Please provide complete and well-written solutions to the following exercises.
Due January 14th, in the discussion section.

Homework 1

Exercise 1. Let A, B, C be sets in a universe Ω. Using the definitions of intersection, union and complement, prove properties (ii) and (iii) below.
(ii) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
(iii) $\left(A^{c}\right)^{c}=A$.
(Hint: to prove property (ii), it may be helpful to first draw a Venn diagram of A, B, C. Now, let $x \in \Omega$. Consider where x could possibly be with respect to A, B, C. For example, we could have $x \in A, x \notin B, x \in C$. We could also have $x \in A, x \in B, x \notin C$. And so on. In total, there should be $2^{3}=8$ possibilities for the location of x, with respect to A, B, C. Construct a truth table which considers all eight such possibilities for each side of the purported equality $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.)
Exercise 2. Let A_{1}, A_{2}, \ldots be sets in some universe Ω. Prove that $\left(\bigcap_{i=1}^{\infty} A_{i}\right)^{c}=\bigcup_{i=1}^{\infty} A_{i}^{c}$.
Exercise 3. Let A_{1}, A_{2}, \ldots be sets in some universe Ω. Let $B \subseteq \Omega$. Prove:

$$
B \cap\left(\bigcup_{k=1}^{\infty} A_{k}\right)=\bigcup_{k=1}^{\infty}\left(A_{k} \cap B\right)
$$

Exercise 4 (Discrete Uniform Probability Law). Let n be a positive integer. Suppose we are given a finite universe Ω with exactly n elements. Let $A \subseteq \Omega$. Define $\mathbf{P}(A)$ such that $\mathbf{P}(A)$ is the number of elements of A, divided by n. Verify that \mathbf{P} is a probability law. This probability law is referred to as the uniform probability law on Ω, since each element of Ω has the same probability.
Exercise 5. Let $\Omega=\mathbf{R}^{2}$. Let $A \subseteq \Omega$. Define a probability law \mathbf{P} on Ω so that

$$
\mathbf{P}(A)=\frac{1}{2 \pi} \iint_{A} e^{-\left(x^{2}+y^{2}\right) / 2} d x d y
$$

We can think of \mathbf{P} as defining the (random) position of a dart, thrown at an infinite dart board. That is, if $A \subseteq \Omega$, then $\mathbf{P}(A)$ is the probability that the dart will land in the set A.

Very that Axiom (iii) holds for \mathbf{P}. That is, verify that $\mathbf{P}(\Omega)=1$. Then, compute the probability that a dart hits a circular board A, where $A=\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2} \leq 1\right\}$.

Exercise 6. Let A, B be subsets of a sample space Ω. Prove the following things:

- $A=(A \cap B) \cup\left(A \cap B^{c}\right)$.
- $A=(A \backslash B) \cup(A \cap B)$, and $(A \backslash B) \cap(A \cap B)=\emptyset$.
- $A \cup B=(A \backslash B) \cup(B \backslash A) \cup(A \cap B)$, and the three sets $(A \backslash B),(B \backslash A),(A \cap B)$ are all disjoint. That is, any two of these sets are disjoint.

Exercise 7. Let Ω be a sample space and let \mathbf{P} be a probability law on Ω. Let $A, B, C \subseteq \Omega$. Prove the following things:

- $\mathbf{P}(A \cup B) \leq \mathbf{P}(A)+\mathbf{P}(B)$.
- $\mathbf{P}(A \cup B \cup C)=\mathbf{P}(A)+\mathbf{P}\left(A^{c} \cap B\right)+\mathbf{P}\left(A^{c} \cap B^{c} \cap C\right)$.
(Although the book suggests otherwise, a Venn diagram alone is not a rigorous proof. As in Exercise 1, a truth table allows us to rigorously reason about the information contained in a Venn diagram. Though, there are ways to do the problem while not directly using a truth table.)

Exercise 8. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a function. Show that

$$
\cup_{y \in \mathbf{R}}\{x \in \mathbf{R}: f(x)=y\}=\mathbf{R} .
$$

Also, show that the union on the left is disjoint. That is, if $y_{1} \neq y_{2}$ and $y_{1}, y_{2} \in \mathbf{R}$, then $\left\{x \in \mathbf{R}: f(x)=y_{1}\right\} \cap\left\{x \in \mathbf{R}: f(x)=y_{2}\right\}=\emptyset$.

