
170A Final Solutions1

1. Question 1

(a) There exists a continuous random variable X such that P(X = 2) = 1/2. FALSE. If
X is continuous, then P(X = a) = 0 for any a ∈ R.

(b) There is some random variable X such that var(X) = −1.
FALSE. The variance must be nonnegative by definition.
(c) Let X and Y be random variables. Then

E(X) =

∫ ∞
−∞

E(X|Y = y)fX(y)dy.

FALSE. The Total Expectation Theorem says E(X) =
∫∞
−∞E(X|Y = y)fY (y)dy.

(d) Let X be a continuous random variable with probability density function fX . Then
fX(x) ≤ 1 for all x ∈ R.

FALSE. A density function can have value larger than 1. For example, if fX(x) = 2 for
any x ∈ [0, 1/2] and fX(x) = 0 otherwise, then fX is a PDF.

(e) Define f(x, y) =

{
6e−3x−2y ifx ≥ 0, y ≥ 0

0 otherwise
. Suppose X and Y are random variables

with joint PDF f(x, y). Then X and Y are independent.
TRUE. This follows from Definition 5.53. If x ≥ 0, then fX(x) =

∫∞
0

6e−3x−2ydy = 3e−3x

(with fX(x) = 0 otherwise) and if y ≥ 0, then fY (y) =
∫∞
0

6e−3x−2ydx = 2e−2y (with
fY (y) = 0 otherwise). So, fX,Y (x, y) = fX(x)fY (y) for all x, y ∈ R. So X and Y are
independent.

(f) Let X be a random variable uniformly distributed on the interval [0, 1]. Let Y =
− logX. (Here log denotes the natural logarithm.) Then Y has CDF given by

FY (y) = P(Y ≤ y) =

{
0 , y < 0

1− e−y , 0 ≤ y.

TRUE. Since the logarithm is an increasing function, P(Y ≤ t) = P(− logX ≤ t) =
P(logX ≥ −t) = P(X ≥ e−t) = 1− e−t. So, the CDF of X is 1− e−y for any y ≥ 0.

(g) Let X, Y and Z be random variables. Suppose these random variables have joint
density function

fX,Y,Z(x, y, z) =

{
1
6
(xy + z) , if 0 ≤ x, y, z ≤ 2,

0 , otherwise.

Then P(X ≤ 1, Y ≤ 1, Z ≤ 1) = 1
8
.

TRUE. We have P(X ≤ 1, Y ≤ 1, Z ≤ 1) = 1
6

∫ 1

0

∫ 1

0

∫ 1

0
(xy + z)dxdydz = 1

6
(1 · (1/2) ·

(1/2) + 1 · 1 · (1/2)) = (1/6)(3/4) = 1/8.
(h) Let X be a random variable that only takes nonnegative integer values. Assume that

for any integer n > 10, we have P(X ≥ n) = 1/
√
n. Then E(X) <∞.

FALSE. From an exercise from the homework, EX =
∑∞

n=1 P(X ≥ n). But the sum∑∞
n=10 1/

√
n diverges. So EX =∞.
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(i) For any x ∈ R, define F (x) = π
2

+ tan−1(x). Then there exists a random variable X
such that P(X ≤ x) = F (x) for all x ∈ R.

FALSE. If F is a CDF, then limx→∞ F (x) = 1. But limx→∞ F (x) = π > 1.
(j) Let X and Y be random variables on a sample space Ω. Let P be a probability law on

Ω. Assume that X and Y are independent (with respect to the probability law P). Let P′

be another (possibly different) probability law on Ω. Then X and Y are independent, with
respect to P′.

FALSE. Let Ω = {0, 1}2, let P be uniform on Ω. Let X(ω1, ω2) = ω1 and let Y (ω1, ω2) =
ω2. Then X and Y are independent (as shown in class). But if P′ is defined by P′({0, 0}) =
P′({0, 1}) = P′({1, 0}) = 1/3 with P′({1, 1}) = 0, then P′(X = 0, Y = 0) = 1/3 6=
(2/3)(2/3) = P′(X = 0)P′(Y = 0).

(k) Let X, Y be random variables. For any y ∈ R, assume that E(X|Y = y) = |y|. Also,
assume that Y is a standard Gaussian random variable. Then E(X) = 2.

FALSE.
∫
R
E(X|Y = y)fY =

∫
R
|y| e−y2/2dy/

√
2π = 2

∫∞
0
ye−y

2/2dy/
√

2π = 2/
√

2π =√
2/π.

2. Question 2

Let X be an exponential random variable with parameter λ = 1. (So, X has density
fX(x) = e−x if x ≥ 0, and fX(x) = 0 if x < 0.) Compute EX and E(X2).

Solution. Integrating by parts, we have EX =
∫∞
0
xe−xdx =

∫∞
0
x d
dx

(−e−x)dx =
∫∞
0
e−xdx =

1. Also, EX2 =
∫∞
0
x2e−xdx =

∫∞
0
x2 d

dx
(−e−x)dx =

∫∞
0

2xe−xdx =
∫∞
0

2e−xdx = 2.

3. Question 3

Let n be a fixed positive integer. Let X and Y be independent random variables that are
uniformly distributed in the set {1, . . . , n}. What is the PMF of X + Y ?

Solution. Let 2 ≤ j ≤ 2n and let 1 ≤ k ≤ n. Then P(X + Y = j|Y = k) = P(X =
j − k|Y = k) = P(X = j − k), using that X and Y are independent. By the definition
of X, P(X = j − k) = 1/n if 1 ≤ j − k ≤ n and P(X = j − k) = 0 otherwise. So,
P(X+Y = j|Y = k) = 1/n if 1 ≤ j−k ≤ n, and P(X+Y = j|Y = k) = 0 otherwise. That
is, P(X+Y = j|Y = k) = 1/n if k ≤ j−1, k ≥ j−n, 1 ≤ k ≤ n, and P(X+Y = j|Y = k) = 0
otherwise. So, by the Total Probability Theorem, if 2 ≤ j ≤ 2n,

P(X + Y = j) =
n∑
k=1

P(X + Y = j|Y = k)P(Y = k) =

min(n,j−1)∑
k=max(1,j−n)

P(X + Y = j|Y = k)P(Y = k)

=

min(n,j−1)∑
k=max(1,j−n)

(1/n)2 =

{
(j − 1)/n2 , if 2 ≤ j ≤ n+ 1

(2n− j + 1)/n2 , if n+ 1 ≤ j ≤ 2n
.

For any other j, we have P(X+Y = j) = 0. Consequently, pX+Y (1) = 0, pX+Y (1+(n/3)) =
1/(3n), pX+Y (n+ 1) = 1/n, pX+Y (1 + (3n/2)) = 1/(2n), pX+Y (3n) = 0. (These last answers
assume that the arguments of pX+Y are integers.)

4. Question 4

Let X, Y, Z be independent discrete random variables. Prove that X and Y are indepen-
dent.
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Solution. For any z ∈ R, let Bz = {Z = z}. Then Bz ∩ Bz′ = ∅ if z 6= z′, z, z′ ∈ R, and
∪z∈RBz = Ω. Let x, y ∈ R. Using Axiom (ii)

P(X = x, Y = y) = P({X = x}∩{Y = y}∩(∪z∈RBz)) =
∑
z∈R

P(X = x, Y = y, Z = z). (∗)

Similarly,

P(X = x)P(Y = y) = P(∪z∈RBz)P(X = x)P(Y = y)

=
∑
z∈R

P(X = x)P(Y = y)P(Z = z) (∗∗)

By assumption P(X = x, Y = y, Z = z) = P(X = x)P(Y = y)P(Z = z) for every
x, y, z ∈ R. So, the quantities (∗) and (∗∗) are equal for any x, y ∈ R, as desired.

5. Question 5

A single fair 100-sided die has each of its faces labeled with exactly one integer between
and including 1 and 100. Each face is equally like to be rolled.

Suppose you have three fair 100-sided dice. After rolling these three dice, what is the
probability that the sum of the rolls of the three dice is 52?

Solution. For any 1 ≤ i ≤ 100, let Ai be the event that that first die roll is i. Let B be
the event that the sum of the rolls is 52. Then P(B) =

∑100
i=1P(B|Ai)P(Ai), by the Total

Probability Theorem. (Here we used ∪100i=1Ai = Ω, and Ai ∩ Aj = ∅ for every i 6= j with
1 ≤ i, j ≤ 100.) Now, P(B|Ai) = 0 if i > 50, since if the first roll exceeds 50, the sum of
the rolls must exceed 52, so that B|Ai is empty. So, P(B) =

∑50
i=1 P(B|Ai)P(Ai). Also,

P(Ai) = 1/100 for every 1 ≤ i ≤ 100 since the first die is fair, so P(B) = 1
100

∑50
i=1P(B|Ai).

Given that Ai occurs, the sum of the remaining two dice is 52 − i = s. Arguing as in class
(or just counting the possibilities), the probability that two of the dice sum to s = 52− i is
10−4(s− 1) = 10−4(51− i). Therefore,

P(B) = 10−6
50∑
i=1

(51− i) = 10−6(50 · 51− 50 · 51/2) = 10−6(25 · 51) =
51

40000
.

6. Question 6

Let n be a fixed positive integer. Let X1, . . . , Xn be independent random variables. As
usual, define var(X) = E(X − EX)2. Prove the following:

var(
n∑
i=1

Xi) =
n∑
i=1

var(Xi).
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var(
n∑
i=1

Xi) = E(
n∑
i=1

Xi − E(
n∑
i=1

Xi))
2 = E(

n∑
i=1

(Xi − E(Xi)))
2

= E(
n∑
i=1

(Xi − E(Xi))
2) + 2E(

∑
1≤i<j≤n

(Xi − E(Xi))(Xj − E(Xj)))

=
n∑
i=1

var(Xi) + 2E(
∑

1≤i<j≤n

E(Xi − E(Xi)) · E(Xj − E(Xj))) =
n∑
i=1

var(Xi).

In the penultimate equality, we used that Xi and Xj are independent.

7. Question 7

Let X be binomial random variable with parameters n = 2 and p = 1/2. So, P(X = 0) =
1/4, P(X = 1) = 1/2 and P(X = 2) = 1/4. And X satisfies EX = 1 and EX2 = 3/2.

Let Y be a geometric random variable with parameter 1/2. So, for any positive integer k,
P(Y = k) = 2−k. And Y satisfies EY = 4 and EY 2 = 32.

Let Z be a Poisson random variable with parameter 1. So, for any nonnegative integer k,
P(Z = k) = 1

e
1
k!

. And Z satisfies EZ = 1 and EZ2 = 2.
Let W be a discrete random variable such that P(W = −1) = 2/3 and P(W = 2) = 1/3,

so that EW = 0 and EW 2 = 2.
Assume that X, Y, Z and W are all independent. Compute

E(1 +W 2 +WX2Y 3Z4).

Solution. From Exercise 4.45 or Remark 4.47 in the notes, since W,X, Y, Z are indepen-
dent, we have E(WX2Y 3Z4) = E(W )E(X2)E(Y 3)E(Z4) = 0, since EW = 0. Therefore,
E(1 +W 2 +WX2Y 3Z4) = 1 + EW 2 = 1 + 2 = 3.

8. Question 8

Let X, Y, Z be uniformly distributed random variables on [0, 1]. Assume that X, Y and Z
are all independent. Compute the probability

P(X + Y + Z < 2).

Solution. The joint density is fX,Y,Z(x, y, z) = 1 when 0 ≤ x, y, z ≤ 1 and fX,Y,Z(x, y, z) =
0 otherwise. Since P(X + Y + Z < 2) = 1 − P(X + Y + Z ≥ 2), we compute the latter
probability instead. We then have

P(X + Y + Z ≥ 2) =

∫∫∫
x+y+z≥2

fX,Y,Z(x, y, z)dxdydz =

∫ z=1

z=0

∫ 1

y=1−z

∫ x=1

x=2−z−y
dxdydz

=

∫ z=1

z=0

∫ 1

y=1−z
(z + y − 1)dydz =

∫ z=1

z=0

[zy + (1/2)y2 − y]y=1
y=1−zdz

=

∫ z=1

z=0

[z + 1/2− 1− z(1− z)− (1/2)(1− z)2 + (1− z)]dz

=

∫ z=1

z=0

(1/2)z2dz = 1/6.
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To determine the integration regions, note that when x+y+z ≥ 2, when 0 ≤ x, y, z ≤ 1 and
when z is fixed, we are integrating over the region where x+ y ≥ 2− z, which is a triangular
region, with respect to x and y. This region lies between the lines x+ y = 2− z, y = 1 and
x = 1 in the xy-plane. And the vertices of the triangle are (1, 1− z), (1− z, 1) and (1, 1).

Or, if we knew ahead of time that this integration region was a right triangular pyra-
mid, with edges of length 1, we could compute its volume as (1/3)(Area of base)(height) =
(1/3)(1/2)(1) = 1/6.

In any case, P(X + Y + Z < 2) = 1−P(X + Y + Z ≥ 2) = 1− 1/6 = 5/6.

9. Question 9

Suppose I have a fair coin. So, each coin flip has probability 1/2 of landing heads, and
probability 1/2 of landing tails. Suppose I flip the coin ten times, and each time it lands
heads. When I flip the coin again an eleventh time, what is the probability that the coin
lands heads?

Solution. The probability is 1/2. Each coin flip is independent of the other ones, so any
individual coin flip has probability 1/2 of landing heads.

10. Question 10

LetX1, . . . , Xn be independent standard Gaussian random variables. Let Y = max(X1, . . . , Xn)
be the maximum of X1, . . . , Xn. Write an integral expression that computes EY . You should
not try to evaluate this integral. This integral should be an expression involving the density
e−x

2/2/
√

2π. (Hint: can you find a relatively simple expression for the CDF of Y ?
Solution. As shown in class, the event Y ≤ t is equal to the event X1 ≤ t, . . . , Xn ≤ t.

So, P(Y ≤ t) = [P(X1 ≤ t)]n = [
∫ t
−∞ e

−x2/2dx/
√

2π]n for any t ∈ R. We can then get the
density of Y , since

fY (t) =
d

dt
P(Y ≤ t) =

d

dt

(∫ t

−∞
e−x

2/2dx/
√

2π

)n
= n

(∫ t

−∞
e−x

2/2dx/
√

2π

)n−1
e−t

2/2/
√

2π,

by the Chain rule and Fundamental Theorem of Calculus. Therefore,

EY =

∫ ∞
−∞

tfY (t)dt =

∫ ∞
−∞

nt

(∫ t

−∞
e−x

2/2dx/
√

2π

)n−1
e−t

2/2dt/
√

2π.

11. Question 11

Suppose you have a sequence of integers a0, a1, a2, . . . such that a0 = 0, a1 = 1, and such
that, for any n ≥ 2, we have an = 2an−1 + 3an−2. Using the linear algebraic technique for
solving recursions discussed for the Gambler’s Ruin problem, find an explicit expression for
an for any n ≥ 2.

Solution. Let A =

(
2 3
1 0

)
. Then for any n ≥ 1,(

an+1

an

)
=

(
2 3
1 0

)(
an
an−1

)
.
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More generally, (
an+1

an

)
= An

(
a1
a0

)
. (∗)

And A has eigenvalues λ such that (2− λ)(−λ)− 3 = 0, so that λ2 − 2λ− 3 = 0. From the
quadratic formula, or by factoring we have (λ− 3)(λ+ 1) = 0, so the eigenvalues are λ = −1
and λ = 3. And the eigenvectors of A are in the null space of the respective matrices(

3 3
1 1

)
,

(
−1 3
1 −3

)
So, two eigenvectors with eigenvalues −1 and 3, respectively, are(

1
−1

)
,

(
3
1

)
These eigenvectors are a basis for R2. Note that a1 = 1 and a0 = 0. We write(

a1
a0

)
=

(
1
0

)
=

1

4

(
1
−1

)
+

1

4

(
3
1

)
.

Finally, applying (∗) to this equality and using the definition of an eigenvector, we get(
an+1

an

)
=

(−1)n

4

(
1
−1

)
+

3n

4

(
3
1

)
.

That is, for any n ≥ 1,

an =
1

4
(−(−1)n + 3n).

We can test this equality for a few small n’s. For example, a0 = 0 and a1 = 1 both still hold.

12. Question 12

Suppose you have a standard 52-card deck of playing cards. (So the cards are sitting in
a deck one on top of the other; there are thirteen cards of each of the four suits: hearts,
spades, diamonds and clubs. And all permutations of the cards as a single deck of cards are
equally likely.) Suppose you are drawing cards from the top of the deck without replacing
them, and you put the cards in a pile. What is the expected number of cards you have to
draw from the top of the deck before you find two hearts? (That is, what is the expected
number of cards you have to draw out of the deck right before the pile goes from having one
heart to having two hearts?)

Solution. Suppose we label the non-heart cards as {1, . . . , 39}. Let i ∈ {1, . . . , 39}. Let
Xi = 1 if the ith card is drawn before any heart is drawn, and Xi = 0 otherwise. Let Yi = 1
if the ith card is drawn between the first heart and the second heart, and Yi = 0 otherwise.
The number of cards drawn before the first heart is

∑39
i=1Xi, and the number of cards drawn

after the first heart and before the second heart is
∑39

i=1 Yi. So, the number of cards drawn
before drawing the second heart is

1 +
39∑
i=1

(Xi + Yi).
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It remains to compute the expected value of this quantity. We claim that EXi = EYi = 1/14
for all i ∈ {1, . . . , 39}. Assuming this claim, the expected number of cards to be drawn before
the second heart is

E(1 +
39∑
i=1

(Xi + Yi)) = 1 +
39∑
i=1

(EXi + EYi) = 1 + 2 · 39/14 = 1 + 39/7 = 46/7.

We now prove the claim. Suppose we label the heart at the highest point in the deck
as j = 1, we label the next highest position heart as j = 2 and so on, up to j = 13.
Then there are fourteen possible locations for a non-heart card: above the j = 1 heart, in
between the j = 1 and j = 2 hearts, in between the j = 2 and j = 3 hearts, etc. For
any fixed i ∈ {1, . . . , 39}, the ith card is equally likely to be in any of these 14 locations.
To see this, for any of the fourteen k ∈ {1, . . . , 14} non-heart card locations, let Ak be
the event that the ith card is in location k. Then ∪14k=1Ak = Ω and if k, k′ ∈ {1, . . . , 14}
with k 6= k′, then Ak ∩ Ak′ = ∅. Given any arrangement of cards such that the ith card
is in location k, we can uniquely associate this arrangement to another arrangement where
the ith card occurs in location k′. We can do this, for example, by swapping all cards in
location k with all cards in location k′. Since the probability law P(Ak) counts the number
of arrangements in Ak divided by 52!, we conclude that P(Ak) = P(Ak′) for all k 6= k′,
k, k′ ∈ {1, . . . , 14}. So, 1 = P(Ω) =

∑∞
k=1 P(Ak) = 14P(A1). So, P(A1) = P(A2) = 1/14.

That is, P(Xi = 1) = P(Yi = 1) = 1/14. And since Xi, Yi only take values 1 or 0, the
definition of expected value says EXi = EYi = 1/14 for all i ∈ {1, . . . , 39}, as desired.
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