỹT is a correlated
equilibrium.) (Here we regard x̃ and ỹ as column vectors.)

Solution. We argue by contradiction. Suppose (x̃, ỹ) is a Nash equilibrium. Let z = x̃ỹT .
Suppose for the sake of contradiction that z is not a correlated equilibrium. Then the
negation of the definition of correlated equilibrium holds. Without loss of generality, the
negated condition applies to player I. That is, there exists i, k ∈ {1, . . . ,m} such that

n∑
j=1

zijaij <
n∑
j=1

zijakj.
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That is,

x̃i

n∑
j=1

ỹjaij < x̃i

n∑
j=1

ỹjakj. (∗)

This inequality suggests that Player I can benefit by switching from strategy i to strategy
k in the mixed strategy x̃. Let ei ∈ ∆m denote the vector with a 1 in the ith entry and zeros
in all other entries. Define x ∈ ∆m so that x = x̃− x̃iei + x̃iek. Observe that

xTAỹ − x̃TAỹ = (−x̃iei + x̃iek)
TAỹ = −x̃i

n∑
j=1

aij ỹj + x̃i

n∑
j=1

akj ỹj
(∗)
> 0.

But this inequality contradicts that (x̃, ỹ) is a Nash equilibrium.

5. Question 5

Define v : 2{1,2,3} → R so that v({1, 2}) = v({1, 3}) = 1, v({2, 3}) = 0, v({1, 2, 3}) = 2,
and v({1}) = v({2}) = v({3}) = v(∅) = 0.

Using any method you prefer, compute all of the Shapley values of v.
Solution 1. For any T, S ⊆ {1, 2, 3}, define uT : 2{1,2,3} → R such that uT (S) = 1 if T ⊆ S,

and uT (S) = 0 otherwise. As shown in class, if i ∈ {1, 2, 3}, then φi(uT ) = 1/ |T | if i ∈ T
and φi(uT ) = 0 otherwise. (If T = ∅, then uT is not a characteristic function, so it’s Shapley
values are not defined.)

As in the proof of Shapley’s Theorem, we want to find coefficients cT such that

v =
∑

T⊆{1,2,3}

cTuT . (∗)

Since v(∅) = 0, (∗) says 0 = c∅ (using uT (∅) = 0 for any T 6= ∅, T ⊆ {1, 2, 3}). If
S ⊆ {1, 2, 3} with |S| = 1, then (∗) says 0 = v(S) = cS. So, we can rewrite (∗) as v =∑

T⊆{1,2,3} : |T |≥2 cTuT . Applying this equality to the set {1, 2}, we have 1 = v({1, 2}) = c{1,2}.
Similarly, we conclude that c{1,3} = 1 and c{2,3} = 0. In summary,

v = u{1,2} + u{1,3} + c{1,2,3}u{1,2,3}.

Applying both sides to the set {1, 2, 3}, we get 2 = v({1, 2, 3}) = 1+1+c{1,2,3}. In conclusion,

v = u{1,2} + u{1,3}.

We can now read off the Shapley values of v, using the additivity axiom: φ1(v) = φ1(u{1,2})+
φ1(u{1,3}) = 1/2 + 1/2 = 1. φ2(v) = φ2(u{1,2}) + φ2(u{1,3}) = 1/2 + 0 = 1/2. φ3(v) =
φ3(u{1,2}) + φ3(u{1,3}) = 0 + 1/2 = 1/2.
Solution 2. Using a formula from the notes, for any i ∈ {1, 2, 3}, we have

φi(v) =
∑

S⊆{1,2,3} : i/∈S

|S|!(3− |S| − 1)!

3!
(v(S ∪ {i})− v(S)).

In the case i = 1, the only nonzero terms in the sum are S = {2}, S = {3}, S = {2, 3}. So,

φ1(v) =
1

3!
(v({1, 2})− v({2})) +

1

3!
(v({1, 3})− v({3})) +

2

3!
(v({1, 2, 3})− v({2, 3}))

=
1

6
(1) +

1

6
(1) +

1

3
(2) = 1.
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At this point, we could finish by noting that the symmetry axiom implies φ2(v) = φ3(v), and
the efficiency axiom implies φ1(v) + φ2(v) + φ3(v) = 2, so that φ2(v) + φ3(v) = 2φ2(v) = 1,
so that φ2(v) = φ3(v) = 1/2. Alternatively, we could use the above formula again.

In the case i = 2, the only nonzero terms in the sum are S = {1} and S = {1, 3}. So,

φ2(v) =
1

3!
(v({1, 2})− v({2})) +

2

3!
(v({1, 2, 3})− v({1, 3})) =

1

6
(1) +

1

3
(1) = 1/2.

In the case i = 3, the only nonzero terms in the sum are S = {1} and S = {1, 2}. So,

φ3(v) =
1

3!
(v({1, 3})− v({1})) +

2

3!
(v({1, 2, 3})− v({1, 2})) =

1

6
(1) +

1

3
(1) = 1/2.

6. Question 6

There are five pirates on a ship. It is also common knowledge that every pirate prefers to
maximize his amount of gold. There are 100 gold pieces to be split amongst the pirates. The
game begins when the first pirate proposes how he thinks the gold should be split amongst
the five pirates. All five pirates vote whether or not to accept the proposal, by a majority
vote. If the proposal is accepted, the game ends. If the proposal is not accepted, the first
pirate is thrown overboard, and the game begins continues. The second pirate now proposes
how he thinks the gold should be split amongst the four remaining pirates. All four pirates
vote whether or not to accept the proposal, by a majority vote (the current proposer, i.e. the
second pirate breaks a tie). If the proposal is accepted, the game ends. If the proposal is not
accepted, the second pirate is thrown overboard, and the game continues, etc. (During any
voting phase, if a pirate’s share of gold will decrease by throwing the proposer overboard,
this pirate will vote to accept the proposal; otherwise this pirate will vote to not accept the
proposal.) What is the largest amount of gold that the first pirate can obtain in the game?

Solution. The first pirate can obtain 98 gold pieces and this is the best possible. We argue
by working backwards.

If there are two pirates left on the ship, then the fourth pirate can break the tie between
the last two pirates. So, the fourth pirate can rationally maximize her gold by claiming all
100 gold pieces.

If there are three pirates left on the ship, the third pirate cannot claim all 100 pieces of
gold (the other pirates will reject this proposal, as their payoffs will be larger or equal if
they throw the third pirate overboard). However, the third pirate can rationally maximize
her gold by claiming 99 pieces of gold for herself by offering 1 piece to the third pirate. This
way, the third pirate will accept, since the third pirate’s payoff will decrease if he throws
overboard the third pirate.

If there are four pirates left on the ship, then the second pirate similarly cannot claim 100
gold pieces, since the other three will vote the second pirate overboard. However, the second
pirate can rationally maximize her gold by claiming 99 pieces of gold for herself by offering
1 piece to the fourth pirate. The fourth pirate will accept this offer, since her payoff will
decrease by rejecting the offer. And two votes is enough in this case to secure the 99 gold
payoff for the second pirate.

Finally, the first pirate cannot claim 100 or 99 gold. But she can rationally maximize her
gold by claiming 98 pieces of gold for herself by offering 1 piece to the third pirate, and 1
piece to the fifth pirate. The third and fifth pirate will accept the offer, since not doing so
would strictly decrease their payoffs in the next round of voting.
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In conclusion, the first pirate can rationally claim 98 gold pieces, and this is the best
possible she can do.

7. Question 7

Suppose we have n buyers, and f(v) = 1 for any v ∈ [0, 1] in a sealed-bid first price
auction. That is, the private values V1, . . . , Vn are uniformly distributed in the interval [0, 1]
(and independent). Show that an equilibrium strategy is βi(v) = n−1

n
v, for every v ∈ [0, 1],

for every i ∈ {1, . . . , n}. (Hint: let Z = max(V2, . . . , Vn). Using probabilistic notation, note
that P(Z ≤ t) = [P(V2 ≤ t)]n−1 for all t ∈ R.)

(In a sealed-bid first price auction, every buyer submits a sealed envelope with her desired
bid for the item. The buyer who has submitted the highest bid receives the item for their
bid.)

Solution. Let Z = max(V2, . . . , Vn). Let t ∈ [0, 1]. Then Z ≤ t if and only if Vi ≤ t for all
2 ≤ i ≤ n. Therefore, P(Z ≤ t) = P(V2 ≤ t, . . . , Vn ≤ t). By the independence of V2, . . . , Vn,
we get P(Z ≤ t) =

∏n
i=2P(Vi ≤ t) = tn−1, since P(Vi ≤ t) = t for any t ∈ [0, 1], 2 ≤ i ≤ n.

Now, suppose buyers 2 through n all use the equilibrium strategy. And suppose buyer
1 has private value v ∈ [0, 1], and she considers bidding b ∈ [0, 1]. Then the expected
profit of buyer 1 is v − b, multiplied by the probability that she wins the auction. Buyer
1 only wins the auction when b > n−1

n
Z. So, buyer 1 wins the auction with probability

P(Z ≤ bn
n−1) = min(( bn

n−1)n−1, 1). That is, the expected profit of buyer 1 is

(v − b) min((
bn

n− 1
)n−1, 1).

Now, consider the function b 7→ (v − b) min(( bn
n−1)n−1, 1). If g(b) = (v − b)( bn

n−1)n−1, then

g′(b) = (v − b)n(
bn

n− 1
)n−2 − (

bn

n− 1
)n−1 = ((v − b)n− bn

n− 1
)(

bn

n− 1
)n−2.

So, g′(b) = 0 when (v − b) = b
n−1 , i.e. then b = n−1

n
v. And this is the unique maximum of

the function b 7→ (v − b) min(( bn
n−1)n−1, 1). So, buyer 1 should bid b = n−1

n
v, as desired.

8. Question 8

• Let f : {−1, 1}n → {−1, 1}. Prove that the noise stability of f is at most 1.
• Let f : {−1, 1}n → {−1, 1} with

∑
x∈{−1,1}n f(x) = 0. Prove that the noise stability

of f with parameter 0 < ρ < 1 is at most ρ.

Solution. Since f : {−1, 1}n → {−1, 1}, then (f(x))2 = 1 for all x ∈ {−1, 1}n. So, by

Plancherel’s Theorem, 1 = 〈f, f〉 =
∑

S⊆{1,...,n} |f̂(S)|2. Therefore, using 0 < ρ < 1,

〈f, Tρf〉 =
∑

S⊆{1,...,n}

ρ|S||f̂(S)|2 ≤
∑

S⊆{1,...,n}

|f̂(S)|2 = 1.

And equality only occurs when f̂(S) = 0 for all S ⊆ {1, . . . , n} with |S| ≥ 1. That is,
equality only occurs when f is a constant function.

With the additional assumption that f̂(∅) = 0, we similarly have

〈f, Tρf〉 =
∑

S⊆{1,...,n}

ρ|S||f̂(S)|2 =
∑

S⊆{1,...,n} : |S|≥1

ρ|S||f̂(S)|2 ≤
∑

S⊆{1,...,n} : |S|≥1

|f̂(S)|2 = 1.
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And equality only occurs when f̂(S) = 0 for all S ⊆ {1, . . . , n} with |S| 6= 1. So,

f : {−1, 1}n → {−1, 1} and f̂(S) = 0 for all S ⊆ {1, . . . , n} with |S| 6= 1. The follow-
ing Exercise then completes the proof.

9. Question 9

Let n be a positive integer. Let f, g : {−1, 1}n → {−1, 1}. Let a0, . . . , an, b0, . . . , bn ∈ R.
Let x = (x1, . . . , xn) ∈ {−1, 1}n. For any x ∈ {−1, 1}n, define Lf (x) = a0 +

∑n
i=1 aixi,

Lg(x) = b0 +
∑n

i=1 bixi. Assume that Lf (x) 6= 0 and Lg(x) 6= 0 for all x ∈ {−1, 1}n. Assume
also that f(x) = sign(Lf (x)) and g(x) = sign(Lg(x)) for all x ∈ {−1, 1}n.

Assume that f̂(S) = ĝ(S) for all S ⊆ {1, . . . , n} with |S| ≤ 1. Prove that f = g.

Solution. Since L̂f (S) = 0 whenever |S| > 1, Plancherel’s Theorem implies that

〈f, Lf〉 =
∑

S⊆{1,...,n} : |S|≤1

f̂(S)L̂f (S).

Also, using our assumptions

〈f, Lf〉 = 2−n
∑

x∈{−1,1}n
f(x)Lf (x) = 2−n

∑
x∈{−1,1}n

f(x)Lf (x)

= 2−n
∑

x∈{−1,1}n
f(x)sign(f(x)) ≥ 2−n

∑
x∈{−1,1}n

g(x)sign(f(x))

= 〈g, Lf〉 =
∑

S⊆{1,...,n} : |S|≤1

ĝ(S)L̂f (S)

=
∑

S⊆{1,...,n} : |S|≤1

f̂(S)L̂f (S) = 〈f, Lf〉.

That is, the inequality must be an equality. Since 2−n
∑

x∈{−1,1}n f(x)sign(f(x)) = 2−n
∑

x∈{−1,1}n 1 =

1, we have 2−n
∑

x∈{−1,1}n g(x)sign(f(x)) = 1. And this equality can only occur when

g(x) = f(x) for all x ∈ {−1, 1}n

10. Question 10

Explain in detail the statement of Arrow’s Impossibility Theorem. (You do not need to
prove the Theorem, only state it precisely, state how the Condorcet election works, etc.)

Solution. Let f : {−1, 1}n → {−1, 1}. Let x, y, z ∈ {−1, 1}n, and assume (3 − xiyi −
xizi − yizi)/4 = 1 for all i ∈ {1, . . . , n}. The votes then describe the preferences of voters
between three candidates by a Lemma from the notes. For any such votes x, y, z, assume
that a Condorcet winner exists. Then f or −f must be a dictatorship.

Denote the three candidates by a, b, c. We think of f as taking an input of votes x, y, z,
and giving an output which is a societal preference. More specifically, given the votes x, y, z,
the function f determines the societal preference as follows:

• If f(x) = 1, the voters prefer a over b, and if f(x) = −1, the voters prefer b over a.
• If f(y) = 1, the voters prefer b over c, and if f(y) = −1, the voters prefer c over b.
• If f(z) = 1, the voters prefer c over a, and if f(z) = −1, the voters prefer a over c.
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So, for any 1 ≤ i ≤ n, xi is the preference of voter i between candidates a and b, yi is the
preference of voter i between candidates b and c, and zi is the preference of voter i between
candidates c and a.

Given the votes x, y, z, we say that a Condorcet winner of the election exists if one can-
didate is preferred over the other two by society. From a Lemma from the notes Condorcet
winner exists when (3−f(x)f(y)−f(x)f(z)−f(y)f(z))/4 = 1. The usual Condorcet election
corresponds to f being the majority function, f(x1, . . . , xn) = sign(x1 + · · ·+ xn).

The conclusion of Arrow’s Theorem says there exists i ∈ {1, . . . , n} such that f(x1, . . . , xn) =
xi or f(x1, . . . , xn) = −xi, for all x ∈ {−1, 1}n.
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