
170A Midterm 1 Solutions, Spring 20171

1. Question 1

Label the following statements as TRUE or FALSE. If the statement is true, explain your
reasoning. If the statement is false, provide a counterexample and explain your reasoning.

(a) The negation of the statement “There exists an integer j such that j4−j < 5” is: “For
every integer j, we have j4 − j ≥ 5.”

TRUE, by the rules of negation, “There exists” is negated to“For every,” and the inequality
< is negated to ≥.

(b) Let P be the uniform probability law on [0, 1]. Let x1, x2, . . . ∈ [0, 1] be a countable
set of distinct points. Then

P (∪∞n=1{xn}) = 0.

TRUE. By the definition of P, P({xn}) = 0 for all n ≥ 1. So, from Axiom (ii) for
probability laws,

P (∪∞n=1{xn}) =
∞∑
n=1

P({xn}) =
∞∑
n=1

0 = 0.

(c) Let Ω = {1, 2, 3, 4, 5, 6, 7}. For any A ⊆ Ω, define P(A) to be the number of elements
in A. Then P is a probability law on Ω.

FALSE. P(Ω) = 7, but Axiom (i) says P(Ω) = 1.
(d) Let A1, . . . , An be disjoint events in a sample space Ω. That is, Ai ∩Aj = ∅ whenever

i, j ∈ {1, . . . , n} satisfy i 6= j. Let P be a probability law on Ω. Assume P(Ai) > 0 for all
1 ≤ i ≤ n. Let B ⊆ Ω. Then

P(B) =
n∑

i=1

P(B ∩ Ai) =
n∑

i=1

P(Ai)P(B|Ai).

FALSE. Let Ω = {1, 2, 3}, let P be uniform on Ω, let A1 = {1} and let A2 = {2}. By
Axiom (iii), P(Ω) = 1.

∑2
i=1P(Ω ∩Ai) =

∑2
i=1P({i}) = 2/3. So, P(Ω) 6=

∑2
i=1P(B ∩Ai).

The issue is, we also need to assume that ∪ni=1Ai = Ω.

2. Question 2

Let Ω = [0, 1]. For any A ⊆ Ω, define P(A) so that

P(A) :=

{
1 , if 1

3
∈ A

0 , if 1
3
/∈ A.

Verify that P is a probability law on Ω. (When you verify Axiom (ii), you should consider
countable unions of sets.)

Solution. By the definition of P, P(A) ≥ 0 for any A ⊆ Ω. So, Axiom (i) holds. Also, by
definition of P, since 1/3 ∈ Ω we have P(Ω) = 1. So, Axiom (iii) holds. To verify Axiom
(ii), let A1, A2, . . . ⊆ Ω be disjoint events. We split into two cases.
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Case 1. If 1/3 /∈ ∪∞n=1An, then 1/3 /∈ An for every n ≥ 1, by definition of the union. By
the definition of P, we then have P(∪∞n=1An) = 0 and P(An) = 0 for all n ≥ 1. Therefore,

P(∪∞n=1An) =
∞∑
n=1

P(An).

Case 2. If 1/3 ∈ ∪∞n=1An, then 1/3 ∈ Ai for some i ≥ 1, by definition of the union. Since
the events A1, A2, . . . are disjoint, we have 1/3 /∈ An for every n ≥ 1 with n 6= i. By the
definition of P, we then have P(∪∞n=1An) = 1 and P(An) = 0 for all n ≥ 1 with n ≥ i, and
P(Ai) = 1. Therefore,

P(∪∞n=1An) = 1 = P(Ai) = P(Ai) + 0 + 0 + · · · =
∞∑
n=1

P(An).

In any case, Axiom (ii) holds.

3. Question 3

Suppose a test for a disease is 97% accurate. That is, if you have the disease, the test
will be positive with 97% probability. And if you do not have the disease, the test will be
negative with 97% probability. Suppose also the disease is fairly rare, so that roughly 1 in
1, 000 people have the disease. If you test positive for the disease, with what probability
do you actually have the disease? (Hint: let B be the event that you test positive for the
disease. Let A be the event that you actually have the disease. Compute a conditional
probability.)

Solution. Let B be the event that the test is positive. Let A be the event that you actually
have the disease. We want to compute P(A|B). We have

P(A|B) = P(A ∩B)/P(B) = (P(A)/P(B))P(A ∩B)/P(A) = (P(A)/P(B))P(B|A).

We are given that P(A) = 10−3, P (B|A) = .97 and P(B|Ac) = .03. To compute P(B), we
write B = (B ∩ A) ∪ (B ∩ Ac), so that

P(B) = P(B ∩ A) + P(B ∩ Ac) = P(B|A)P(A) + P(B|Ac)P(Ac)

= .97(10−3) + .03(1−P(A)) = .97(10−3) + .03(1− 10−3) ≈ 3× 10−2.

In conclusion,

P(A|B) =
10−3

P(B)
(.97) =

10−3

.97(10−3) + .03(1− 10−3)
(.97) ≈ 10−3102(1/3) =

1

30
.

4. Question 4

An urn contains three red cubes and two blue cubes. A cube is removed from the urn
uniformly at random. If the cube is red, it is kept out of the urn and a second cube is
removed from the urn. If the cube is blue, then this cube is put back into the urn and an
additional red cube is put into the urn, and then a second cube is removed from the urn.

• What is the probability that the second cube removed from the urn is red?
• If it is given information that the second cube removed from the urn is red, then

what is the probability that the first cube removed from the urn is blue?
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Solution. Let A be the event that the first cube removed is red, and let B be the event
that the first cube removed is blue. Let C be the event that the second cube removed from
the urn is red. Then A ∩B = ∅ and A ∪B = Ω, so the Total Probability Theorem says

P(C) = P(C|A)P(A) + P(C|B)P(B) = (1/2)(3/5) + (4/6)(2/5) = 3/10 + 8/30 = 17/30.

Now, using that P(C) = 17/30, we have

P(B|C) = P(C|B)[P(B)/P(C)] = (4/6)(2/5)(30/17) = 8/17.

5. Question 5

Let A,B,C be independent events. Show that A,B and Cc are independent events.
Solution. It is given that P(A∩C) = P(A)P(C). So, using P(A) = P(A∩C)+P(A∩Cc),

P(A ∩ Cc) = P(A)−P(A ∩ C) = P(A)−P(A)P(C) = P(A)(1−P(C)) = P(A)P(Cc).

In the last equality, we used P(C) + P(Cc) = 1.
Similarly, using the assumption P(A ∩B) = P(A)P(B), we have

P(B ∩ Cc) = P(B)−P(B ∩ C) = P(B)−P(B)P(C) = P(B)(1−P(C)) = P(B)P(Cc).

To verify that A,B and Cc are independent events, it therefore remains to show that

P(A ∩B ∩ Cc) = P(A)P(B)P(Cc).

To show this, using the assumption P(A ∩B ∩C) = P(A)P(B)P(C) and using also P(A ∩
B) = P(A ∩B ∩ C) + P(A ∩B ∩ Cc),

P(A ∩B ∩ C) = P(A ∩B ∩ C)−P(A ∩B) = P(A)P(B)P(C)−P(A)P(B)

= P(A)P(B)P(1−P(C)) = P(A)P(B)P(Cc).
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