Please provide complete and well-written solutions to the following exercises.
Due April 5, in the discussion section.

Homework 1

Exercise 1. Let n be a positive integer. Consider the game Chomp played on an $n \times n$ board. Explicitly describe the winning strategy for the first player. (Hint: the first move should remove the square which is diagonally adjacent to the lower left corner.)
Exercise 2. Compute the following nim-sums: $3 \oplus 4,5 \oplus 9$. Then, let a, b, c be nonnegative integers. Prove that $a \oplus a=0$ and $(a \oplus b) \oplus 0=a \oplus b$.

Exercise 3. Consider the nim position ($9,10,11,12$). Which player has a winning strategy from this position, the next player or the previous player? Describe a winning first move.
Exercise 4. Consider the game of Chomp played on a board of size $2 \times \infty$. Recall that a typical Chomp game board is $n \times m$, so that the board has n rows and m columns. We can label the rows as $\{1,2, \ldots, n\}$ and we can label the columns as $\{1,2, \ldots, m\}$, where n, m are positive integers. On a $2 \times \infty$ board, we label the rows as $\{1,2\}$, and we label the columns as $\{1,2,3,4,5,6, \ldots\}$. We can think of the row and column labels as coordinates in the $x y$-plane. So, the lower left corner will still have x-coordinate 1 and y-coordinate 1 , so that the lower left square has coordinates $(1,1)$; the square to the right of this has coordinates $(2,1)$, and so on.

On the $2 \times \infty$ board, which player has a winning strategy? Prove your assertion, and describe explicitly the winning strategy.

Let $n>2$ be an integer. On the $n \times \infty$ board, which player has a winning strategy? Prove your assertion, and describe explicitly the winning strategy.

On the $\infty \times \infty$ board, which player has a winning strategy? Prove your assertion, and describe explicitly the winning strategy.
Exercise 5. Let G_{1}, G_{2} be games. Let x_{i} be a game position for G_{i}, and let $\mathbf{N}_{G_{i}}, \mathbf{P}_{G_{i}}$ denote, \mathbf{N} and \mathbf{P} respectively for the game G_{i}, for each $i \in\{1,2\}$. Show the following:
(i) If $x_{1} \in \mathbf{P}_{G_{1}}$ and if $x_{2} \in \mathbf{P}_{G_{2}}$, then $\left(x_{1}, x_{2}\right) \in \mathbf{P}_{G_{1}+G_{2}}$.
(ii) If $x_{1} \in \mathbf{P}_{G_{1}}$ and if $x_{2} \in \mathbf{N}_{G_{2}}$, then $\left(x_{1}, x_{2}\right) \in \mathbf{N}_{G_{1}+G_{2}}$.
(iii) If $x_{1} \in \mathbf{N}_{G_{1}}$ and if $x_{2} \in \mathbf{N}_{G_{2}}$, then $\left(x_{1}, x_{2}\right)$ could be in either $\mathbf{N}_{G_{1}+G_{2}}$ or $\mathbf{P}_{G_{1}+G_{2}}$.

Exercise 6. Let G_{1}, G_{2}, G_{3} be games. Show that the notion of two games being equivalent is an equivalence relation. That is, show the following

- G_{1} is equivalent to G_{1}.
- If G_{1} is equivalent to G_{2}, then G_{2} is equivalent to G_{1}.
- If G_{1} is equivalent to G_{2}, and if G_{2} is equivalent to G_{3}, then G_{1} is equivalent to G_{3}.

