
Game Theory Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due February 16th, in the discussion section.

Homework 5

Exercise 1. Suppose we have a two-person zero-sum game with (n + 1) × (n + 1) payoff
matrix A such that at least one entry of A is nonzero. Let x, y ∈ ∆n+1. Write x =
(x1, . . . , xn, 1 −

∑n
i=1 xi), y = (xn+1, xn+2, . . . , x2n, 1 −

∑2n
i=n+1 xi). Consider the function

f : R2n → R defined by f(x1, . . . , x2n) = xTAy. Show that the Hessian of f has at least one
positive eigenvalue, and at least one negative eigenvalue. Conclude that any critical point of
f is a saddle point. That is, if we find a critical point of f (as we do when we look for the
value of the game), then this critical point is a saddle point of f . In this sense, the minimax
value occurs at a saddle point of f .

(Hint: Write f in the form f(x1, . . . , x2n) =
∑2n

i=1 bixi +
∑

1≤i≤n,
n+1≤j≤2n

cijxixj, where bi, cij ∈ R.

From here, it should follow that there exists a nonzero matrix C such that the Hessian of

f , i.e. the matrix of second order partial derivatives of f , should be of the form

(
0 C
CT 0

)
.

For simplicity, you are allowed to assume that C is invertible. (This assumption makes the
exercise easier, since you should be able to show that the determinant of the Hessian is
negative, but the assumption that C is invertible is not actually necessary to complete the
exercise.))

Exercise 2. Suppose we have a two-person zero-sum game. Show that any optimal strategy
is a Nash equilibrium. Then, show that any Nash equilibrium is an optimal strategy. In
summary, the Nash equilibrium generalizes the notion of optimal strategy. (Hint: to prove
that a Nash equilibrium is an optimal strategy it may be helpful to argue by contradiction,
and to assume that there is a Nash equilibrium that is not an optimal strategy. Then, it
may be helpful to use the first part of the argument in our proof of the Minimax Theorem.)

Exercise 3. Show that, in any two-player general-sum game, for any i ∈ {1, 2}, the payoffs
for player i in any Nash equilibrium exceeds the minimax value for player i. (If A is the
m × n payoff matrix for player 1, then the minimax value for player 1 is the quantity
maxx∈∆m miny∈∆n x

TAy = miny∈∆n maxx∈∆m xTAy; If B is the m × n payoff matrix for
player 2, then the minimax value for player 2 is the quantity maxy∈∆m minx∈∆n x

TBy =
minx∈∆n maxy∈∆m xTBy.)

Exercise 4. Recall the prisoner’s dilemma, which is described by the following payoffs

Recall that this two-person game has exactly one Nash equilibrium, where both parties
confess. However, if this game is repeated an infinite number of times, or a random number
of times, this strategy is no longer the only Nash equilibrium. This exercise explores the
case where the game is repeated an infinite number of times. Let N be a positive integer.
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Suppose the game is repeated infinitely many times, so that player I has payoffs a1, a2, a3, . . .
and player II has payoffs b1, b2, b3, . . .. That is, at the ith iteration of the game, player I has
payoff ai and player II has payoff bi. In the infinitely repeated game, each player would like
to maximize her average payoff over time (if this average exists). That is, player I wants to

maximize limN→∞
1
N

∑N
i=1 ai and player II wants to maximize limN→∞

1
N

∑N
i=1 bi.

Consider the following strategy for player I. Suppose player I begins by staying silent, and
she continues to be silent on subsequent rounds of the game. However, if player II confesses
at round i ≥ 1 of the game, then player I will always confess for every round of the game
after round i. Player II follows a similar strategy. Suppose player II begins by staying
silent, and she continues to be silent on subsequent rounds of the game. However, if player
I confesses at round j ≥ 1 of the game, then player II will always confess for every round
of the game after round j.

Show that this pair of strategies is a Nash equilibrium. That is, no player can gain something
by unilaterally deviating from this strategy.

Exercise 5. Show that the following strategy (known as “quid pro quo”) is also a Nash
equilibrium for Prisoner’s Dilemma iterated an infinite number of times.

Player I begins by staying silent. If Player II plays x on round i, then Player I plays x on
round i + 1. Similarly, Player II begins by staying silent. If Player I plays x on round i,
then Player II plays x on round i + 1.

Exercise 6. Find all Correlated Equilibria for the Prisoner’s Dilemma.

Exercise 7. We return now to the setting of general sum games. Show that any convex
combination of Nash equilibria is a Correlated Equilibrium. That is, if z(1), . . . , z(k) are

Nash Equilibria, and if t1, . . . , tk ∈ [0, 1] satisfy
∑k

i=1 ti = 1, then
∑k

i=1 tiz(i) is a Correlated
Equilibrium.


