Please provide complete and well-written solutions to the following exercises.
Due May 31, in the discussion section.

Homework 8

Exercise 1. Prove the following Lemma from the notes: The set of functions $\left\{W_{S}\right\}_{S \subseteq\{1, \ldots, n\}}$ is an orthonormal basis for the space of functions from $\{-1,1\}^{n} \rightarrow \mathbf{R}$, with respect to the inner product defined in the notes. (When we write $S \subseteq\{1, \ldots, n\}$, we include the empty set \emptyset as a subset of $\{1, \ldots, n\}$.) (Also, for any $x \in\{-1,1\}^{n}, W_{S}(x)=\prod_{i \in S} x_{i}$.)
Exercise 2. Let $f:\{-1,1\}^{2} \rightarrow\{-1,1\}$ such that $f(x)=1$ for all $x \in\{-1,1\}^{2}$. Compute $\widehat{f}(S)$ for all $S \subseteq\{1,2\}$.

Let $f:\{-1,1\}^{3} \rightarrow\{-1,1\}$ such that $f\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{sign}\left(x_{1}+x_{2}+x_{3}\right)$ for all $\left(x_{1}, x_{2}, x_{3}\right) \in$ $\{-1,1\}^{3}$. Compute $\widehat{f}(S)$ for all $S \subseteq\{1,2,3\}$. The function f is called a majority function.
Exercise 3. Let $f:\{-1,1\}^{3} \rightarrow\{-1,1\}$ such that $f\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{sign}\left(x_{1}+x_{2}+x_{3}\right)$ for all $\left(x_{1}, x_{2}, x_{3}\right) \in\{-1,1\}^{3}$. In the previous exercise, we computed $\widehat{f}(S)$ for all $S \subseteq\{1,2,3\}$. The function f is called a majority function. Compute the noise stability of f, for any $\rho \in(-1,1)$.

Let n be a positive odd integer. The majority function for n voters can be written as $f\left(x_{1}, \ldots, x_{n}\right)=\operatorname{sign}\left(x_{1}+\cdots+x_{n}\right)$, where $x_{1}, \ldots, x_{n} \in\{-1,1\}$ and $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$. In the limit as $n \rightarrow \infty$, the noise stability of the majority function approaches a limiting value. (We implicitly used this fact in stating the Majority is Stablest Theorem.) You will compute this limiting value A in the following way. We have $A=4 B-1$, where B is defined below.

Let z_{1}, z_{2} be vectors of unit length in \mathbf{R}^{2}. Let $\rho \in(-1,1)$. Let \cdot denote the standard inner product of vectors in \mathbf{R}^{2}. Assume that $z_{1} \cdot z_{2}=\rho$. Let $C \subseteq \mathbf{R}^{2}$ be the set such that

$$
C=\left\{(x, y) \in \mathbf{R}^{2}:(x, y) \cdot z_{1} \geq 0 \text { and }(x, y) \cdot z_{2} \geq 0\right\}
$$

Then

$$
B=\iint_{C} e^{-\left(x^{2}+y^{2}\right) / 2} \frac{d x d y}{2 \pi}
$$

Compute the value of A. (You should get a relatively simple quantity involving an inverse trigonometric function.)
Exercise 4. Let f denote the majority function for n voters. In class, we showed that $I_{i}(f) \approx 1 / \sqrt{n}$ for all $i \in\{1, \ldots, n\}$. Explain why we can interpret this calculation as saying: your influence in a majority election is a lot more than $1 / n$, so you should vote. On the other hand, give reasons why the influence calculation may not accurately reflect your actual influence in a majority election. (If you are thinking of elections in the US, feel free to consider or ignore the electoral college system.)

Exercise 5. Let n be a positive integer. Let $f, g:\{-1,1\}^{n} \rightarrow\{-1,1\}$. Let $a_{0}, \ldots, a_{n}, b_{0}, \ldots, b_{n} \in$ R. Let $x=\left(x_{1}, \ldots, x_{n}\right) \in\{-1,1\}^{n}$. For any $x \in\{-1,1\}^{n}$, define $L_{f}(x)=a_{0}+\sum_{i=1}^{n} a_{i} x_{i}$, $L_{g}(x)=b_{0}+\sum_{i=1}^{n} b_{i} x_{i}$. Assume that $L_{f}(x) \neq 0$ and $L_{g}(x) \neq 0$ for all $x \in\{-1,1\}^{n}$. Assume also that $f(x)=\operatorname{sign}\left(L_{f}(x)\right)$ and $g(x)=\operatorname{sign}\left(L_{g}(x)\right)$ for all $x \in\{-1,1\}^{n}$.

Assume that $\widehat{f}(S)=\widehat{g}(S)$ for all $S \subseteq\{1, \ldots, n\}$ with $|S| \leq 1$. Prove that $f=g$. (Hint: what does the Plancherel Theorem say about $\left\langle f, L_{f}\right\rangle$? How does this quantity compare to $\left\langle g, L_{f}\right\rangle$? Also, note that $f(x) L_{f}(x)=\left|L_{f}(x)\right| \geq g(x) L_{f}(x)$ for any $x \in\{-1,1\}^{n}$.)
(Recall $\operatorname{sign}(t)=1$ if $t>0$ and $\operatorname{sign}(t)=-1$ if $t<0$.)
Exercise 6. Let n be a positive integer. Show that there is a one-to-one correspondence (or a bijection) between the set of functions f where $f:\{-1,1\}^{n} \rightarrow \mathbf{R}$, and the set of functions g where $g: 2^{\{1,2, \ldots, n\}} \rightarrow \mathbf{R}$. For example, you could identify a subset $S \subseteq\{1, \ldots, n\}$ with the element $x=\left(x_{1}, \ldots, x_{n}\right) \in\{-1,1\}^{n}$ where, for all $i \in\{1, \ldots, n\}$, we have $x_{i}=1$ if $i \in S$, and $x_{i}=-1$ if $i \notin S$.

Let $i, j \in\{1, \ldots, n\}$ and let $x \in\{-1,1\}^{n}$. Let $S(x)=\left\{j \in\{1, \ldots, n\}: x_{j}=1\right\}$. Using this one-to-one correspondence, show that the $i^{\text {th }}$ Shapley value of $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ can be written as

$$
\phi_{i}(f)=\sum_{x \in\{-1,1\}^{n}: x_{i}=-1} \frac{|S(x)|!(n-|S(x)|-1)!}{n!}\left(f\left(x_{1}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right)-f(x)\right) .
$$

So, $\phi_{i}(f)$ is similar to, but distinct from, $I_{i}(f)$. On the other hand, the $i^{\text {th }}$ Banzhaf power index is essentially identical to $I_{i}(f)$. That is, if we define

$$
B_{i}(f)=\sum_{x \in\{-1,1\}^{n}}\left|\frac{f\left(x_{1}, \ldots, x_{i-1},-x_{i}, x_{i+1}, \ldots, x_{n}\right)-f(x)}{2}\right|
$$

Then $B_{i}(f) / \sum_{j=1}^{n} B_{j}(f)$ is the $i^{\text {th }}$ Banzhaf power index of f.
Exercise 7. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$. Assume that $\widehat{f}(S)=0$ whenever $S \subseteq\{1, \ldots, n\}$ and $|S| \neq 1$. Show that there exists $i \in\{1, \ldots, n\}$ such that $f(x)=f\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ for all $x \in\{-1,1\}^{n}$, or $f(x)=-x_{i}$ for all $x \in\{-1,1\}^{n}$. (This exercise therefore completes the proof of Arrow's Theorem.)

