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1. Question 1

(a) A continuous random variable is a random variable X together with a continuous
function fX : R → R such that, for any −∞ ≤ a < b ≤ ∞, we have P(a ≤ X ≤ b) =∫ b
a
fX(x)dx.
FALSE. fX does not have to be continuous. For example, a random variable uniformly

distributed on [0, 1] has a discontinuous PDF.
(b) There is some random variable X with PDF given by fX(x) = x for any x ∈ [0, 2],

and fX(x) = 0 otherwise.
FALSE. The integral of fX is not 1, so fX is not a PDF.
(c) Let X and Y be independent random variables taking values in [−10, 10]. Then

E(XY 2) = E(X)E(Y 2).

TRUE. This follows from independence and Exercise 4.45. The identity E[g(X)h(Y )] =
[Eg(X)][Eh(Y )] applies when X, Y are independent, so we use g(x) = x and h(y) = y2.

(d) Let Ω = {1, 2, 3, 4, 5, 6, 7}. For any subset A ⊆ Ω, let P(A) be the number of elements
of A. Then P is a probability law on Ω.

FALSE. P(Ω) = 7 6= 1, violating the last axiom for probability laws.

(e) Define f(x, y) =

{
12x2y3 if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise
. Suppose X and Y are random

variables with joint PDF f(x, y). Then X and Y are independent.
TRUE. This follows from Definition 5.53. In particular, note that if x ∈ [0, 1], then

fX(x) =
∫ 1

0
12x2y3dy = 3x2 (with fX(x) = 0 otherwise) and if y ∈ [0, 1], then fY (y) =∫ 1

0
12x2y3dx = 4y3 (with fY (y) = 0 otherwise). So, fX,Y (x, y) = fX(x)fY (y) for all x, y ∈ R.

So X and Y are independent.
(f) Let X, Y be random variables with joint PDF fX,Y . Let x, y ∈ R with fX(x) > 0 and

fY (y) > 0. Then

fX|Y (x|y) =
fX(x)fY |X(y|x)∫∞
−∞ fY (t)fY |X(y|t)dt

FALSE. The Continuous Bayes’ rule says fX|Y (x|y) =
fX(x)fY |X(y|x)∫∞

−∞ fX(t)fY |X(y|t)dt .

(g) Let X be a random variable uniformly distributed on the interval [0, 1]. Let Y =
4X(1−X). Then the CDF of Y is

FY (y) = P(Y ≤ y) =


0 , y < 0

1−
√

1− y , 0 ≤ y ≤ 1

1 , y > 1.

TRUE. Using the quadratic formula, the function f(t) = 4t(1− t) takes the value c ∈ [0, 1]
when x = (1/2)± (1/2)

√
1− c. So, if x ∈ [0, 1], we have

P(4X(1−X) ≤ x) = P(X ∈ [0, 1/2− (1/2)
√

1− x] or X ∈ [1/2 + (1/2)
√

1− x, 1])

= (1/2)− (1/2)
√

1− x+ 1− (1/2 + (1/2)
√

1− x) = 1−
√

1− x.
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(h) Let X be a random variable uniformly distributed on the interval [0, 1]. Let Y =
− logX. (Here log denotes the natural logarithm.) Then Y has PDF given by

f(y) =

{
0 , if y < 0

e−y , if y ≥ 0.
.

TRUE. Since the logarithm is an increasing function, P(Y ≤ t) = P(− logX ≤ t) =
P(logX ≥ −t) = P(X ≥ e−t) = 1− e−t if t ≥ 0. (And P(Y ≤ t) = 1 for any t > 0.) So, the
CDF of X is 1 − e−y for any y ≥ 0. So, the PDF is the derivative of the the CDF, so that
the PDF is e−y for any y ≥ 0.

(i) Let X, Y and Z be random variables. Suppose these random variables have joint
density function

fX,Y,Z(x, y, z) =

{
1
16

(xy + z) , if 0 ≤ x, y, z ≤ 2,

0 , otherwise.

Then EX = 7
6
.

TRUE. We have EX = 1
16

∫ 2

0

∫ 2

0

∫ 2

0
(x2y + xz)dxdydz = 1

16
((1/3)8(2)(2) + (2)(2)(2)) =

(1/16)(32/3 + 8) = 56/48 = 7/6.
(j) Let X be a random variable such that

P(X ≤ x) =


0 , ifx < 0

x2 , if 0 ≤ x ≤ 1.

1 , ifx ≥ 1

Then EX = 1
15
.

FALSE. The density of X is the derivative of the CDF, so the PDF is 2x for any 0 ≤ x ≤ 1.
So, the expected value of X is

∫ 1

0
x2xdx =

∫ 1

0
2x2dx = 2/3 6= 1/15.

(k) Define

F (x) =


0 , ifx < 0

x2 − x , if 0 ≤ x ≤ 1+
√

5
2

1 , ifx ≥ 1+
√

5
2
.

Then there exists a random variable X such that P(X ≤ x) = F (x) for all x ∈ R
FALSE. F (1/2) = −1/4, so it cannot be true that P(X ≤ 1/2) = −1/4.

2. Question 2

An urn contains three red cubes and two blue cubes. A cube is removed from the urn
uniformly at random. If the cube is red, it is kept out of the urn and a second cube is
removed from the urn. If the cube is blue, then this cube is put back into the urn and an
additional red cube is put into the urn, and then a second cube is removed from the urn.

• What is the probability that the second cube removed from the urn is red?
• If it is given information that the second cube removed from the urn is red, then

what is the probability that the first cube removed from the urn is blue?
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Solution. Let A be the event that the first cube removed is red, and let B be the event
that the first cube removed is blue. Let C be the event that the second cube removed from
the urn is red. Then A ∩B = ∅ and A ∪B = Ω, so the Total Probability Theorem says

P(C) = P(C|A)P(A) + P(C|B)P(B) = (1/2)(3/5) + (4/6)(2/5) = 3/10 + 8/30 = 17/30.

Now, using that P(C) = 17/30, we have

P(B|C) = P(C|B)[P(B)/P(C)] = (4/6)(2/5)(30/17) = 8/17.

3. Question 3

Let a < b be fixed real numbers. LetX be a random variable which is uniformly distributed
in the interval [a, b]. Compute the mean and variance of X. (As usual, you must show your
work to receive credit.)

Solution. EX = (b − a)−1
∫ b
a
xdx = (b − a)−1(1/2)(b2 − a2) = (1/2)(b + a). EX2 =

(b− a)−1
∫ b
a
x2dx = (b− a)−1(1/3)(b3− a3) = (1/3)(b2 + ab+ a2). var(X) = EX2− (EX)2 =

(1/3)(b2 + ab+ a2)− (1/4)(a2 + b2 + 2ab) = (1/12)(a2 + b2 − 2ab) = (1/12)(a− b)2

4. Question 4

Let X, Y, Z be independent continuous random variables. (That is, fX,Y,Z(x, y, z) =

fX(x)fY (y)fZ(z) for all x, y, z ∈ R, and fX,Y,Z is defined so that
∫ t
s

∫ d
c

∫ b
a
fX,Y,Z(x, y, z)dxdydz =

P(a ≤ X ≤ b, c ≤ Y ≤ d, s ≤ Z ≤ t) for all a ≤ b, c ≤ d, s ≤ t.)
Assume that X, Y, Z are all uniformly distributed in the interval [0, 6]. Prove that X and

Y are independent.
Solution 1. Let x, y ∈ R. Then

fX,Y (x, y) =

∫ ∞
−∞

fX,Y,Z(x, y, z)dz , by definition of marginal

=

∫ ∞
−∞

fX(x)fY (y)fZ(z)dz , by assumption

= fX(x)fY (y)

∫ ∞
−∞

fZ(z)dz = fX(x)fY (y) , since

∫ ∞
−∞

fZ(z)dz = 1.

That is, fX,Y (x, y) = fX(x)fY (y) for all x, y ∈ R, so X and Y are independent.
Solution 2. Let a ≤ b, c ≤ d. It is given that fX,Y,Z(x, y, z) = fX(x)fY (y)fZ(z) for all

x, y, z ∈ R. So,∫ d

c

∫ b

a

fX,Y (x, y)dxdy = P(a ≤ X ≤ b, c ≤ Y ≤ d), , by definition of fX,Y

= P(a ≤ X ≤ b, c ≤ Y ≤ d,−∞ ≤ Z ≤ ∞)

=

∫ ∞
−∞

∫ d

c

∫ b

a

fX,Y,Z(x, y, z)dxdydz, , by definition of fX,Y,Z

=

(∫ d

c

∫ b

a

fX(x)fY (y)dxdy

)(∫ ∞
−∞

fZ(z)dz

)
, , by assumption

=

(∫ d

c

∫ b

a

fX(x)fY (y)dxdy

)
.
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The last line uses
∫∞
−∞ fZ(z)dz = 1, which holds since fZ is a PDF. In conclusion, we have

shown
∫ d
c

∫ b
a
fX,Y (x, y)dxdy =

∫ d
c

∫ b
a
fX(x)fY (y)dxdy for all a ≤ b, c ≤ d. Since fX(x) = 1/6

if x ∈ [0, 6] and 0 otherwise (and similarly for fY ), we have (for 0 ≤ c ≤ d ≤ 6, 0 ≤ a ≤ b ≤ 6)∫ d

c

∫ b

a

fX,Y (x, y)dxdy =
1

36

∫ d

c

∫ b

a

dxdy =
(b− a)(d− c)

36
.

Since this holds for every 0 ≤ c ≤ d ≤ 6, 0 ≤ a ≤ b ≤ 6, we conclude that fX,Y (x, y) =
fX(x)fY (y) for all x, y ∈ R, as desired. That is, fX,Y (x, y) = 1

36
if 0 ≤ x ≤ 6 and 0 ≤ y ≤ 6,

and fX,Y (x, y) = 0 otherwise.

5. Problem 5

Let x1, . . . , xn be distinct numbers. Consider a random ordered list of the form y1, . . . , yn,
where the list y1, . . . , yn is a permutation of the numbers x1, . . . , xn. Assume that all possible
permutations of the numbers x1, . . . , xn are equally likely to occur. For any i ∈ {1, . . . , n},
let Ai be the event that yi > yj for all j such that 1 ≤ j ≤ i − 1. Prove that P(Ai) = 1/i
for any 1 ≤ i ≤ n. (As usual, and especially for this problem, you are expected to show all
of the details of this proof, and justify every step of your argument.)

Solution 1. Fix i ∈ {1, . . . , n}. Let j ∈ {1, . . . , i}. Let Bj be the event that aj > ak for
every k ∈ {1, . . . , i} such that k 6= j. Then ∪ij=1Bj = Ω, and Bj ∩ Bj′ = ∅ for every j, j′ ∈
{1, . . . , i} with j 6= j′. So, 1 = P(Ω) =

∑i
j=1 P(Bj). We now claim that P(Bj) = P(Bj′)

for every j, j′ ∈ {1, . . . , i} with j 6= j′. Given that this is true, it immediately follows that
P(Bi) = 1/i = P(Ai), as desired. To prove our claim, suppose we denote any ordering of
the numbers as c1, . . . , cn where c1, . . . , cn are distinct elements of {1, . . . , n}. (That is, we
denote the ordering y1, . . . , yn as xc1 , . . . , xcn .) Then for any k < i, any ordering c1, . . . , cn
where xci exceeds xc1 , . . . , xci−1

can be uniquely associated to the ordering

c1, . . . , ck−1, ci, ck+1, ck+2, . . . , ci−2, ci−1, ck, ci+1, . . . , cn.

That is, we take the original ordering, and swap the ith and kth elements in the ordering.
So, the number of orderings where the ith number exceeds the previous ones is equal to the
number of orderings where the kth number exceeds the first i numbers (if k < i). That is,
P(Ai) = P(Ak).

Solution 2. P(Ai) is equal to the number of orderings of the numbers x1, . . . , xn such that
the ith number exceeds the previous i − 1 numbers, all divided by the number of orderings
of the numbers. That is, (n!)P(Ai) is the number of ways of choosing i of the n numbers
(which is

(
n
i

)
), multiplied by the number of orderings of these i numbers such that the last

number is largest (which is (i− 1)!), multiplied by the number of orderings of the remaining
(n− i) numbers (which is (n− i)!):

P(Ai) =
(i− 1)!(n− i)!

(
n
i

)
n!

=
(i− 1)!(n− i)! n!

(n−i)!i!

n!
=

(i− 1)!

i!
=

1

i
.

6. Question 6

Let X be a binomial random variable with parameters n = 2 and p = 1/2. So, P(X =
0) = 1/4, P(X = 1) = 1/2 and P(X = 2) = 1/4. And X satisfies EX = 1 and EX2 = 3/2.
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Let Y be a geometric random variable with parameter 1/2. So, for any positive integer k,
P(Y = k) = 2−k. And Y satisfies EY = 2 and EY 2 = 6.

Let Z be a Poisson random variable with parameter 1. So, for any nonnegative integer k,
P(Z = k) = 1

e
1
k!

. And Z satisfies EZ = 1 and EZ2 = 2.
Let W be a discrete random variable such that P(W = 0) = 1/2 and P(W = 4) = 1/2,

so that EW = 2 and EW 2 = 8.
Assume that X, Y, Z and W are all independent. As usual, define var(X) = E[(X−EX)2].

Compute

var(X + Y + Z +W ).

Solution. Since X, Y, Z and W are independent, Corollary 4.40 in the notes says that
var(X+Y +Z+W ) = var(X)+var(Y )+var(Z)+var(W ) = (3/2)−12+6−22+2−12+8−22 =
1/2 + 2 + 1 + 4 = 15/2.

7. Question 7

Let R and Θ be independent random variables. Assume that Θ is uniform on (−π, π),
and assume that R has the PDF given by

f(r) =

{
re−r

2/2 if r ≥ 0

0 otherwise.

Let X = R cos Θ and let Y = R sin Θ.

• Find the joint PDF of (X, Y ).
• What is the marginal PDF of X? What is the marginal PDF of Y ?
• Are X and Y independent? Explain your reasoning.

Solution 1. Let fR,Θ(r, θ) denote the joint PDF of (R,Θ). Since R,Θ are independent, we
have fR,Θ(r, θ) = f(r)/2π whenever θ ∈ (−π, π) and r ≥ 0, and fR,Θ(r, θ) = 0 otherwise.

Let A be a subset of the plane R2. That is, A consists of a set of pairs (x, y) in the plane.
Using polar coordinates, we can equivalently think of this set as a set of pairs (r, θ) ∈ A′,
where x = r cos θ and y = r sin θ, and where θ is restricted to (−π, π). So,

P((X, Y ) ∈ A) = P((R cos Θ, R sin Θ) ∈ A) = P((R,Θ) ∈ A′) =

∫∫
(r,θ)∈A′

fR,Θ(r, θ)drdθ

=

∫∫
(r,θ)∈A′

f(r)drdθ =
1

2π

∫∫
(r,θ)∈A′

re−r
2/2drdθ

=

∫∫
(x,y)∈A

1

2π
e−(x2+y2)/2dxdy

So, the joint PDF of X, Y is fX,Y (x, y) = 1
2π
e−(x2+y2)/2. The marginal PDFs are

fX(x) =
1√
2π

∫ ∞
−∞

e−y
2/2dy

1√
2π
e−x

2/2 =
1√
2π
e−x

2/2.

fY (y) =
1√
2π

∫ ∞
−∞

e−x
2/2dx

1√
2π
e−y

2/2 =
1√
2π
e−y

2/2.

Since fX,Y (x, y) = fX(x)fY (y), the variables X, Y are independent.
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Solution 2 for part 1. We could also use an exercise from the last homework. Let V (r, θ) =

(r cos θ, r sin θ), and let S(x, y) = (
√
x2 + y2, tan−1(y/x)) = (r, θ). Let (X, Y ) = V (R,Θ) =

(R cos Θ, R sin Θ). Then

fX,Y (x, y) = fR,Θ(S(x, y)) |JacS(x, y)|

=
1

2π
f(
√
x2 + y2)

∣∣∣∣∣det

(
x(x2 + y2)−1/2 y(x2 + y2)−1/2

−yx−2

1+(y/x)2
1/x

1+(y/x)2

)∣∣∣∣∣
=

1

2π

√
x2 + y2e−(x2+y2)/2

∣∣∣∣det

(
x(x2 + y2)−1/2 y(x2 + y2)−1/2

−y
x2+y2

x
x2+y2

)∣∣∣∣
=

1

2π

√
x2 + y2e−(x2+y2)/2(x2 + y2)−1/2 =

1

2π
e−(x2+y2)/2.

8. Question 8

Let X,Z be discrete random variables. Let A ⊆ Ω. Show that E(X + Z|A) = E(X|A) +
E(Z|A).

Solution. Let t ∈ R. Then

P({Z +X = t} ∩ A) =
∑
z,x∈R

P({Z +X = t} ∩ {Z = z} ∩ {X = x} ∩ A)

=
∑

z,x∈R : z+x=t

P({Z = z} ∩ {X = x} ∩ A).

E(X + Z|A) =
∑
t∈R

tpX+Z|A(t) =
∑
t∈R

tP({Z +X = t} ∩ A)/P(A)

=
∑
t∈R

t
∑

z,x∈R : z+x=t

P({Z = z} ∩ {X = x} ∩ A)/P(A)

=
∑
z,x∈R

(z + x)P({Z = z} ∩ {X = x} ∩ A)/P(A)

=
∑
z,x∈R

zP({Z = z} ∩ {X = x} ∩ A)/P(A) +
∑
z,x∈R

xP({Z = z} ∩ {X = x} ∩ A)/P(A)

=
∑
z∈R

zP({Z = z} ∩ A)/P(A) +
∑
x∈R

xP({X = x} ∩ A)/P(A) = E(Z|A) + E(X|A).

9. Question 9

Using the De Moivre-Laplace Theorem, estimate the probability that 1, 000, 000 coin flips
of fair coins will result in more than 501, 000 heads. (Some of the following integrals may be

relevant:
∫ 0

−∞ e
−t2/2dt/

√
2π = 1/2,

∫ 1

−∞ e
−t2/2dt/

√
2π ≈ .8413,

∫ 2

−∞ e
−t2/2dt/

√
2π ≈ .9772,∫ 3

−∞ e
−t2/2dt/

√
2π ≈ .9987.)

Solution. Let Xi = 1 if the ith coin flip is heads, and let Xi = 0 if the ith coin flips is
tails. Then

∑n
i=1 Xi is the number of heads that have been flipped. The Theorem says

limn→∞P

(
X1+···+Xn−(1/2)n

√
n
√

1/4
≤ a

)
=
∫ a
−∞ e

−t2/2 dt√
2π

, for any a ∈ R. So, using n = 1000000,
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a = 2, we have

P

(
X1 + · · ·+Xn − (1/2)n

√
n
√

1/4
≤ a

)
= P

(
X1 + · · ·+Xn ≤ n/2 + a

√
n/2
)

= P (X1 + · · ·+Xn ≤ 500000 + 1000)

≈
∫ 2

−∞
e−t

2/2 dt√
2π
≈ .9772.

So, the probability of more than 501000 heads is roughly 1− .9772 = .0228.

10. Question 10

Suppose a needle of length ` > 0 is kept parallel to the ground. The needle is dropped
onto the ground with a random position and orientation. The ground has a grid of equally
spaced horizontal lines, where the distance between two adjacent lines is d > 0. Suppose
` < d. What is the probability that the needle touches one of the lines? (Since ` < d, the
needle can touch at most one line.)

Solution. Let x be the distance of the midpoint of the needle from the closest line. Let θ be
the acute angle formed by the needle and any horizontal line. The tip of the needle exactly
touches the line when sin θ = x/(`/2) = 2x/`. So, any part of the needle touches some line if
and only if x ≤ (`/2) sin θ. Since the needle has a uniformly random position and orientation,
we model X,Θ as random variables with joint distribution uniform on [0, d/2]×[0, π/2]. That
is,

fX,Θ(x, θ) =

{
4
πd
, x ∈ [0, d/2] and θ ∈ [0, π/2]

0, otherwise.

(Note that
∫∫

R2 fX,Θ(x, θ)dxdθ = 1.) And the probability that the needle touches one of the
lines is ∫∫

0≤x≤(`/2) sin θ

fX,Θ(x, θ)dxdθ =

∫ θ=π/2

θ=0

∫ x=(`/2) sin θ

x=0

4

πd
dxdθ

=
2`

πd

∫ θ=π/2

θ=0

sin θdθ =
2`

πd
[− cos θ]

θ=π/2
θ=0 =

2`

πd
.

Note that x ≤ `/2 < d/2 always, so the set 0 ≤ x ≤ (`/2) sin θ is still contained in the set
x ∈ [0, d/2].

In particular, when ` = d, the probability is 2/π

11. Question 11

Let S ⊆ R3 denote the unit ball. That is,

S = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1}.

Let X, Y, Z be random variables such that the vector (X, Y, Z) is uniformly distributed in
the ball S. Compute the probability

P(X2 + Y 2 ≤ 1/2).
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Solution. Let D ⊆ R3 be the subset of the unit ball where x2 +y2 ≤ 1/2. We can integrate
over D using e.g. cylindrical coordinates as follows

P(X2 + Y 2 ≤ 1/2) =

∫∫∫
D
dV∫∫∫

S
dV

=

∫ θ=2π

θ=0

∫ r=1/
√

2

r=0

∫ z=√1−r2
z=−

√
1−r2 dzrdrdθ

4π/3

=

∫ θ=2π

θ=0

∫ r=1/
√

2

r=0
r
√

1− r2drdθ

2π/3

=

∫ θ=2π

θ=0

∫ u=1/2

u=1
−(u1/2/2)dudθ

2π/3
, substituting u = 1− r2

=

∫ θ=2π

θ=0
[u3/2/3]u=1

u=1/2dθ

2π/3
=

∫ θ=2π

θ=0
[1− (1/2)3/2]dθ

2π
= 1− (1/2)3/2.

12. Question 12

Suppose you have $100, and you need to come up with $1000. You are a terrible gambler
but you decide you need to gamble your money to get $1000. For any amount of money M ,
if you bet $M , then you win $M with probability .3, and you lose $M with probability .7.
(If you run out of money, you stop gambling, and if you ever have at least $1000, then you
stop gambling.) Consider the following two possible strategies for gambling:

Strategy 1. Bet as much money as you can, up to the amount of money that you need,
each time.

Strategy 2. Make a small bet of $10 each time.
Explain which strategy is better. That is, explain which strategy has a higher probability

of getting $1000.
Solution. Strategy 1 is much better. The probability of reaching $1000 with consecutive

wins is (.3)4, since if you win every time, your sequence of monetary holdings would be: $100,
$200, $400, $800, $1000. So, with probability at least (.3)4, you will reach $1000 in winnings.
On the other hand, your ability to make it to $1000 with Strategy 2 is astronomically low.
The Gambler’s Ruin problem from Example 2.52 in the notes shows that the probability of
reaching $1000 with $10 bets is the same as: starting with $10, making $1 bets, and stopping
when you reach $0 or $100. The probability of reaching $100 is(

.7

.3

)10 − 1(
.7
.3

)100 − 1
≤ 310

2100
=

310

(22)10280
≤ 2−80.

And 2−80 is much less than (.3)4. That is, Strategy 1 is far superior to Strategy 2.
Alternatively, we could use the De Moivre-Laplace Theorem to get a very rough approx-

imation for the probability of success of strategy 2. If Xi = 1 with probability .3 and
Xi = −1 with probability .7, then Yi = (1 + Xi)/2 is a Bernoulli random variable with
parameter p = .3. The event that Strategy 2 succeeds is (very roughly) the event that
X1 + · · · + X100 > 90. This event is the same as Y1 + · · · + Y100 > 95. the probability of
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failure of Strategy 2 is (using n = 100)

P

(
Y1 + · · ·+ Yn − pn√

n
√
p(1− p)

≤ 14

)
= P

(
Y1 + · · ·+ Yn ≤ pn+ 14

√
n
√
p(1− p)

)
= P (Y1 + · · ·+ Yn ≤ 30 + 14(10)(.456))

≈ P (Y1 + · · ·+ Y100 ≤ 95)

≈
∫ 14

−∞
e−t

2/2 dt√
2π

That is, the probability of success of strategy 2 is roughly∫ ∞
14

e−t
2/2 dt√

2π
≤
∫ ∞

14

te−t
2/2dt = e−98.
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