Please provide complete and well-written solutions to the following exercises.
Due March 3, in the discussion section.

Homework 7

Exercise 1. Let X, Y and Z be independent geometric random variables with the same parameter $0<p<1$. Let k, n be nonnegative integers. Compute $\mathbf{P}(X=k \mid X+Y+Z=n)$.
Exercise 2. Let X, Y, Z be discrete random variables. Let $A \subseteq \Omega$. Let $c \in \mathbf{R}$. Show that conditional expectation is linear; that is, show that $\mathbf{E}(X+Z \mid A)=\mathbf{E}(X \mid A)+\mathbf{E}(Z \mid A)$ and $\mathbf{E}(c X \mid A)=c \mathbf{E}(X \mid A)$. (Recall that Expectation itself is linear as well.) (Hint: it may be useful to write $\mathbf{P}(\{Z+X=t\} \cap A)=\sum_{z, x \in \mathbf{R}: z+x=t} \mathbf{P}(\{Z=z\} \cap\{X=x\} \cap A)$.)

Now, let $f(y)=\mathbf{E}(X \mid Y=y)$ for any $y \in \mathbf{R}$. Then $f: \mathbf{R} \rightarrow \mathbf{R}$ is a function. In more advanced probability classes, we consider the random variable $f(Y)$, which is denoted by $\mathbf{E}(X \mid Y)$. Show that $\mathbf{E}(X+Z \mid Y)=\mathbf{E}(X \mid Y)+\mathbf{E}(Z \mid Y)$.

Then, show that $\mathbf{E}[\mathbf{E}(X \mid Y)]=\mathbf{E}(X)$. (That is, you should show that $\mathbf{E} f(Y)=\mathbf{E}(X)$.) So, understanding $\mathbf{E}(X \mid Y)$ can help us to compute $\mathbf{E}(X)$.
Exercise 3. Give an example of two random variables X, Y that are independent. Prove that these random variables are independent.

Give an example of two random variables X, Y that are not independent. Prove that these random variables are not independent.

Finally, find two random variables X, Y such that $\mathbf{E}(X Y) \neq \mathbf{E}(X) \mathbf{E}(Y)$.
Exercise 4. Is it possible to have a random variable X such that X is independent of X ? Either find such a random variable X, or prove that it is impossible to find such a random variable X.

Exercise 5. Let $0<p<1$. Let n be a positive integer. Let X_{1}, \ldots, X_{n} be pairwise independent Bernoulli random variables. Compute the expected value of

$$
S_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

Then, compute the variance of $S_{n}-\mathbf{E}\left(S_{n}\right)$. Describe in words what this variance computation tells you as $n \rightarrow \infty$. Particularly, what does S_{n} "look like" as $n \rightarrow \infty$? (Think about what we found in the Example, "Playing Monopoly Forever". Also, consider the following statistical interpretation. Suppose each X_{i} is the result of some poll of person i, where $i \in\{1, \ldots, n\}$. Suppose that each person's response is a Bernoulli random variable with parameter p, and each person's response is independent of each other person's response. Then S_{n} is the average of the results of the poll. If $S_{n}-\mathbf{E}\left(S_{n}\right)$ has small variance, then our poll is very accurate.

So, how accurate is the poll as $n \rightarrow \infty$? Note that the accuracy of the poll does not depend on the size of the population you are sampling from!)

Exercise 6. Let X and Y be discrete random variables on a sample space Ω, and let \mathbf{P} be a probability law on Ω. Assume that X and Y are independent. Assume that X and Y take a finite number of values. Let $f, g: \mathbf{R} \rightarrow \mathbf{R}$ be functions. Show that

$$
\mathbf{E}(f(X) g(Y))=\mathbf{E}(f(X)) \mathbf{E}(g(Y)) .
$$

Exercise 7. Find three random variables X_{1}, X_{2}, X_{3} such that: X_{1} and X_{2} are independent; X_{1} and X_{3} are independent; X_{2} and X_{3} are independent; but such that X_{1}, X_{2}, X_{3} are not independent.

Exercise 8. Let $0<p<1$. Let X_{1}, \ldots, X_{n} be independent Bernoulli random variables with parameter p. Let $S_{n}=\sum_{i=1}^{n} X_{i}$. A moment generating function can help us to compute moments in various ways. Fix $t \in \mathbf{R}$ and compute the moment generating function of X_{i} for each $i \in\{1, \ldots, n\}$. That is, show that

$$
\mathbf{E} e^{t X_{i}}=(1-p)+p e^{t}
$$

Then, using the product formula for independent random variables, show that

$$
\mathbf{E} e^{t S_{n}}=\left[(1-p)+p e^{t}\right]^{n}
$$

By differentiating the last equality at $t=0$, and using the power series expansion of the exponential function, compute $\mathbf{E} S_{n}$ and $\mathbf{E} S_{n}^{2}$.

Exercise 9. X_{1}, \ldots, X_{n} be independent discrete random variables. Show that

$$
\mathbf{P}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)=\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \leq x_{i}\right), \quad \forall x_{1}, \ldots, x_{n} \in \mathbf{R}
$$

Exercise 10. Verify that $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x=1$. (Hint: let $T=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x$. It suffices to show that $T^{2}=1$, since $T>0$.)

