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1. Introduction

These notes assume familiarity with the subject matter and notation from the Math
170A Probability class. For example, we will assume familiarity with sets, probability laws,
independence, conditional expectation, and various commonly encountered random variables,
both discrete and continuous.

In this course, we will generally focus on averages of independent random variables. In
particular, we will prove two of the most significant theorems in probability: the Law of
Large Numbers and the Central Limit Theorem.
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Suppose I flip a fair coin 109 times. Then I should expect to get roughly 1
2
109 heads and

1
2
109 tails. This is formalized in the Law of Large Numbers. Or, suppose I have a casino

game where the casino wins 51% of the time. Then over a long period of time, the casino
will make money; the Law of Large Numbers guarantees that! However, if I do flip 109 fair
coins, it is unlikely that I will get exactly 1

2
109 heads. (What is the exact probability?) There

will typically be some small fluctuations around 1
2
109. But about how close to 1

2
109 will the

number of heads be? This question is answered precisely by the Central Limit Theorem. In
your previous probability class, you may have mentioned the Central Limit Theorem applied
to coin flips, which is known as the De Moivre-Laplace Theorem:

Theorem 1.1 (De Moivre-Laplace Theorem). Let X1, . . . , Xn be independent Bernoulli
random variables with parameter 1/2, so that P(X1 = 1) = P(X1 = 0) = 1/2. Recall that
X1 has mean 1/2 and variance 1/4. Let a ∈ R. Then

lim
n→∞

P

(
X1 + · · ·+Xn − (1/2)n

√
n
√

1/4
≤ a

)
=

∫ a

−∞
e−t

2/2 dt√
2π
.

That is, when n is large, the CDF of X1+···+Xn−(1/2)n
√
n
√

1/4
is roughly the same as that of a

standard normal. In particular, if you flip n fair coins, then the number of heads you get
should typically be in the interval (n/2−

√
n/2, n/2 +

√
n/2), when n is large.

Remark 1.2. The random variable X1+···+Xn−(1/2)n
√
n
√

1/4
has mean zero and variance 1, just like

the standard Gaussian. So, the normalizations of X1 + · · ·+Xn we have chosen are sensible.
Also, to explain the interval (n/2−

√
n/2, n/2 +

√
n/2), note that

lim
n→∞

P

(
n

2
−
√
n

2
≤ X1 + · · ·+Xn ≤

n

2
+

√
n

2

)
= lim

n→∞
P

(
−
√
n

2
≤ X1 + · · ·+Xn −

n

2
≤
√
n

2

)
= lim

n→∞
P

(
−1 ≤

X1 + · · ·+Xn − n
2√

n/2
≤ 1

)
=

∫ 1

−1
e−t

2/2 dt√
2π
≈ .6827.

Exercise 1.3. Using the De Moivre-Laplace Theorem, estimate the probability that 1000000
coin flips of fair coins will result in more than 501, 000 heads. (Some of the following integrals

may be relevant:
∫ 0

−∞ e
−t2/2dt/

√
2π = 1/2,

∫ 1

−∞ e
−t2/2dt/

√
2π ≈ .8413,

∫ 2

−∞ e
−t2/2dt/

√
2π ≈

.9772,
∫ 3

−∞ e
−t2/2dt/

√
2π ≈ .9987.)

Casinos do these kinds of calculations to make sure they make money and that they do
not go bankrupt. Financial institutions and insurance companies do similar calculations for
similar reasons.

Exercise 1.4. Let X and Y be nonnegative random variables. Recall that we can define

EX :=

∫ ∞
0

P(X > t)dt.

Assume that X ≤ Y . Conclude that EX ≤ EY .
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More generally, if X satisfies E |X| <∞, we define EX := E max(X, 0)− E max(−X, 0).
If X, Y are any random variables with X ≤ Y , E |X| < ∞ and E |Y | < ∞, show that
EX ≤ EY .

2. Random Variables and Expectations

2.1. Properties of Probability Laws. Recall that a probability law P on a sample space
Ω satisfies the following three axioms.

(i) For any A ⊆ Ω, we have P(A) ≥ 0. (Nonnegativity)
(ii) For any A,B ⊆ Ω such that A ∩B = ∅, we have

P(A ∪B) = P(A) + P(B).

If A1, A2, . . . ⊆ Ω and Ai∩Aj = ∅ whenever i, j are positive integers with i 6= j, then

P

(
∞⋃
k=1

Ak

)
=
∞∑
k=1

P(Ak). (Additivity)

(iii) We have P(Ω) = 1. (Normalization)

In this course, we will make several limiting statements about probabilities. For this
reason, the following property of probability laws will be quite useful.

Proposition 2.1 (Continuity of a Probability Law). Let P be a probability law on a
sample space Ω. Let A1, A2, . . . be sets in Ω which are increasing, so that A1 ⊆ A2 ⊆ · · · .
Then

lim
n→∞

P(An) = P(∪∞n=1An).

In particular, the limit on the left exists.

Proof. First, recall that A r B := A ∩ Bc where A,B ⊆ Ω. Now, let B1 := A1, let B2 :=
A2 r A1, and for any n ≥ 1, inductively define Bn := An r An−1. We claim that B1, B2, . . .
are disjoint, and ∪kn=1An = ∪kn=1Bn for any 1 ≤ k ≤ ∞.

To see the first statement, let i, j ≥ 1 with i > j. Since i − 1 ≥ j, Aj ⊆ Ai−1, so
Aci−1 ∩ Aj = ∅. So

Bi ∩Bj = (Ai r Ai−1) ∩ (Aj r Aj−1) = Ai ∩ Aci−1 ∩ Aj ∩ Acj−1 = ∅.

To see the second statement, let x ∈ ∪kn=1An. Let m ≥ 1 such that m = min{1 ≤ n ≤ k : x ∈
An}. If m = 1, then x ∈ B1 = A1. If m > 1, then x /∈ Am−1 so x ∈ Bm = Am r Am−1. So,
in any case, x ∈ ∪kn=1Bn. For the reverse inclusion, let x ∈ ∪kn=1Bn. Then x ∈ Bn for some
n ≥ 1. So x ∈ An since Bn ⊆ An. So, x ∈ ∪kn=1An. The claim is proven.

Now, using our claim, we have by the second axiom for probability laws,

P(∪∞n=1An) = P(∪∞n=1Bn) =
∞∑
n=1

P(Bn) = lim
k→∞

k∑
n=1

P(Bn)

= lim
k→∞

P(∪kn=1Bn) = lim
k→∞

P(∪kn=1An) = lim
k→∞

P(Ak).

The last line used Ak ⊇ Ak−1 ⊇ · · · ⊇ A1. �

A similar statement can be made for a decreasing sequence of sets.
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Proposition 2.2 (Continuity of a Probability Law). Let P be a probability law on a
sample space Ω. Let A1, A2, . . . be sets in Ω which are decreasing, so that A1 ⊇ A2 ⊇ · · · .
Then

lim
n→∞

P(An) = P(∩∞n=1An).

Proof. Apply Proposition 2.1 to Acn for any n ≥ 1, and then apply De Morgan’s law:

lim
n→∞

P(An) = 1− lim
n→∞

P(Acn) = 1−P(∪∞n=1A
c
n) = P(∩∞n=1An).

�

Definition 2.3 (Convergence of Real Numbers). Let x1, x2, . . . be a sequence of real
numbers. Let x ∈ R. We say that x1, x2, . . . converges to x if: ∀ ε > 0, ∃ m = m(ε) such
that, for all n ≥ m, we have |xn − x| < ε. If x1, x2, . . . converges to x, we denote this by
writing

x = lim
n→∞

xn.

Exercise 2.4. Using the definition of convergence, show that the sequence of numbers
1, 1/2, 1/3, 1/4, . . . converges to 0.

Exercise 2.5 (Uniqueness of limits). Let x1, x2, . . . be a sequence of real numbers. Let
x, y ∈ R. Assume that x1, x2, . . . converges to x. Assume also that x1, x2, . . . converges to y.
Prove that x = y. That is, a sequence of real numbers cannot converge to two different real
numbers.

2.2. Derived Distributions.

Proposition 2.6. Let X be a continuous random variable with density function fX : R →
[0,∞). Let g : R → R be continuous. Let Y := g(X). Assume that FY is differentiable,
where FY (y) = P(Y ≤ y) for all y ∈ R. Then for any y ∈ R,

fY (y) =
d

dy

∫
{x∈R : g(x)≤y}

fX(x)dx.

Proof. Let A ⊆ R. Recall that fX is defined so that

P(X ∈ A) =

∫
A

fX(x)dx.

So, if we let y ∈ R and if we define A := {x ∈ R : g(x) ≤ y}, we have

FY (y) = P(Y ≤ y) = P(g(X) ≤ y) = P(X ∈ A) =

∫
A

fX(x)dx =

∫
{x∈R : g(x)≤y}

fX(x)dx.

So, if FY is differentiable, d
dy
FY (y) = fY (y) for all y ∈ R, completing the proof. �

Example 2.7. Let X be a uniformly distributed random variable on [−1, 1], and let g : R→
R so that g(x) = x3 for any x ∈ R. Let Y := g(X). Then for any y ∈ R,

fY (y) =
d

dy

∫
{x∈R : g(x)≤y}

fX(x)dx =
d

dy

∫
{x∈[−1,1] : x3≤y}

1

2
dx.
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If y < −1 the integral is zero. If y > 1, the integral is 1. And if y ∈ [−1, 1], we have

fY (y) =
d

dy

1

2

∫ x=y1/3

x=−1
dx =

1

2

d

dy
[y1/3 + 1] =

1

6
y−2/3.

And if y /∈ [−1, 1], we have fY (y) = 0.

Exercise 2.8. Let X be a uniformly distributed random variable on [−1, 1]. Let Y := X2.
Find fY .

Exercise 2.9. Let X be a uniformly distributed random variable on [0, 1]. Let Y := 4X(1−
X). Find fY .

Example 2.10. Let X be a continuous random variable such that FX is differentiable. Let
a, b ∈ R with a 6= 0. Let g(x) := ax + b for any x ∈ R, and let Y := g(X) = aX + b. Then
for any y ∈ R, we will show that

fY (y) =
1

|a|
fX

(
y − b
a

)
.

Suppose a > 0. Then the function P(Y ≤ y) = P(aX + b ≤ y) = P(X ≤ (y − b)/a) =
FX((y − b)/a) is differentiable with respect to y. So, for any y ∈ R, the Chain Rule implies

fY (y) =
d

dy

∫
{x∈R : g(x)≤y}

fX(x)dx =
d

dy
FX((y − b)/a) =

1

a
fX((y − b)/a).

The case a < 0 is demonstrated similarly.

Example 2.11. Let X be a normal random variable with mean µ and variance σ2 > 0
where σ > 0. That is,

fX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , ∀x ∈ R.

Let a, b ∈ R with a > 0. Let Y := aX + b. Then Y is a Gaussian random variable with
variance a2σ2 and mean b+ aµ:

fY (y) =
1

aσ
√

2π
e−

(((y−b)/a)−µ)2

2a2σ2 =
1

aσ
√

2π
e−

(y−b−aµ)2

2a2σ2

Definition 2.12 (Monotonic Function). Let I, J ⊆ R be open intervals. Let g : I → J .
We say that g is strictly increasing if, for any x, y ∈ I with x > y, we have g(x) > g(y).
We say that g is strictly decreasing if, for any x, y ∈ I with x > y, we have g(x) < g(y).
We say that g is strictly monotonic if g is either strictly increasing or strictly decreasing.

Remark 2.13 (Monotonic Functions are Invertible). Let I, J ⊆ R be open intervals.
Let g : I → J be a monotonic function with range J . As we recall from calculus, g has an
inverse. That is, there exists a monotonic function h : J → I such that g(h(x)) = x for every
x ∈ J and h(g(x)) = x for every x ∈ I. Also, as we recall from calculus, if g is differentiable
with g′(x) 6= 0 for all x ∈ I, then h is differentiable, and by differentiating the identity
h(g(x)) = x and applying the chain rule, we get

d

dx
h(g(x)) =

1

g′(x)
, ∀x ∈ I.
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Or, written another way (defining y := g(x), so that x = h(y)),

h′(y) =
1

g′(h(y))
, ∀ y ∈ J.

If we graph g and h, then h is obtained by reflecting g across the line {(x, y) ∈ R2 : x = y}.
Similarly, g is obtained by reflecting h across the line {(x, y) ∈ R2 : x = y}.

Proposition 2.14. Let X be a continuous random variable such that FX is differentiable.
Let I, J ⊆ R be open intervals. Let g : I → J be a monotonic, differentiable function with
range J . Assume that g′(x) 6= 0 for every x ∈ I. Let Y := g(X). Let h : J → I be the
inverse of g. Then for any y ∈ J ,

fY (y) = fX(h(y)) ·
∣∣∣∣ ddyh(y)

∣∣∣∣ = fX(h(y)) · 1

|g′(h(y))|
.

Proof. Let y ∈ J . First, assume g is strictly increasing. Then

FY (y) = P(Y ≤ y) = P(g(X) ≤ y) = P(X ≤ h(y)) = FX(h(y)).

Since FX and h are differentiable, the Chain Rule then proves the first equality. The second
equality follows from Remark 2.13, where we noted that

d

dy
h(y) =

1

g′(h(y))
, ∀y ∈ J.

�

Exercise 2.15. Let X be a uniformly distributed random variable on [0, 1]. Find the PDF
of − log(X).

Exercise 2.16. Let X be a standard normal random variable. Find the PDF of eX .

We can perform similar manipulations to find the joint PDF of functions of several random
variables.

Example 2.17. Let X, Y be independent exponential random variables with parameter
λ = 1. So, fX(x) = e−x for any x ≥ 0 and fX(x) = 0 otherwise. Let Z := max(X, Y ). Then
for any t ∈ R, {Z ≤ t} = {X ≤ t, Y ≤ t}. So, using independence of X, Y ,

P(Z ≤ t) = P(X ≤ t, Y ≤ t) = P(X ≤ t)P(Y ≤ t) = (1− e−t)2, ∀ t ≥ 0.

So, using the chain rule,

fZ(z) =
d

dz
P(Z ≤ z) =

{
2(1− e−z)e−z , if z ≥ 0

0 , otherwise.

Exercise 2.18. Let X, Y, Z be independent standard Gaussian random variables. Find the
PDF of max(X, Y, Z).

Example 2.19. Let X, Y be independent standard Gaussian random variables. Let Z :=
X/ |Y |. For any t ∈ R, let At := {(x, y) ∈ R2 : x ≤ t |y|}. Then, using polar coordinates, if
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t ≥ 0 we have

P(Z ≤ t) = P(X ≤ t |Y |) = P((X, Y ) ∈ At) =
1

2π

∫
At

e−(x
2+y2)/2dxdy

=

∫ y=∞

y=−∞

∫ x=t|y|

x=−∞
e−(x

2+y2)/2dxdy

=
1

2π

∫ θ=2π−tan−1(1/t)

θ=tan−1(1/t)

∫ r=∞

r=0

re−r
2/2drdθ

=
1

2π

∫ θ=2π−tan−1(1/t)

θ=tan−1(1/t)

dθ = 1− 1

π
tan−1(1/t).

Similarly, if t < 0, then P(Z ≤ t) = 1
π

tan−1(1/ |t|). So, from the Chain rule,

fZ(z) =
1

π(z2 + 1)
, ∀ z ∈ R.

Exercise 2.20. Let X be a random variable uniformly distributed in [0, 1] and let Y be a
random variable uniformly distributed in [0, 2]. Suppose X and Y are independent. Find
the PDF of X/Y 2.

2.3. Covariance. Recall that the covariance of two random variables X and Y , denoted
cov(X, Y ), is

cov(X, Y ) = E((X − E(X))(Y − E(Y ))).

In particular, cov(X,X) = E(X − E(X))2 = var(X).

Definition 2.21. Let X, Y be random variables. We say that X, Y are uncorrelated if
cov(X, Y ) = 0.

Exercise 2.22. Let X, Y be random variables with EX2 < ∞ and EY 2 < ∞. Prove the
Cauchy-Schwarz inequality:

E(XY ) ≤ (EX2)1/2(EY 2)1/2.

Then, deduce the following when X, Y both have finite variance:

|cov(X, Y )| ≤ (var(X))1/2(var(Y ))1/2.

(Hint: in the case that EY 2 > 0, expand out the product E(X − YE(XY )/EY 2)2.)

Lemma 2.23. Let X1, . . . , Xn be random variables with var(Xi) < ∞ for all 1 ≤ i ≤ n.
Then

var(
n∑
i=1

Xi) =
n∑
i=1

var(Xi) + 2
∑

1≤i<j≤n

cov(Xi, Xj).
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Proof.

var(
n∑
i=1

Xi) = E(
n∑
i=1

Xi − E(
n∑
i=1

Xi))
2 = E(

n∑
i=1

(Xi − E(Xi)))
2

= E

(
n∑
i=1

(Xi − E(Xi))
2

)
+ 2E

( ∑
1≤i<j≤n

(Xi − E(Xi))(Xj − E(Xj))

)

=
n∑
i=1

var(Xi) + 2
∑

1≤i<j≤n

cov(Xi, Xj).

The assumption var(Xi) <∞ for all 1 ≤ i ≤ n and Exercise 2.22 ensure that all of the above
quantities are finite. �

Lemma 2.23 immediately implies:

Corollary 2.24. Let X1, . . . , Xn be random variables which are pairwise uncorrelated. That
is, cov(Xi, Xj) = 0 for any i, j ∈ {1, . . . , n} with i 6= j. Then

var(
n∑
i=1

Xi) =
n∑
i=1

var(Xi).

Corollary 2.25. Let X1, . . . , Xn be independent random variables. Then

var(
n∑
i=1

Xi) =
n∑
i=1

var(Xi).

Proof. Let i, j ∈ {1, . . . , n} with i 6= j. Then, using independence,

cov(Xi, Xj) = E((Xi−E(Xi))(Xj−E(Xj))) = E(XiXj)−2E(Xi)E(Xj)+E(Xi)E(Xj) = 0.

So, Corollary 2.24 concludes the proof. �

Exercise 2.26. Let X be a binomial random variable with parameters n = 2 and p = 1/2.
So, P(X = 0) = 1/4, P(X = 1) = 1/2 and P(X = 2) = 1/4. And X satisfies EX = 1 and
EX2 = 3/2.

Let Y be a geometric random variable with parameter 1/2. So, for any positive integer k,
P(Y = k) = 2−k. And Y satisfies EY = 2 and EY 2 = 6.

Let Z be a Poisson random variable with parameter 1. So, for any nonnegative integer k,
P(Z = k) = 1

e
1
k!

. And Z satisfies EZ = 1 and EZ2 = 2.
Let W be a discrete random variable such that P(W = 0) = 1/2 and P(W = 4) = 1/2,

so that EW = 2 and EW 2 = 8.
Assume that X, Y, Z and W are all independent. Compute

var(X + Y + Z +W ).

Exercise 2.27. Let X1, . . . , Xn be random variables with finite variance. Define an n × n
matrix A such that Aij = cov(Xi, Xj) for any 1 ≤ i, j ≤ n. Show that the matrix A is
positive semidefinite. That is, show that for any y = (y1, . . . , yn) ∈ Rn, we have

yTAy =
n∑

i,j=1

yiyjAij ≥ 0.
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2.4. Conditional Expectation as a Random Variable. In your previous probability
class, we defined conditional expectation to be a number. For example, if X, Y are discrete
random variables, then for any fixed y ∈ R where P(Y = y) > 0, we defined

E(X|Y = y) =
∑
x∈R

xpX|Y=y(x) =
∑
x∈R

xP(X = x|Y = y) =
∑
x∈R

x
P(X = x, Y = y)

P(Y = y)
.

Or, if X, Y are continuous random variables, then for any fixed y ∈ R where fY (y) > 0, we
defined

E(X|Y = y) =

∫ ∞
−∞

xfX|Y (x|y)dx =

∫ ∞
−∞

x
fX,Y (x, y)

fY (y)
dx.

We can create a random variable from these definitions in the following natural way.

Definition 2.28 (Conditional Expectation). Let X, Y be random variables. Let A be
the range of Y . Define g : A → R by g(y) := E(X|Y = y), for any y ∈ A. We then define
the conditional expectation of X given Y , denoted E(X|Y ), to be the random variable
g(Y ).

Example 2.29. Let X, Y be random variables such that (X, Y ) is uniformly distributed
on the triangle {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, x + y ≤ 1}. If (x, y) is in this triangle, then
fX,Y (x, y) = 2, while fX,Y (x, y) = 0 otherwise. If y ∈ [0, 1],

fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx =

∫ x=1−y

x=0

2dx = 2(1− y).

Otherwise, fY (y) = 0. So, if y ∈ [0, 1]

E(X|Y = y) =

∫ ∞
−∞

xfX|Y (x, y)dx =

∫ ∞
−∞

x
fX,Y (x, y)

fY (y)
dx =

∫ x=1−y

x=0

1

1− y
xdx =

1

2
(1− y).

And E(X|Y = y) is undefined when y /∈ [0, 1], since fY (y) = 0 when y /∈ [0, 1].
Then, by definition of E(X|Y ), we have

E(X|Y ) =
1

2
(1− Y ).

(Strictly speaking, we have E(X|Y ) = g(Y ) where g(y) = (1/2)(1− y) for any y ∈ [0, 1] and
g(y) is undefined for any y /∈ [0, 1]. But since Y only takes values in [0, 1], g(Y ) = 1

2
(1−Y ).)

Exercise 2.30 (Another Total Expectation Theorem). Using the definition of E(X|Y ),
prove the following theorem, which can be considered as a version of a Total Expectation
Theorem:

E(E(X|Y )) = E(X).

Exercise 2.31. If X is a random variable, and if f(t) := E(X− t)2, t ∈ R, then the function
f : R→ R is uniquely minimized when t = EX. This follows e.g. by writing

E(X − t)2 = E(X − E(X) + E(X)− t)2

= E(X − E(X))2 + (EX − t)2 + 2E[(X − EX)(EX − t)] = E(X − E(X))2 + (EX − t)2.
So, the choice t = EX is the smallest, and it recovers the definition of variance, since
var(X) = E(X − EX)2.
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A similar minimizing property holds for conditional expectation. Let h : R → R. Show
that the quantity E(X − h(Y ))2 is minimized among all functions h when h(Y ) = E(X|Y ).
(Hint: Exercise 2.30 might be helpful.)

Lemma 2.32. Let X, Y be random variables. Let h : R→ R. Then

E(Xh(Y )|Y ) = h(Y )E(X|Y ).

Proof. Let y ∈ R. Then E(Xh(Y )|Y = y) = E(Xh(y)|Y = y) = h(y)E(X|Y = y). So, if
f(y) := E(Xh(Y )|Y = y), we have f(Y ) = E(Xh(Y )|Y ) = h(Y )E(X|Y ) as desired. �

Definition 2.33 (Conditional Variance). Let X, Y be random variables. Let A be the
range of Y and let y ∈ A. We then define the conditional variance of X given Y = y to
be

var(X|Y = y) := E
[
(X − E(X|Y ))2 |Y = y

]
.

Then, define g : A → R so that g(y) := var(X|Y = y), for any y ∈ A, and define the
conditional variance of X given Y , denoted var(X|Y ), to be the random variable g(Y ).

Proposition 2.34. Let X, Y be random variables. Then

var(X) = E(var(X|Y )) + var(E(X|Y )).

Proof. We square both sides of X − E(X) = (X − E(X|Y )) + (E(X|Y )− E(X)) to get

var(X) = E(X − E(X))2

= E(X − E(X|Y ))2 + E(E(X|Y )− E(X))2 + 2E [(X − E(X|Y ))(E(X|Y )− E(X))] .

By Exercise 2.30, the first term is E(X−E(X|Y ))2 = E(E[(X−E(X|Y ))2|Y ]) = Evar(X|Y ).
By Exercise 2.30, the second term is E[E(X|Y )−E(E(X|Y ))]2 = var(E(X|Y )). It remains
to show that the last term is zero. Let h(Y ) := E(X|Y ) − E(X). Using Lemma 2.32 and
Exercise 2.30, the last term is

E [(X − E(X|Y ))h(Y ))] = E[Xh(Y )]− E[E(X|Y )h(Y )]

= E[Xh(Y )]− E[E(Xh(Y )|Y )] = E[Xh(Y )]− E(Xh(Y )] = 0.

�

Exercise 2.35. Toys are stored in small boxes, small boxes are stored in large crates, and
large crates comprise a shipment. Let Xi be the number of toys in small box i ∈ {1, 2, . . .}.
Assume that X1, X2, . . . all have the same CDF. Let Yi be the number of small boxes in large
crate i ∈ {1, 2, . . .}. Assume that Y1, Y2, . . . all have the same CDF. Let Z be the number
of large crates in the shipment. Assume that X1, X2, . . . , Y1, Y2, . . . , Z are all independent,
nonnegative integer-valued random variables, each with expected value 10 and variance 16.

Compute the expected value and variance of the number of toys in the shipment.

To demonstrate what to do in this exercise, we compute the number of toys in the first
large crate.

Let T1 be the number of toys in the first large crate. Let y be a nonnegative integer. Given
that Y1 = y, we know that T1 = X1 + · · ·+Xy. So, using independence,

E(T1|Y1 = y) = E(X1 + · · ·+Xy|Y1 = y) = yE(X1) = 10y.

10



So, by the definition of conditional expectation, E(T1|Y1) = 10Y1. Finally, by Exercise 2.30,

E(T1) = E(E(T1|Y1)) = E(10Y1) = 10EY1 = (10)(10) = 100.

From the definition of conditional variance, and Corollary 2.25,

var(T1|Y1 = y) = E
(
(T1 − 10y)2|Y1 = y

)
= E

(
(X1 + · · ·+Xy − 10y)2|Y1 = y

)
= var(X1 + · · ·+Xy) = yVar(X1) = 16y.

So, var(T1|Y1) = 16Y1, and by Proposition 2.34,

var(T1) = E(16Y1) + var(10Y1) = (16)(10) + (100)(16) = 160 + 1600 = 1760.

Exercise 2.36. Let 0 < p < 1. Suppose you have a biased coin which has a probability
p of landing heads, and probability 1 − p of landing tails, each time it is flipped. Also,
suppose you have a fair six-sided die (so each face of the cube has a distinct label from the
set {1, 2, 3, 4, 5, 6}, and each time you roll the die, any face of the cube is rolled with equal
probability.)

Let N be the number of coin flips you need to do until the first head appears. Now, roll
the fair die N times. Let S be the sum of the results of the N rolls of the die. Compute ES
and var(S).

Exercise 2.37. Let f : R → R be twice differentiable function. Assume that f is convex.
That is, f ′′(x) ≥ 0, or equivalently, the graph of f lies above any of its tangent lines. That
is, for any x, y ∈ R,

f(x) ≥ f(y) + f ′(y)(x− y).

(In Calculus class, you may have referred to these functions as “concave up.”) Let X be a
discrete random variable. By setting y = E(X), prove Jensen’s inequality:

Ef(X) ≥ f(E(X)).

In particular, choosing f(x) = x2, we have E(X2) ≥ (E(X))2.

2.5. Transforms. Generally speaking, a transform is a way of creating one function from
another function. For example, the moment generating function associates a real-valued
function to a random variable. And the characteristic function (or Fourier transform) asso-
ciates a complex-valued function to a random variable.

Definition 2.38 (Moment Generating Function). Let X be a random variable. The
moment generating function of X is a function MX : R→ R defined by

MX(t) := E(etX), ∀ t ∈ R.

Remark 2.39. For certain random variables X, the moment generating function may not
exist. For example, if X is a continuous random variable with density function fX(x) = x−2

for any x > 1, and fX(x) = 0 otherwise. Then MX(t) =
∫∞
1
etxfX(x)dx does not exist when

t > 0.

Assume that MX(t) exists for all t ∈ R, and assume we can differentiate under the expected
value. Then

d

dt
|t=0MX(t) = E

(
d

dt t=0
etX
)

= E(X).

11



That is, the first derivative of the moment generating function at t = 0 is equal to the first
moment of X. More generally, the nth derivative of the moment generating function at t = 0
is equal to the nth moment of X:

Exercise 2.40. Let X be a random variable. Assume that MX(t) exists for all t ∈ R, and
assume we can differentiate under the expected value any number of times. For any positive
integer n, show that

dn

dtn
|t=0MX(t) = E(Xn).

So, in principle, all moments of X can be computed just by taking derivatives of the moment
generating function.

Example 2.41. Let X be an exponential random variable with parameter λ > 0. That is,
fX(x) = λe−λx for any x ≥ 0, and fX(x) = 0 otherwise. Then for any t < λ,

MX(t) = λ

∫ ∞
0

etxe−λxdx = λ

∫ ∞
0

e(t−λ)xdx

= λ lim
N→∞

1

t− λ
[e(t−λ)x]x=Nx=0 =

λ

λ− t
.

From Exercise 2.40, EX = d
dt
|t=0MX(t) = λ

λ2
= λ−1. More generally, it follows by induction

that
dn

dtn
MX(t) = λn!(λ− t)−n−1, ∀n > 0. (∗)

The case n = 1 is known. To complete the inductive step, note that

dn

dtn+1
MX(t) =

d

dt

dn

dtn
MX(t) =

d

dt
λn!(λ− t)−n−1 = λ(n+ 1)!(λ− t)−(n+1)−1.

So, from Exercise 2.40, for any n > 0,

EXn =
dn

dtn
|t=0MX(t) = n!λ−n.

Exercise 2.42. Let X be a standard Gaussian random variable. Compute an explicit
formula for the moment generating function of X. (Hint: completing the square might
be helpful.) From this explicit formula, compute an explicit formula for all moments of
the Gaussian random variable. (The 2nth moment of X should be something resembling a
factorial.)

Proposition 2.43. Let X1, . . . , Xn be independent random variables. Then

MX1+···+Xn(t) =
n∏
j=1

MXj(t), ∀ t ∈ R.

Proof. Since X1, . . . , Xn are independent, etX1 , . . . , etXn are independent, for any t ∈ R. So,

MX1+···+Xn(t) = Eet(X1+···+Xn) = E
n∏
j=1

etXj =
n∏
j=1

EetXj =
n∏
j=1

MXj(t)

�
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Example 2.44. Let X be a binomial distributed random variable with parameters n and
0 < p < 1. That is, X can be written as the sum of n independent Bernoulli random
variables X1, . . . , Xn with parameter p. Then by Proposition 2.43, for any t ∈ R,

MX(t) =
n∏
j=1

MXj(t) = (MX1(t))
n = ((1− p)e0·t + pet)n = (1− p+ pet)n.

In some cases, the moment generating function uniquely determines the random variable.

Theorem 2.45 (Lévy Continuity Theorem, Weak Form). Let X, Y be random vari-
ables. Assume that MX(t),MY (t) exist for all t ∈ R, and that MX(t) = MY (t) for all t ∈ R.
Then X and Y have the same CDF.

Exercise 2.46. Construct two random variables X, Y : Ω → R such that X 6= Y but
MX(t),MY (t) exist for all t ∈ R, and such that MX(t) = MY (t) for all t ∈ R.

Exercise 2.47. Unfortunately, there exist random variables X, Y such that EXn = EY n

for all n = 1, 2, 3, . . ., but such that X, Y do not have the same CDF. First, explain why this
does not contradict the Lévy Continuity Theorem, Weak Form. Now, let −1 < a < 1, and
define a density

fa(x) :=

{
1

x
√
2π
e−

(log x)2

2 (1 + a sin(2π log x)) , if x > 0

0 , otherwise.

Suppose Xa has density fa. If −1 < a, b < 1, show that EXn
a = EXn

b for all n = 1, 2, 3, . . ..
(Hint: write out the integrals, and make a change of variables s = log(x)− n.)

From Exercise 2.40, the moment generating function of a random variable X contains all
information about the moments of X. However, as mentioned in Remark 2.39, MX(t) may
not exist for many values of t. So, studying the moment generating function may not be so
helpful for certain random variables. Fortunately, the closely related characteristic function
will always exist, and it also contains all information about the moments of X

Definition 2.48 (Characteristic Function/ Fourier Transform). Let i :=
√
−1. Let

X be a random variable. The characteristic function (or Fourier transform) of X is
the function φX : R→ C defined by

φX(t) := E(eitX), ∀ t ∈ R.
Or equivalently,

φX(t) = MX(it), ∀ t ∈ R.

Remark 2.49 (Expectation of Complex-Valued Random Variables). Any complex
number z ∈ C can be written as z = a + bi where a, b ∈ R. We also define |z| :=

√
a2 + b2.

We call a the real part of z, and we call b the imaginary part of z. Similarly, if Z is a
complex-valued random variable, we can write Z = X + iY where X, Y are real-valued
random variables. Then, we can define

EZ := EX + i(EY ).

That is, taking the expected value of a complex-valued random variable is barely different
from taking the expected value of a real-valued random variable.

13



Exercise 2.50. Compute the characteristic function of a uniformly distributed random
variable on [−1, 1]. (Some of the following formulas might help to simplify your answer:
eit = cos(t) + i sin(t), cos(t) = [eit + e−it]/2, sin(t) = [eit − e−it]/[2i], t ∈ R.)

Remark 2.51. If t ∈ R, then |eit| = |cos(t) + i sin(t)| =
√

cos2(t) + sin2(t) = 1. The
characteristic function is often more appealing to work with than the moment generating
function, since the characteristic function always exists. For example, for any t ∈ R,

|φX(t)| =
∣∣EeitX∣∣ ≤ E

∣∣eitX∣∣ = 1.

However, as mentioned in Remark 2.39, MX(t) may or may not exist for some t ∈ R.

Exercise 2.52. LetX be a random variable. Assume we can differentiate under the expected
value of EeitX any number of times. For any positive integer n, show that

dn

dtn
|t=0φX(t) = inE(Xn).

So, in principle, all moments of X can be computed just by taking derivatives of the char-
acteristic function.

Exercise 2.53. Let X be a random variable such that E |X|3 < ∞. Prove that for any
t ∈ R,

EeitX = 1 + itEX − t2EX2/2 + o(t2).

That is,

lim
t→0

t−2
∣∣EeitX − [1 + itEX − t2EX2/2]

∣∣ = 0

(Hint: it may be helpful to use Jensen’s inequality, Exercise 2.37, to first justify that E |X| <
∞ and EX2 <∞. Then, use the Taylor expansion with error bound: eiy = 1 + iy − y2/2−
(i/2)

∫ y
0

(y − s)2eisds, which is valid for any y ∈ R.)
Actually, this same bound holds only assuming EX2 < ∞, but the proof of that bound

requires things we have not discussed.

Since φX(t) = MX(it), the proof of Proposition 2.34 immediately implies:

Proposition 2.54. Let X1, . . . , Xn be independent random variables. Then

φX1+···+Xn(t) =
n∏
j=1

φXj(t), ∀ t ∈ R.

The Gaussian density has the rather remarkable property that it is essentially its own
Fourier transform.

Proposition 2.55. Let X be a standard Gaussian random variable. Then

EeitX = e−t
2/2, ∀ t ∈ R.
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Proof. Using eitx = cos(tx) + i sin(tx) for any t, x ∈ R, with t 6= 0

φX(t) = EeitX =
1√
2π

∫ ∞
−∞

eitxe−x
2/2dx

=
1√
2π

∫ ∞
−∞

(cos(tx) + i sin(tx))e−x
2/2dx

=
1√
2π

∫ ∞
−∞

cos(tx)e−x
2/2dx, since e−x

2/2 sin(tx) is odd.

Now, differentiating under the integral sign (which is valid, but we will not justify it), and
integrating by parts,

d

dt
φX(t) =

1√
2π

∫ ∞
−∞

(−x) sin(tx)e−x
2/2dx =

1√
2π

∫ ∞
−∞

sin(tx)
d

dx
e−x

2/2dx

=
1√
2π

∫ ∞
−∞

(−t) cos(tx)e−x
2/2dx = −tφX(t).

Therefore,
d

dt
[φX(t)et

2/2] = [tφX(t)− tφX(t)]et
2/2 = 0, ∀ t ∈ R.

That is, there exists a constant c ∈ R such that φX(t)et
2/2 = c, i.e. φX(t) = ce−t

2/2. Since
φX(0) = 1 = c, the proof is complete. �

2.6. Sums of Independent Random Variables and Convolution. Let X, Y be inde-
pendent random variables. From Proposition 2.43, the moment generating function of X+Y
can be easily expressed as MX+Y (t) = MX(t)MY (t), for any t such that both quantities on
the right exist. On the other hand, the CDF of X + Y has a more complicated dependence
on X and Y .

Example 2.56. Let X, Y be independent integer-valued random variables. Then, repeatedly
using properties of probability laws, and using that X, Y are independent,

P(X + Y = t) =
∑

j,k∈Z : j+k=t

P(X = j, Y = k) =
∑
j∈Z

P(X = j, Y = t− j)

=
∑
j∈Z

P(X = j)P(Y = t− j) =
∑
j∈Z

pX(j)pY (t− j).

Definition 2.57 (Convolution on the integers). Let g, h : Z → R be functions. The
convolution of g and h, denoted g ∗ h, is a function g ∗ h : Z→ R defined by

(g ∗ h)(t) :=
∑
j∈Z

g(j)h(t− j), ∀ t ∈ Z.

Example 2.58. Let g(k) := e−k and let h(k) := e−k for any nonnegative integer k ≥ 0, and
let g(k) = h(k) = 0 for any other integer k < 0. Then if t ≥ 0 is an integer,

(g ∗ h)(t) =
∑
k∈Z

g(k)h(t− k) =
t∑

k=0

e−ke−(t−k) =
t∑

k=0

e−t = (t+ 1)e−t.

And (g ∗ h)(t) = 0 for any negative integer t.
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A similar formula holds for continuous random variables. That is, if X, Y are two contin-
uous random variables, then the density of X + Y is the convolution of fX and fY .

Definition 2.59 (Convolution on the real line). Let g, h : R → R be functions. The
convolution of g and h, denoted g ∗ h, is a function g ∗ h : R→ R defined by

(g ∗ h)(t) :=

∫ ∞
−∞

g(x)h(t− x)dx, ∀ t ∈ R.

Proposition 2.60. Let X, Y be two continuous independent random variables such that
P(X + Y ≤ t) is differentiable with respect to t ∈ R. Then

fX+Y (t) = (fX ∗ fY )(t), ∀ t ∈ R.

Proof. Let X, Y be independent continuous random variables. Then, changing variables,

P(X + Y ≤ t) =

∫
{(x,y)∈R2 : x+y≤t}

fX,Y (x, y)dxdy =

∫ x=∞

x=−∞

∫ y=t−x

y=−∞
fX(x)fY (y)dydx.

Then, since P(X + Y ≤ t) is differentiable with respect to t, we have by the Fundamental
Theorem of Calculus,

fX+Y (t) =
d

dt
P(X+Y ≤ t) =

∫ x=∞

x=−∞
fX(x)

d

dt

∫ y=t−x

y=−∞
fY (y)dydx =

∫ x=∞

x=−∞
fX(x)fY (t−x)dx.

�

Example 2.61. Let g(x) = h(x) := 1√
2π
e−x

2/2 for any x ∈ R. Then if t ∈ R, we complete

the square and change variables twice to get

(g ∗ h)(t) =
1

2π

∫ ∞
−∞

e−x
2/2e−(t−x)

2/2dx =
1

2π

∫ ∞
−∞

e−x
2+xt−t2/2dx

=
1

2π

∫ ∞
−∞

e−(x−t/2)
2+t2/4−t2/2dx = e−t

2/4 1

2π

∫ ∞
−∞

e−(x−t/2)
2

dx

= e−t
2/4 1

2π

∫ ∞
−∞

e−x
2

dx = e−t
2/4 1

2
√
π

1√
2π

∫ ∞
−∞

e−x
2/2dx = e−t

2/4 1

2
√
π
.

And (g ∗ h)(t) = e−t
2/4 1

2
√
π

for any t ∈ R.

Alternatively, we know that if X, Y are independent standard Gaussian random variables,
then X + Y is a Gaussian random variable with mean zero and variance σ2 = 2. That is,
X + Y has density e−t

2/4 1
2
√
π
, t ∈ R.

Exercise 2.62 (Convolution is Associative). Let g, h, d : R→ R. Then for any t ∈ R,

((g ∗ h) ∗ d)(t) = (g ∗ (h ∗ d))(t)

Exercise 2.63. Let X, Y, Z be independent and uniformly distributed on [0, 1]. Note that
fX is not a continuous function.

Using convolution, compute fX+Y . Draw fX+Y . Note that fX+Y is a continuous function,
but it is not differentiable at some points.

Using convolution, compute fX+Y+Z . Draw fX+Y+Z . Note that fX+Y+Z is a differentiable
function, but it does not have a second derivative at some points.
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Make a conjecture about how many derivatives fX1+···+Xn has, where X1, . . . , Xn are in-
dependent and uniformly distributed on [0, 1]. You do not have to prove this conjecture.
The idea of this exercise is that convolution is a kind of average of functions. And the more
averaging you do, the more derivatives fX1+···+Xn has.

Exercise 2.64. Construct two random variables X, Y such that X and Y are each uniformly
distributed on [0, 1], and such that P(X + Y = 1) = 1.

Then construct two random variables W,Z such that W and Z are each uniformly dis-
tributed on [0, 1], and such that W + Z is uniformly distributed on [0, 2].

(Hint: there is a way to do each of the above problems with about one line of work. That
is, there is a way to solve each problem without working very hard.)

2.7. Sums of a Random Number of Independent Random Variables. We give a
general solution for problems similar to Exercise 2.36

Proposition 2.65. Let µ ∈ R and let σ > 0. Let X1, X2, . . . be random variables each with
mean µ and variance σ2. Let N be a random variable taking nonnegative integer values.
Assume that N,X1, X2, . . . are all independent. Let S :=

∑N
i=1Xi. Then

• ES = µEN . (Wald’s Equation)
• var(S) = σ2EN + µ2var(N).
• If additionally X1, X2, . . . all have the same CDF, then

EetS =
∞∑
n=0

(MX1(t))
nP(N = n), ∀ t ∈ R.

Proof. Let n ≥ 0 be an integer. Conditioned on N = n, we know that S = X1 + · · · + Xn.
So, E(S|N = n) = E(X1 + · · ·+Xn) = nµ. So, E(S|N) = Nµ, and by Exercise 2.30,

ES = E(E(S|N)) = E(Nµ) = µEN.

The definition of conditional variance, independence of S and N , and Corollary 2.25 give

var(S|N = n) = E[(S − E(S|N))2|N = n] = E[(S −Nµ)2|N = n] = E[(S − nµ)2|N = n]

= E(X1 + · · ·+Xn − nµ)2 = var(X1 + · · ·+Xn) =
n∑
i=1

var(Xi) = nσ2.

So, var(S|N) = Nσ2. And by Proposition 2.34 and Exercise 2.30

var(S) = E(var(S|N)) + var(E(S|N)) = σ2EN + var(Nµ) = σ2EN + µ2var(N).

We now prove the final assertion. Let t ∈ R. Using independence and Proposition 2.43,

E(etS|N = n) = E(et(X1+···+Xn)|N = n) = E(et(X1+···+Xn))

=
n∏
i=1

EetXi = (MX1(t))
n.

So, E(etS|N) = (MX1(t))
N , and by Exercise 2.30,

EetS = E(E(etS|N)) = E(MX1(t))
N =

∞∑
n=0

(MX1(t))
nP(N = n).

�
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3. Limit Theorems

We now start to build up the machinery that is used to prove the two “big theorems” of
probability: the Law of Large Numbers, and the Central Limit Theorem. We begin with
some useful inequalities.

3.1. Markov and Chebyshev Inequalities. Markov’s inequality says that a random vari-
able with finite expected value cannot be too large very often.

Proposition 3.1 (The Markov Inequality). Let X be a nonnegative random variable.
Then

P(X ≥ t) ≤ EX

t
, ∀ t > 0.

Proof. Let t > 0. Let Y be a random variable such that

Y =

{
t , if X ≥ t

0 , if X < t.

By definition of Y , we have Y ≤ X. Therefore, EY ≤ EX by Exercise 1.4. By the definition
of Y , EY = tP(X ≥ t). That is,

tP(X ≥ t) ≤ E(X).

�

Remark 3.2. A nearly identical proof shows that P(X > t) ≤ EX
t

, for all t > 0.

Markov’s inequality is commonly applied in the following ways.

Corollary 3.3. Let X be a random variable. Then

P(|X| ≥ t) ≤ E |X|
t

, ∀ t > 0.

More generally, if n is a positive integer, then

P(|X| ≥ t) ≤ E |X|n

tn
, ∀ t > 0.

Proof. The first assertion follows immediately by applying Proposition 3.1 to |X|. For the
second assertion, we use the first assertion to get

P(|X| ≥ t) = P(|X|n ≥ tn) ≤ E |X|n

tn
, ∀ t > 0.

�

The second inequality of Corollary 3.3 is fairly useful , since if many moments of |X| are
bounded, then P(|X| ≥ t) decays very rapidly.

Replacing X by X − µ and taking n = 2 in Corollary 3.3 gives:

Corollary 3.4 (Chebyshev Inequality). Let X be a random variable with mean µ. Then

P(|X − µ| ≥ t) ≤ var(X)

t2
, ∀ t > 0.
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Or, replacing t by t
√

var(X),

P(|X − µ| ≥ t
√

var(X)) ≤ 1

t2
, ∀ t > 0.

Exercise 3.5. Let X be a standard Gaussian random variable. Let t > 0 and let n be a
positive even integer. Show that

P(X > t) ≤ (n− 1)(n− 3) · · · (3)(1)

tn
.

That is, the function t 7→ P(X > t) decays faster than any monomial.

Exercise 3.6. Let X be a random variable. Let t > 0. Show that

P(|X| > t) ≤ EX4

t4
.

Exercise 3.7 (The Chernoff Bound). Let X be a random variable and let r > 0. Show
that, for any t > 0,

P(X > r) ≤ e−trMX(t).

Consequently, if X1, . . . , Xn are independent random variables with the same CDF, and if
r, t > 0,

P

(
1

n

n∑
i=1

Xi > r

)
≤ e−trn(MX1(t))

n.

For example, if X1, . . . , Xn are independent Bernoulli random variables with parameter 0 <
p < 1, and if r, t > 0,

P

(
X1 + · · ·+Xn

n
− p > r

)
≤ e−trn(e−tp[pet + (1− p)])n.

And if we choose t appropriately, then the quantity P
(
1
n
|
∑n

i=1(Xi − p)| > r
)

becomes ex-

ponentially small as either n or r become large. That is, 1
n

∑n
i=1Xi becomes very close to its

mean. Importantly, the Chernoff bound is much stronger than either Markov’s or Cheyshev’s
inequality, since they only respectively imply that

P

(∣∣∣∣X1 + · · ·+Xn

n
− p
∣∣∣∣ > r

)
≤ 2p(1− p)

r
, P

(∣∣∣∣X1 + · · ·+Xn

n
− p
∣∣∣∣ > r

)
≤ p(1− p)

nr2
.

Proposition 3.8 (Borel-Cantelli Lemma). Let A1, A2, . . . be events with
∑∞

n=1 P(An) <
∞. Let B be the event that only finitely many of the events A1, A2, . . . occur. Then P(B) = 1.

Proof. For any n ≥ 1, let 1An be a random variable which is 1 if An occurs, and 0 other-
wise. That is, 1An(ω) = 1 if ω ∈ An, and 1An(ω) = 0 if ω /∈ An. Then E(

∑∞
n=1 1An) =∑∞

n=1 P(An) <∞. So, by Markov’s inequality,

P

(
∞∑
n=1

1An ≥ t

)
≤
∑∞

n=1 P(An)

t
, ∀ t > 0.

Letting t→∞ and using Continuity of the Probability Law, Proposition 2.2,

P(B) = P

(
∞∑
n=1

1An =∞

)
= lim

t→∞
P

(
∞∑
n=1

1An ≥ t

)
= 0.

�
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3.2. Weak Law of Large Numbers.

Definition 3.9. LetX1, X2, . . . be random variables. We say thatX1, X2, . . . are identically
distributed if X1, X2, . . . all have the same CDF. That is, P(Xi ≤ t) = P(Xj ≤ t) for all
t ∈ R and for all positive integers i, j.

Remark 3.10. If X1, X2, . . . are identically distributed random variables, then EXi = EXj

for all positive integers i, j.

We know intuitively that, if the results of independent experiments are averaged, then the
average will become close to the expected value of a single experiment. Indeed, one way to
intuitively think about expected value is as the average of many repeated experiments. The
Law of Large Numbers makes the previous statement rigorous. For now, we only prove a
weak version of this statement, though a stronger version will be proven later.

Theorem 3.11 (Weak Law of Large Numbers). Let X1, X2, . . . be independent iden-
tically distributed random variables. Assume that µ ∈ R and EX1 = µ. Then, for any
ε > 0,

lim
n→∞

P

( ∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ ε

)
= 0.

Proof. We make the additional assumption that var(X1) < ∞. Removing this assumption
relies on things outside of this class. From Corollary 2.24,

var

(
X1 + · · ·+Xn

n

)
=

1

n2

n∑
i=1

var(Xi) =
1

n
var(X1).

So, Chebyshev’s inequality implies that

P

( ∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ ε

)
≤ 1

n
ε−2var(X1).

Letting n→∞ concludes the proof. �

Remark 3.12. We saw in Exercise 3.7 that the Chernoff bound implies the Weak Law of
Large Numbers. However, the Chernoff bound requires the moment generating function to
exist and be close to 1 for small t > 0, which is a much stronger assumption than what we
assumed in Theorem 3.11.

Example 3.13. Let X1, X2, . . . be independent Bernoulli random variables with parameter
1/2. Let n := 104, ε := 10−2. Then

P

(∣∣∣∣X1 + · · ·+Xn

n
− 1

2

∣∣∣∣ ≥ 1

100

)
≤ 10−4104(1/4) =

1

4
.

3.3. Convergence in Probability.

Definition 3.14. We say that a sequence of random variables Y1, Y2, . . . converges in
probability to a random variable Y if: for all ε > 0

lim
n→∞

P(|Yn − Y | > ε) = 0.

More formally, if Ω is the sample space, then ∀ ε > 0, limn→∞P(ω ∈ Ω: |Yn(ω)− Y (ω)| >
ε) = 0.
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Remark 3.15. So, the Weak Law of Large numbers says: if X1, X2 are independent identi-
cally distributed random variables with µ := EX1 ∈ R, then the random variables X1+···+Xn

n
converge in probability to the constant µ.

Example 3.16. For any n ≥ 1, let Yn be a random variable such that P(Yn = n2) = 1/n,
and P(Yn = 0) = 1− 1/n. Then Y1, Y2, . . . converges in probability to 0. For any ε > 0,

P(|Yn − 0| > ε) = P(|Yn| > ε) = P(Yn = n2) = 1/n.

Therefore, limn→∞P(|Yn − 0| > ε) = 0.
However, note that convergence in probability does not imply convergence in expected

value, since limn→∞EYn = limn→∞ n =∞, whereas the expected value of 0 is just 0.

Proposition 3.17 (Uniqueness of the Limit). Suppose Y1, Y2, . . . converges in probability
to Y . Also, suppose Y1, Y2, . . . converges in probability to Z. Then P(Z 6= Y ) = 0.

Proof. From the triangle inequality, for any n ≥ 1,

|Z − Y | = |Z − Yn + Yn − Y | ≤ |Z − Yn|+ |Y − Yn| .
So, for any ε > 0, if |Z − Y | ≥ ε, then either |Z − Yn| ≥ ε/2 or |Y − Yn| ≥ ε/2. That is, for
any ε > 0 and for any n ≥ 1,

{ω ∈ Ω: |Z(ω)− Y (ω)| ≥ ε}
⊆ {ω ∈ Ω: |Z(ω)− Yn(ω)| ≥ ε/2} ∪ {ω ∈ Ω: |Y (ω)− Yn(ω)| ≥ ε/2}.

Therefore, for any ε > 0 and for any n ≥ 1,

P(|Z − Y | ≥ ε) ≤ P(|Z − Yn| ≥ ε/2) + P(|Y − Yn| ≥ ε/2).

The left side does not depend on n. So, letting n→∞, we get P(|Z − Y | ≥ ε) = 0, for all
ε > 0. Now,

{Z 6= Y } ⊆ ∪∞t=1{|Z − Y | ≥ 1/t}.
Therefore, P(Z 6= Y ) ≤

∑∞
t=1 P(|Z − Y | ≥ 1/t) = 0. So, P(Z 6= Y ) = 0. �

Exercise 3.18. Let X1, X2, . . . be independent random variables, each with exponential
distribution with parameter λ = 1. For any n ≥ 1, let Yn := max(X1, . . . , Xn). Let
0 < a < 1 < b. Show that P(Yn ≤ a log n) → 0 as n → ∞, and P(Yn ≤ b log n) → 1 as
n→∞. Conclude that Yn/ log n converges to 1 in probability as n→∞.

Exercise 3.19. We say that random variables X1, X2, . . . converge to a random variable X
in L2 if

lim
n→∞

E |Xn −X|2 = 0.

Show that, if X1, X2, . . . converge to X in L2, then X1, X2, . . . converges to X in probability.
Is the converse true? Prove your assertion.

Exercise 3.20. Let X1, X2, . . . be independent, identically distributed random variables
such that E |X1| <∞ and var(X1) <∞. For any n ≥ 1, define

Yn :=
1

n

n∑
i=1

X2
i .

Show that Y1, Y2, . . . converges in probability. Express the limit in terms of EX1 and var(X1).
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3.4. Central Limit Theorem. The following is a stronger version of Theorem 2.45.

Theorem 3.21 (Lévy Continuity Theorem). Let X1, X2, . . . be random variables and let
X be a random variable. For any fixed t ∈ R, assume that limn→∞ φXn(t) = φX(t). Assume
also that φX(t) is continuous at t = 0. Then for any fixed t ∈ R such that P(X ≤ t) is
continuous, we have limn→∞P(Xn ≤ t) = P(X ≤ t).

In particular, if X, Y are random variables with φX(t) = φY (t) for all t ∈ R, and if φX(t)
is continuous at t = 0, then X, Y are identically distributed.

We are finally able to prove the generalization of the De Moivre Laplace Theorem, Theorem
1.1, to arbitrary random variables.

Theorem 3.22 (Central Limit Theorem). Let X1, X2, . . . be independent, identically
distributed random variables. Let Z be a standard Gaussian random variable. Let µ, σ ∈ R
with σ > 0. Assume that EX1 = µ and var(X1) = σ2. Then for any t ∈ R,

lim
n→∞

P

(
X1 + · · ·+Xn − nµ

σ
√
n

≤ t

)
=

∫ t

−∞
e−x

2/2 dx√
2π

= P(Z ≤ t).

Remark 3.23. The random variable X1+···+Xn−µn
σ
√
n

has mean zero and variance 1, just like the

standard Gaussian X. So, the normalizations of X1 + · · ·+Xn we have chosen are sensible.

Remark 3.24. Let f, g : R → R. Below we use the notation f(t) = o(g(t)) ∀ t ∈ R to

denote limt→0

∣∣∣f(t)g(t)

∣∣∣ = 0. For example, if f(t) = o(t2), then limt→0

∣∣∣f(t)t2 ∣∣∣ = 0. Below we will

use that o(t2 + o(t2)) = o(t2), and that limn→∞ n · o(1/n) = 0.

Proof. For every j ≥ 1, let Yj := (Xj − µ)/σ. Note that Y1, Y2, . . . are independent and
identically distributed, EYj = 0 and EY 2

j = 1 for all j ≥ 1. From Theorem 3.21 and
Proposition 2.55, it suffices to show that, for any t ∈ R,

lim
n→∞

Ee
it
Y1+···+Yn√

n = EeitZ = e−t
2/2.

From Proposition 2.54,

Ee
it
Y1+···+Yn√

n =
n∏
j=1

EeitYj/
√
n = (EeitY1/

√
n)n.

We make the additional assumption that E |X1|3 < ∞, so that E |Y1|3 < ∞ and we can
apply Exercise 2.53. (As remarked in Exercise 2.53, this assumption is not needed for the
conclusion of Exercise 2.53 to hold.) By Exercise 2.53, and using EY1 = 0 and EY 2

1 = 1,

EeitY1/
√
n = 1 +

it√
n

EY1 −
t2

2n
EY 2

1 + o(t2/n) = 1− t2

2n
+ o

(
t2

n

)
.

Therefore,

Ee
it
Y1+···+Yn√

n =

(
1− t2

2n
+ o

(
t2

n

))n
.

Taking logarithms, using log(1 + x) = x+ o(x) for −1 < x < 1, and using Remark 3.24,

log Ee
it
Y1+···+Yn√

n = n log

(
1− t2

2n
+ o

(
t2

n

))
= −t

2

2
+ n · o

(
t2

n

)
.

Letting n→∞ and using Remark 3.24 completes the proof. �
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Definition 3.25 (Convergence in Distribution). Let X,X1, X2, . . . be random variables.
We say that X1, X2, . . . converge in distribution to X if, for any t ∈ R such that the CDF
of X is continuous at t,

lim
n→∞

P(Xn ≤ t) = P(X ≤ t).

So, the Central Limit Theorem, Theorem 3.22, says: if X1, X2, . . . are independent, iden-
tically distributed random variables with µ := EX1 and σ2 := Var(X1) with σ > 0, then
the random variables X1+···+Xn−nµ

σ
√
n

converge in distribution to the standard Gaussian random

variable. This fact is rather remarkable, since it holds no matter what distribution X1 has!
In this sense, the Gaussian random variable is “universal.”

Exercise 3.26. This exercise demonstrates that geometry in high dimensions is different
than geometry in low dimensions.

Let x = (x1, . . . , xn) ∈ Rn. Let ‖x‖ :=
√
x21 + · · ·+ x2n. Let ε > 0. Show that for all

sufficiently large n, “most” of the cube [−1, 1]n is contained in the annulus

A := {x ∈ Rn : (1− ε)
√
n/3 ≤ ‖x‖ ≤ (1 + ε)

√
n/3}.

That is, if X1, . . . , Xn are each independent and identically distributed in [−1, 1], then for n
sufficiently large

P((X1, . . . , Xn) ∈ A) ≥ 1− ε.
(Hint: apply the weak law of large numbers to X2

1 , . . . , X
2
n.)

Exercise 3.27 (Confidence Intervals). Among 625 members of a bank chosen uniformly
at random among all bank members, it was found that 25 had a savings account. Give
an interval of the form [a, b] where 0 ≤ a, b ≤ 625 are integers, such that with about 95%
certainty, the number of any set of 625 bank members with savings accounts chosen uniformly
at random lies in the interval [1, 5]. (Hint: if Y is a standard Gaussian random variable,
then P(−2 ≤ Y ≤ 2) ≈ .95.)

Exercise 3.28 (Hypothesis Testing). Suppose we run a casino, and we want to test
whether or not a particular roulette wheel is biased. Let p be the probability that red results
from one spin of the roulette wheel. Using statistical terminology, “p = 18/38” is the null
hypothesis, and “p 6= 18/38” is the alternative hypothesis. (On a standard roulette wheel,
18 of the 38 spaces are red.) For any i ≥ 1, let Xi = 1 if the ith spin is red, and let Xi = 0
otherwise.

Let µ := EX1 and let σ :=
√

var(X1). If the null hypothesis is true, and if Y is a standard
Gaussian random variable

lim
n→∞

P

( ∣∣∣∣X1 + · · ·+Xn − nµ
σ
√
n

∣∣∣∣ ≥ 2

)
= P(|Y | ≥ 2) ≈ .05.

To test the null hypothesis, we spin the wheel n times. In our test, we reject the null
hypothesis if |X1 + · · ·+Xn − nµ| > 2σ

√
n. Rejecting the null hypothesis when it is true is

called a type I error. In this test, we set the type I error percentage to be 5%. (The type I
error percentage is closely related to the p-value.)

Suppose we spin the wheel n = 3800 times and we get red 1868 times. Is the wheel biased?
That is, can we reject the null hypothesis with around 95% certainty?
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3.5. Strong Law of Large Numbers.

Exercise 3.29. Suppose random variables X1, X2, . . . converge in probability to a random
variable X. Prove that X1, X2, . . . converge in distribution to X.

Then, show that the converse is false.

By Exercise 3.29, we see that the convergence guaranteed by the Central Limit Theorem
is weaker than convergence in probability. We might hope to upgrade the Central Limit
Theorem to get the stronger convergence in probability, but unfortunately this is impossible.

Exercise 3.30. Let X1, X2, . . . be independent identically distributed random variables with
P(X1 = 1) = P(X1 = −1) = 1/2. For any n ≥ 1, define

Sn :=
X1 + · · ·+Xn√

n
.

The Central Limit Theorem says that Sn converges in distribution to a standard Gaussian
random variable. We show that Sn does not converge in probability to any random variable.
The intuition here is that if Sn did converge in probability to a random variable Z, then

when n is large, Sn is close to Z, Yn :=
√
2S2n−Sn√

2−1 is close to Z, but Sn and Yn are independent.

And this cannot happen.
Proceed as follows. Assume that Sn converges in probability to Z.

• Let ε > 0. For n very large (depending on ε), we have P(|Sn − Z| > ε) < ε and
P(|Yn − Z| > ε) < ε.
• Show that P(Sn > 0, Yn > 0) is around 1/4, using independence and the Central

Limit Theorem.
• From the first item, show P(Sn > 0|Z > ε) > 1 − ε, P(Yn > 0|Z > ε) > 1 − ε, so

P(Sn > 0, Yn > 0|Z > ε) > 1− 2ε.
• Without loss of generality, for ε small, we have P(Z > ε) > 4/9.
• By conditioning on Z > ε, show that P(Sn > 0, Yn > 0) is at least 3/8, when n is

large.

The Weak Law of Large Numbers, Theorem 3.11, showed that the average X1+···+Xn
n

of
independent identically distributed random variables with finite mean converges to the mean
in probability. We can upgrade this convergence in probability to a stronger notion of
convergence, which we now define.

Definition 3.31 (Almost Sure Convergence). We say that random variables X1, X2, . . .
converge almost surely (or with probability one) to a random variable X if

P( lim
n→∞

Xn = X) = 1.

More rigorously, if Ω is the sample space, then P({ω ∈ Ω: limn→∞Xn(ω) = X(ω)}) = 1

Exercise 3.32. Let X1, X2, . . . be random variables that converge almost surely to a random
variable X. That is,

P( lim
n→∞

Xn = X) = 1.

Show that X1, X2, . . . converges in probability to X in the following way.
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• For any ε > 0 and for any positive integer n, let

An,ε :=
∞⋃
m=n

{ω ∈ Ω: |Xm(ω)−X(ω)| > ε}.

Show that An,ε ⊇ An+1,ε ⊇ An+2,ε ⊇ · · · .
• Show that P(∩∞n=1An,ε) = 0.
• Using Continuity of the Probability Law, deduce that limn→∞P(An,ε) = 0.

Now, show that the converse is false. That is, find random variables X1, X2, . . . that
converge in probability to X, but where X1, X2, . . . do not converge to X almost surely.

Remark 3.33. The following table summarizes our different notions of convergence of ran-
dom variables. That is, the following table summarizes the implications of Exercises 3.19,
3.29 and 3.32.

Almost sure
convergence

3.32

#+
Convergence
in probability

3.29 +3 Convergence
in distribution

Convergence
in L2

3.19

3;

Remark 3.34. Almost sure convergence does not imply convergence in L2, and convergence
in L2 does not imply almost sure convergence.

To see the first, assertion, recall the random variables Y1, Y2, . . . constructed in Example
3.16. Then Y1, Y2, . . . converges almost surely to 0, since limn→∞ Yn(t) = 0 for all t ∈ (0, 1],
so P(limn→∞ Yn = 0) = P((0, 1]) = 1. On the other hand, Y1, Y2, . . . does not converge in L2

to 0, since E |Yn − 0|2 = EY 2
n = n4/n = n3, so limn→∞E |Yn − 0|2 6= 0.

We now show that convergence in L2 does not imply almost sure convergence. Let P be
the uniform probability law on [1, 2]. For any positive integer n, define Xn : [1, 2] → R as
follows. Let j = j(n) be the nonnegative integer such that 2j ≤ n < 2j+1. Let Xn(t) := 1 if
t ∈ [n2−j, (n+ 1)2−j], and let Xn(t) := 0 otherwise. We claim that X1, X2, . . . converges to 0
in L2, but X1, X2, . . . does not converge almost surely to 0. Note that E |Xn − 0|2 = EX2

n =
2−j, and as n → ∞, j → ∞, so that limn→∞E |Xn − 0|2 = 0. However, for any t ∈ [0, 1],
there exist infinitely many values of n such that Xn(t) = 1 and infinitely many values of n
such that Xn(t) = 0. Therefore, limn→∞Xn(t) does not exist, for every t ∈ [0, 1]. That is,
X1, X2, . . . does not converge almost surely to any random variable.

From Corollary 3.4 and Corollary 2.24, if X1, . . . , Xn are independent random variables
with mean zero, then for any t > 0,

P(|X1 + · · ·+Xn| > t) ≤ t−2var(X1 + · · ·+Xn) = t−2(var(X1) + · · ·+ var(Xn))

We used this inequality in our proof of the Weak Law of Large Numbers, Theorem 3.11.
To prove the Strong Law of Large Numbers, we use the following stronger version of this
inequality, where a maximum appears on the left side.
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Theorem 3.35 (Kolmogorov Maximal Inequality). Let X1, X2, . . . be independent ran-
dom variables with mean zero and finite variance. Then for any t > 0, and for any k > 0,

P

(
max
1≤n≤k

|X1 + · · ·+Xn| ≥ t

)
≤ var(X1) + · · ·+ var(Xk)

t2
.

Proof. For an event A, we use the notation 1A : Ω → R where 1A(ω) := 1 if ω ∈ A, and
1A(ω) := 0 if ω /∈ A.

Let t > 0. For any n ≥ 1, define Sn := X1 + · · ·+Xn. For any n ≥ 1, let An be the event
that |Sn| ≥ t and |Sj| < t for all 1 ≤ j < n. Then A1, . . . , Ak are disjoint, and ∪kn=1An =

{max1≤n≤k |Sn| ≥ t}. So, using P(∪kn=1An) ≤
∑k

n=1 P(An) and
∑k

n=1 var(Xn) = ES2
k , it

suffices to show that
k∑

n=1

P(An) ≤ ES2
k

t2
. (∗)

When An occurs, we have 1 ≤ 1
t2
S2
n. Therefore,

P(An) = E1An ≤ E1An
1

t2
S2
n, ∀ 1 ≤ n ≤ k.

Below, we will show that

E1AnS
2
n ≤ E1AnS

2
k , ∀ 1 ≤ n ≤ k. (∗∗)

Then (∗∗) implies (∗), since the disjointness of the sets A1, . . . , Ak implies
∑k

n=1 1An ≤ 1, so

k∑
n=1

P(An) ≤
k∑

n=1

E1An
1

t2
S2
n

(∗∗)
≤ 1

t2
E

k∑
n=1

1AnS
2
k ≤

1

t2
ES2

k .

We now prove (∗∗). Let 1 ≤ n ≤ k. Then, squaring both sides of Sk = Sn + (Sk − Sn),

S2
k = S2

n + (Xn+1 + · · ·+Xk)
2 + 2Sn(Xn+1 + · · ·+Xk)

≥ S2
n + 2Sn(Xn+1 + · · ·+Xk).

Multiplying by 1An and taking expected values,

ES2
k1An ≥ ES2

n1An + 2E[1AnSn(Xn+1 + · · ·+Xk)].

So, (∗∗) follows by showing the last term is zero. Note that Xn+1, . . . , Xk are independent
of Sn, and Xn+1, . . . , Xk are independent of 1An , since 1An only depends on X1, . . . , Xn.
Therefore,

E[1AnSn(Xn+1 + · · ·+Xk)] = E(1AnSn) · E(Xn+1 + · · ·+Xk) = 0.

The proof of (∗∗) is therefore complete. The Theorem follows. �

Exercise 3.36. Using the Central Limit Theorem, prove the Weak Law of Large Numbers.

Exercise 3.37. Let m ≥ 1. Show by integral comparison of infinite series that

∞∑
j=m

1

j2
≤ 10

m
.
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Theorem 3.38 (Strong Law of Large Numbers). Let X1, X2, . . . be a sequence of in-
dependent identically distributed random variables. Let µ ∈ R. Assume that µ = EX1.
Then

P

(
lim
n→∞

X1 + · · ·+Xn

n
= µ

)
= 1.

Proof. We make the additional assumption that var(X1) <∞. Removing this extra assump-
tion is beyond our course material.

For any j ≥ 1, let Yj := Xj−µ. Note that Y1, Y2, . . . are independent identically distributed
random variables with EY1 = 0 and var(Y1) = var(X1) <∞. We are required to show that

P

(
lim
n→∞

Y1 + · · ·+ Yn
n

= 0

)
= 1.

Let ε > 0, m ≥ 1. For any n ≥ 1, let

An :=

{
max
m≤k≤n

∣∣∣∣∣
k∑

j=m

Yj
j

∣∣∣∣∣ ≥ ε

}
.

From the Kolmogorov maximal inequality, Theorem 3.35,

P(An) ≤ 1

ε2

n∑
j=m

var(Yj)

j2
=

var(Y1)

ε2

n∑
j=m

1

j2
, ∀n ≥ 1.

By their definition, A1 ⊆ A2 ⊆ A3 ⊆ · · · . So, by continuity of P, Proposition 2.1, and
Exercise 3.37,

P

(
max
k≥m

∣∣∣∣∣
k∑

j=m

Yj
j

∣∣∣∣∣ ≥ ε

)
= P(∪∞n=mAn) = lim

n→∞
P(An) ≤ 10

m

var(Y1)

ε2
.

Let A be the event that maxk≥m

∣∣∣∑k
j=m

Yj
j

∣∣∣ ≥ ε for all m ≥ 1. Then, A can be written

as the decreasing intersection A = ∩∞m=1{maxk≥m

∣∣∣∑k
j=m

Yj
j

∣∣∣ ≥ ε}. So, by continuity of P,

Proposition 2.2,

P(A) = lim
m→∞

P

(
max
k≥m

∣∣∣∣∣
k∑

j=m

Yj
j

∣∣∣∣∣ ≥ ε

)
≤ lim

m→∞

10

m

var(Y1)

ε2
= 0.

Since P(A) = 0, P(Ac) = 1. That is, with probability 1, for any ε > 0, there exists m ≥ 1

such that maxk≥m

∣∣∣∑k
j=m

Yj
j

∣∣∣ < ε.

The Proof is concluded by the following Propositions which we will not prove, since they are
better suited for Math 131A. In particular, we apply the first Proposition to Sk :=

∑k
n=1

Yn
n

,
and we apply the second Proposition to yn := Yn/n and bn := n for all n ≥ 1. �

Proposition 3.39. Let s1, s2, . . . be a sequence of real numbers such that: for all ε > 0 there
exists m ≥ 1 such that maxk≥m |sk − sm| ≤ ε. Then limk→∞ sk exists.

Proposition 3.40 (Kronecker’s Lemma). Let y1, y2, . . . be a sequence of real numbers.
Let 0 < b1 ≤ b2 ≤ · · · be a sequence of real numbers that goes to infinity. Assume that
limk→∞

∑k
n=1 yn exists. Then limk→∞

1
bk

∑k
n=1 bnyn = 0.
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Remark 3.41. The Strong Law of Large Numbers Implies the Weak Law of Large Numbers
by Exercise 3.32.

Exercise 3.42 (Renewal Theory). Let t1, t2, . . . be positive, independent identically dis-
tributed random variables. Let µ ∈ R. Assume Et1 = µ. For any positive integer j, we
interpret tj as the lifetime of the jth lightbulb (before burning out, at which point it is re-
placed by the (j + 1)st lightbulb). For any n ≥ 1, let Tn := t1 + · · ·+ tn be the total lifetime
of the first n lightbulbs. For any positive integer t, let Nt := min{n ≥ 1: Tn ≥ t} be the
number of lightbulbs that have been used up until time t. Show that Nt/t converges almost
surely to 1/µ as t → ∞. (Hint: if c, t are positive integers, then {Nt ≤ ct} = {Tct ≥ t}.
Apply the Strong Law to Tct.)

Exercise 3.43 (Playing Monopoly Forever). Let t1, t2, . . . be independent random vari-
ables, all of which are uniform on {1, 2, 3, 4, 5, 6}. For any positive integer j, we think of tj
as the result of rolling a single fair six-sided die. For any n ≥ 1, let Tn = t1 + · · ·+ tn be the
total number of spaces that have been moved after the nth roll. (We think of each roll as
the amount of moves forward of a game piece on a very large Monopoly game board.) For
any positive integer t, let Nt := min{n ≥ 1: Tn ≥ t} be the number of rolls needed to get t
spaces away from the start. Using Exercise 3.42, show that Nt/t converges almost surely to
2/7 as t→∞.

Exercise 3.44 (Random Numbers are Normal). Let X be a uniformly distributed
random variable on (0, 1). Let X1 be the first digit in the decimal expansion of X. Let X2

be the second digit in the decimal expansion of X. And so on.

• Show that the random variables X1, X2, . . . are uniform on {0, 1, 2, . . . , 9} and inde-
pendent.
• Fix m ∈ {0, 1, 2, . . . , 9}. Using the Strong Law of Large Numbers, show that with

probability one, the fraction of appearances of the number m in the first n digits of
X converges to 1/10 as n→∞.

(Optional): Show that for any ordered finite set of digits of length k, the fraction of appear-
ances of this set of digits in the first n digits of X converges to 10−k as n→∞. (You already
proved the case k = 1 above.) That is, a randomly chosen number in (0, 1) is normal. On
the other hand, if we just pick some number such that

√
2 − 1, then it may not be easy to

say whether or not that number is normal.
(As an optional exercise, try to explicitly write down a normal number. This may not be

so easy to do, even though a random number in (0, 1) satisfies this property!)

Exercise 3.45. Let X1, X2, . . . be random variables with mean zero and variance one. The
Strong Law of Large Numbers says that 1

n
(X1 + · · · + Xn) converges almost surely to zero.

The Central Limit Theorem says that 1√
n
(X1 + · · · + Xn) converges in distribution to a

standard Gaussian random variable. But what happens if we divide by some other power of
n? This Exercise gives a partial answer to this question.

Let ε > 0. Show that
X1 + · · ·+Xn

n1/2(log n)(1/2)+ε

converges to zero almost surely as n → ∞. (Hint: Re-do the proof of the Strong Law of
Large Numbers, but divide by n1/2(log n)(1/2)+ε instead of n.)
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4. Stochastic Processes

A stochastic process is a collection of random variables. These random variables are
often indexed by time, and the random variables are often related to each other by the evo-
lution of some physical procedure. Stochastic processes can then model random phenomena
that depend on time.

Proposition 4.1 (A Very Important Proposition). Let B be a fixed subset of some
sample space Ω. Let P be a probability law on Ω. Assume that P(B) > 0. Given any subset
A in Ω, define P(A|B) = P(A∩B)/P(B) as above. Then P(A|B) is itself a probability law
on Ω, when viewed as a function of subsets A in Ω. Also, P(A|B) is a probability law on
Ω ∩B, when viewed as a function of subset A in Ω ∩B

Exercise 4.2. Let A,B be events in a sample space. Let C1, . . . , Cn be events such that
Ci ∩ Cj = ∅ for any i, j ∈ {1, . . . , n}, and such that ∪ni=1Ci = B. Show:

P(A|B) =
n∑
i=1

P(A|B, Ci)P(Ci|B).

(Hint: consider using the Total Probability Theorem and Proposition 2.54.)

4.1. Bernoulli Process. Our first example of a stochastic process will be the Bernoulli
Process. Recall that a Bernoulli random variable X with parameter 0 < p < 1 is a discrete
random variable such that P(X = 1) = p and P(X = 0) = 1− p.

Remark 4.3. A set of random variables X1, X2, . . . is said to be independent if, for any
integer n ≥ 1, the set of random variables X1, . . . , Xn is independent.

Definition 4.4 (Bernoulli Process). A Bernoulli Process with parameter 0 < p < 1 is
a sequence X1, X2, . . . of independent Bernoulli random variables, each with parameter p.

Remark 4.5. If X1, X2, . . . is a Bernoulli process with parameter 0 < p < 1, and if T :=
min{n ≥ 1: Xn = 1}, then T is the time of the first “successful” coin flip, and T has a
geometric PMF: pT (t) = (1− p)t−1p for any integer t ≥ 1.

Proposition 4.6. Let T be a geometric random variable with parameter 0 < p < 1. Then
T has the following memoryless property: for any integers n, t ≥ 1

P(T − n = t |T > n) = P(T = t).

Proof.

P(T − n = t |T > n) =
P(T − n = t, T > n)

P(T > n)
=

P(T = t+ n)

P(T > n)
=

(1− p)t+n−1p∑∞
k=n+1(1− p)k−1p

=
(1− p)t+n−1p

(1− p)n
= (1− p)t−1p = P(T = t).

�

Remark 4.7. A Bernoulli Process X1, X2, . . . has the following Markov property or fresh-
start property. For any integer n ≥ 1, the sequence Xn+1, Xn+2, . . . is itself a Bernoulli
process which is independent of X1, . . . , Xn.
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T1 T2 T3

X1

Y1 Y2 Y3

1

X2 X3 X4 · · ·

0
n

Figure 1. One Sample from a Bernoulli Process.

Proposition 4.8. Let X1, X2, . . . be a Bernoulli Process with parameter 0 < p < 1. Define
Y1 := min{n ≥ 1: Xn = 1}. For any integer k ≥ 1, inductively define Yk := min{n >
Yk−1 : Xn = 1} to be the time of the kth “successful trial.” Then, define T1 := Y1, and
Tk := Yk − Yk−1 for any k ≥ 2. Then the inter-arrival times T1, T2, . . . are independent
geometric random variables with parameter p.

Remark 4.9. When A1, . . . , An, B1, . . . , Bm are events, we use the notation

P(A1, . . . , An |B1, . . . , Bm) := P(A1 ∩ · · · ∩ An |B1 ∩ · · · ∩Bm).

Proof. The case k = 1 follows by definition of Y1 = T1 as noted in Remark 4.5. We now
consider any k ≥ 2. By its definition, Tk = Yk − Yk−1 = min{n ≥ 1: Xn+Yk−1

= 1}. Let
s, t ≥ 1 be integers, and let x1, . . . , xs ∈ {0, 1} so that {X1 = x1, . . . , Xs = xs} ⊆ {Yk−1 = s}.
Then

P(Tk = t |Yk−1 = s, X1 = x1, . . . , Xn = xn)

= P(X1+s = 0, . . . , Xt−1+s = 0, Xt+s = 1 |Yk−1 = s, X1 = x1, . . . , Xs = xs)

= P(X1+s = 0, . . . , Xt−1+s = 0, Xt+s = 1 |X1 = x1, . . . , Xs = xs)

= P(X1+s = 0, . . . , Xt−1+s = 0, Xt+s = 1) , by Remark 4.7

= P(X1 = 0, . . . , Xt−1 = 0, Xt = 1) , by Remark 4.7

= (1− p)t−1p.

Summing over all x1, . . . , xs ∈ {0, 1} such that {X1 = x1, . . . , Xs = xs} ⊆ {Yk−1 = s} and
using the Total Probability Theorem as in Exercise 4.2, we get

P(Tk = t |Yk−1 = s) = (1− p)t−1p, ∀ s, t ≥ 1.

Summing over all s ≥ 1, we get by the Total Probability Theorem,

P(Tk = t) = (1− p)t−1p, ∀ t ≥ 1. (∗)
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Finally, to prove the independence property, let k ≥ 1, and let t1, . . . , tk ≥ 1, so that

P(T1 = t1, . . . , Tk = tk)

= P(X1 = 0, . . . , Xt1−1 = 0, Xt1 = 1, Xt1+1 = 0, . . . , Xt1+t2−1 = 0, Xt1+t2 = 1,

. . . , Xt1+···+tk−1 = 0, Xt1+···+tk = 1)

=
k∏
i=1

(1− p)ti−1p (∗)
=

k∏
i=1

P(Ti = ti).

�

Exercise 4.10. Let T1, T2, . . . be independent geometric random variables with parameter
p. For any integer k ≥ 1, let Yk := T1 + · · ·+ Tk. Show that the PMF of Yk is given by

pYk(t) =

{(
t−1
k−1

)
pk(1− p)t−k , if t ≥ k, t ∈ Z

0 , otherwise.

Proposition 4.8 shows that the inter-arrival times of the Bernoulli process are indepen-
dent geometric random variables. In fact, we can reverse this implication. That is, if we
assume that the inter-arrival times of some sequence of random variables are independent
and geometric, then the sequence of random variables is a Bernoulli process.

Proposition 4.11 (An Equivalent Definition of Bernoulli Process). Let 0 < p < 1.
Let T1, T2, . . . be independent geometric random variables with parameter p. Define a sequence
of random variables X1, X2, . . . such that, for any integer n ≥ 1

Xn =

{
1 , if n = T1, T1 + T2, T1 + T2 + T3, . . .

0 , otherwise.

Then X1, X2, . . . is a Bernoulli process with parameter p.

Proof. By its definition, X1 = 1 only if T1 = 1, and X1 = 0 otherwise. So P(X1 = 1) =
P(T1 = 1) = p, since T1 is a geometric random variable with parameter p. Similarly,
P(X1 = 0) = 1−P(X1 = 1) = 1− p. So, X1 is a Bernoulli random variable.

We now consider the case of general k ≥ 1. By the Total Probability Theorem,

P(Xk+1 = 1)

=
∑

x1,...,xk∈{0,1}

P(Xk+1 = 1 |Xk = xk, . . . , X1 = x1)P(Xk = xk, . . . , X1 = x1). (∗)

Given any x1, . . . , xk ∈ {0, 1}, let i1 < · · · < im such that xi1 = · · · = xim = 1 and so that
xj = 0 if j /∈ {i1, . . . , im}. Then

P(Xk+1 = 1 |Xk = xk, . . . , X1 = x1)

= P(Xk+1 = 1 |Tm+1 > k − im, Tm = im − im−1, . . . , T2 = i2 − i1, T1 = i1)

= P(Tm+1 = k + 1− im |Tm+1 > k − im, Tm = im − im−1, . . . , T2 = i2 − i1, T1 = i1).

Using that the random variables T1, . . . , Tm+1 are independent and Proposition 4.6,

P(Xk+1 = 1 |Xk = xk, . . . , X1 = x1) = P(Tm+1 = k + 1− im |Tm+1 > k − im)

= P(Tm+1 = 1) = p.
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This shows the independence property. Substituting back into (∗),

P(Xk+1 = 1) =
∑

x1,...,xk∈{0,1}

p ·P(Xk = xk, . . . , X1 = x1) = p.

�

Exercise 4.12. Give an alternate proof that P(Xk+1 = 1) = p in Proposition 4.11 by using
the following conditioning argument:

P(Xk+1 = 1) =
k+1∑
n=1

P(Xk+1 = 1 |T1 = n)P(T1 = n)

= P(Xk+1 = 1 |T1 = k + 1)P(T1 = k + 1) +
k∑

n=1

P(Xk+1 = 1 |T1 = n)P(T1 = n)

= P(T1 = k + 1) +
k∑

n=1

P(T1 + · · ·+ Tj = k + 1 for some j ≥ 2 |T1 = n)P(T1 = n) = · · ·

Remark 4.13 (Splitting). Let X1, X2, . . . be a Bernoulli process with parameter 0 < p < 1.
Let 0 < q < 1. For any integer n ≥ 1, define a random variable Zn so that Zn := Xn

with probability q, and Zn := 0 with probability 1 − q. Since X1, X2, . . . are independent,
Z1, Z2, . . . are independent. Also, for any integer n ≥ 1, P(Zn = 1) = qP(Xn = 1) = pq,
and P(Zn = 0) = 1 − pq. So, Z1, Z2, . . . is a Bernoulli process with parameter pq. We can
think of Z1, Z2, . . . so that whenever the Bernoulli process X1, X2, . . . succeeds, we flip a coin,
and record success for Z1, Z2, . . . with (conditional) probability q. In this way, Z1, Z2, . . . is
“split” away from X1, X2, . . ..

Remark 4.14 (Merging). Let X1, X2, . . . be a Bernoulli process with parameter 0 < p < 1.
Let Y1, Y2, . . . be another Bernoulli process with parameter 0 < q < 1 which is independent
of X1, X2, . . .. For any integer n ≥ 1, define a random variable Zn so that Zn := max(Xn, Yn)
Since X1, X2, . . . , Y1, Y2, . . . are independent, Z1, Z2, . . . are independent. Also, for any inte-
ger n ≥ 1, P(Zn = 0) = P(Xn = 0)P(Yn = 0) = (1−p)(1−q), and P(Zn = 1) = 1−P(Zn =
0). So, Z1, Z2, . . . is a Bernoulli process with parameter 1 − (1 − p)(1 − q) = p + q − pq.
We can think of Z1, Z2, . . . so that whenever either Bernoulli process X1, X2, . . . or Y1, Y2 . . .
succeeds, we record success for Z1, Z2, . . .. In this way, Z1, Z2, . . . “merges” X1, X2, . . . and
Y1, Y2, . . ..

Exercise 4.15. Let X1, X2, . . . be a Bernoulli process with parameter p = 1/2. What is the
expected number of trials that have to occur before we see two consecutive “successes”?

Exercise 4.16. Let X1, X2, . . . be a Bernoulli process with parameter p = 1/2. Define N :=
min{n ≥ 1: Xn 6= X1}. For any n ≥ 1, define Yn := XN+n−2. Show that P(Yn = 1) = 1/2
for all n ≥ 1, but Y1, Y2, . . . is not a Bernoulli process.

4.2. Poisson Process. Let λ > 0. For any n ≥ 1, let pn := λ/n. Let X1, X2, . . . be a
Bernoulli Process with parameter pn. For any integer i ≥ 1, let Ni,n := X1 + · · · + Xi.
Intuitively, as n→∞, we hope to get a new “continuous-time” stochastic process from the
Bernoulli Process. Note that Ni,n is the number of “successes” of the Bernoulli process among
the first i “trials.” So, Ni,n has a binomial distribution with parameters i and pn = λ/n. So,

32



if i = sn for some rational constant s, then Ni,n = Nsn,n has a binomial distribution with
parameters sn and pn = λ/n.

We now recall a Proposition from your previous probability class.

Proposition 4.17 (Poisson Approximation to the Binomial). Let λ > 0. For each
positive integer n, let 0 < pn < 1. Assume that limn→∞ pn = 0 and limn→∞ npn = λ. Let
Bn be a binomial distributed random variable with parameters n and pn. (So, P(Bn = t) =(
n
t

)
ptn(1− pn)n−t for any integer 0 ≤ t ≤ n.) Then, for any nonnegative integer t, we have

lim
n→∞

P(Bn = t) = e−λ
λt

t!
.

That is, as n→∞ the binomial random variable Bn converges in distribution to a Poisson
random variable with parameter λ.

We think of N1,n, N2,n, . . . as a sequence of random variables such that the value Ni,n is
plotted on the x-axis at time i/n. Then the random variables N1,n, N2,n, . . . “converge” as
n → ∞ to a set of random variables {N(s)}s≥0, where s ≥ 0 denotes any nonnegative real
number. From Proposition 4.17, we anticipate that N(s) has a Poisson distribution with
parameter λs. This observation leads to our first informal definition of the Poisson Process
{N(s)}s≥0.

Definition 4.18 (Poisson Process, Informal Definition). Let λ > 0. For any n ≥ 1,
let pn := λ/n and let X1, X2, . . . be a Bernoulli Process with parameter pn. For any integer
i ≥ 1, let Ni,n := X1 + · · ·+Xi. Then the sequence of random variables N1/n, N2/n, N3/n, . . .
“converges” as n → ∞ to a set of random variables {N(s)}s≥0, which is defined to be the
Poisson Process with parameter λ > 0. (Here s ≥ 0 denotes any nonnegative real number.)

Remark 4.19. From this informal definition, we see that for any s ≥ 0, N(s) has nonneg-
ative integer values. Also, we expect that N(s + r) − N(s) is independent of N(s) for any
r, s > 0, since this independence property applies to the sequence N1,n, N2,n, N3,n, . . ., for
any n ≥ 1.

Proposition 4.20. A Poisson Process with parameter λ > 0 has independent, exponential
inter-arrival times with parameter λ.

Proof Sketch. For any n ≥ 1, let pn := λ/n and let X1, X2, . . . be a Bernoulli Process with
parameter pn. For any integer i ≥ 1, let Ni,n := X1 + · · ·+Xi.

Define Y1 := min{k ≥ 1: Xk = 1}. For any integer i ≥ 1, inductively define Yi :=
min{k > Yi−1 : Xk = 1}. Then, define T1 := Y1, and Ti := Yi − Yi−1 for any i ≥ 2. Then
the inter-arrival times T1, T2, . . . are independent geometric random variables with parameter
pn = λ/n, by Proposition 4.8. That is, for any integers i, t ≥ 1,

P(Ti = t) = (λ/n)(1− λ/n)t−1. (∗)

Define a new sequences of random variables so that Zi,n := Yi/n for any integer i ≥ 1,
and define Si,n := Zi,n − Z(i−1),n = Ti/n. Then S1,n, S2,n, . . . are the inter-arrival times for
the sequence N1,n, N2,n, . . ., so

P(Si.n = t/n) = P(Ti/n = t/n) = P(Ti = t)
(∗)
= (λ/n)(1− λ/n)t−1, ∀ i, t ≥ 1.
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So,

P(Si,n ≤ 1) =
n∑
t=1

P(Si,n = t/n) =
n∑
t=1

(λ/n)(1− λ/n)t−1 =
n∑
t=1

(λ/n)(1− λ/n)n(t/n)−1.

Letting n→∞, and using limn→∞(1−λ/n)n = e−λ, we see that the Riemann sum converges
as follows

lim
n→∞

P(Si,n ≤ 1) =

∫ 1

0

λe−λxdx.

More generally, for any s ≥ 0,

lim
n→∞

P(Si,n ≤ s) =

∫ s

0

λe−λxdx.

That is, as n → ∞, the inter-arrival times (divided by n) of the Bernoulli Process with
parameter pn = λ/n converge to exponential random variables with parameter λ. �

T1

T2

T3

N(s)

s

Y1 Y2 Y3

1

2

3

4

Figure 2. One Sample Path of a Poisson Process.

We have informally argued that the Poisson Process with parameter λ should have inde-
pendent exponential inter-arrival times with parameter λ. We can actually use independent
exponential random variables to give a formal definition of a Poisson Process.

Definition 4.21 (Poisson Process, Formal Definition). Let λ > 0. Let T1, T2, . . . be
independent exponential random variables with parameter λ. Let Y0 = 0, and for any n ≥ 1,
let Yn := T1 + · · ·+ Tn. A Poisson Process with parameter λ > 0 is a set of integer-valued
random variables {N(s)}s≥0 defined by N(s) := max{n ≥ 0: Yn ≤ s}, ∀ s ≥ 0.

Here the random variables T1, T2, . . . are the inter-arrival times of the process. The follow-
ing properties follow from the formal definition 4.21, though we anticipated these properties
e.g. in Proposition 4.17.

Proposition 4.22 (Properties of the Poisson Process). Let {N(s)}s≥0 be a Poisson
process with parameter λ > 0. Then

(i) N(0) = 0.
(ii) N(t+ s)−N(s) is a Poisson random variable with parameter λt for all s, t > 0.
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(iii) {N(s)}s≥0 has independent increments. That is, for any 0 < u0 < · · · < uk, the
following random variables are independent:

N(u1)−N(u0), . . . , N(uk)−N(uk−1).

We omit the proof of this Proposition, since it is covered in Math 171.

Exercise 4.23. Suppose the number of students going to a restaurant in Ackerman in a single
day has a Poisson distribution with mean 500. Suppose each student spends an average of
$10 with a standard deviation of $5. What is the average revenue of the restaurant in one
day? What is the standard deviation of the revenue in one day? (The amounts spent by the
students are independent identically distributed random variables.)

0 5 10 15
0

5

10

15

Figure 3. Several Sample Paths of a Poisson Process. The horizontal axis is
the s-axis.

4.3. Random Walks.

Definition 4.24 (Random Walk). Let X1, X2, . . . be independent identically distributed
random variables with EX1 = 0 and E |X1| < ∞. Let X0 := 0 and for any integer n ≥ 0,
define Sn := X0 + · · ·+Xn. We call the sequence of random variables S0, S1, . . . a random
walk started at 0. More generally, if c ∈ R is a constant and if X0 = c, we call the sequence
of random variables S0, S1, . . . a random walk started at c.

Definition 4.25 (Stopping Time). A stopping time for a random walk S0, S1, . . . is a
random variable T taking values in 0, 1, 2, . . . ,∪{∞} such that, for any integer n ≥ 0, the
event {T = n} is determined by S0, . . . , Sn. More formally, for any integer n ≥ 1, there is
a set Bn ⊆ Rn+1 such that {T = n} = {(S0, . . . , Sn) ∈ Bn}. Put another way, the indicator
function 1{T=n} is a function of the random variables S0, . . . , Sn.

For a real-world example of a stopping time, suppose S0, S1, . . . is a random walk which
describes the price of a stock. Suppose the stock is currently priced at S0 = 100 and you
instruct your stock broker to sell the stock when its price reaches either $110 or $90. That
is, define the stopping time T = min{n ≥ 1: Sn ≥ 110 or Sn ≤ 90}. Then T is a stopping

35



3

2

Figure 4. Several Sample Paths of a Random Walk.

time. From the Optional Stopping Theorem below, EST = ES0. That is, you cannot make
money off of this stock (if it is a random walk).

Exercise 4.26. Let X0 := 0. Let X0, X1, . . . be independent random variables such that
P(Xn = 1) = P(Xn = −1) = 1/2 for all n ≥ 1. Let S0, S1, . . . be the corresponding random
walk started at 0. Let T := min{n ≥ 1: Sn = 1}. Show that T is a stopping time.

Exercise 4.27. Let X0 := x0 ∈ Z. Let X0, X1, . . . be independent random variables such
that P(Xn = 1) = P(Xn = −1) = 1/2 for all n ≥ 1. Let S0, S1, . . . be the corresponding
random walk started at x0. Let a, b ∈ Z such that a < x0 < b. Let T := min{n ≥ 1: Sn ∈
{a, b}}. Show that T is a stopping time.

Remark 4.28. Let a, b ∈ R. We use the notation a ∧ b := min(a, b). Note that if T is a
stopping time, then a ∧ T is a stopping time, for any fixed a ∈ R.

Theorem 4.29 (Optional Stopping Theorem, Version 1). Let (S0, S1, . . .) be a random
walk, and let T be a stopping time such that P(T < ∞) = 1. Then ESn∧T = ES0 for all
n ≥ 0.

Proof. The proof is identical to that of Wald’s equation in Proposition 2.65. Let n ≥ 0
be an integer. Conditioned on T = m, we know that Sn∧T = X0 + · · · + Xn∧m. So,
E(Sn∧T |T = m) = E(X0 + · · · + Xn∧m) = ES0 + (n ∧m)EX1 = ES0, since EX1 = 0. So,
E(Sn∧T |T ) = ES0, and by Exercise 2.30,

ESn∧T = E(E(Sn∧T |T )) = ES0.

�
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Theorem 4.30 (Bounded Convergence Theorem). Let c ∈ R. Let Y0, Y1, . . . be a
sequence of random variables such that |Yn| ≤ c for all n ≥ 0. Assume that Y0, Y1, . . .
converges in probability to a random variable Z. Then limn→∞EYn = EZ.

Proof. Since Y0, Y1, . . . converges in probability to Z, it follows from Exercise 3.29 that
Y0, Y1, . . . converges in distribution to Z. So, since |Yn| ≤ c for all n ≥ 0, we conclude
that P(|Z| ≤ c) = 1.

Fix ε > 0. Let A := {|Yn − Z| > ε}. Then

EYn − EZ = E(Yn − Z)(1A + 1Ac) = E(Yn − Z)1A + E(Yn − Z)1Ac .

We bound each term separately. We have

|E(Yn − Z)1A| ≤ E |Yn − Z| 1A ≤ E(|Yn|+ |Z|)1A ≤ 2c · E1A = 2c ·P(A). (∗)
Also, since Ac = {|Yn − Z| ≤ ε}, we have

|E(Yn − Z)1Ac | ≤ E |Yn − Z| 1Ac ≤ εE1Ac ≤ ε.

So, by the triangle inequality, for any n ≥ 1,

|EYn − EZ| ≤ 2c ·P(A) + ε.

Letting n→∞ and using the definition of convergence in probability, we then get

lim
n→∞

|EYn − EZ| ≤ ε, ∀ ε > 0.

Since ε > 0 is arbitrary, we conclude that limn→∞ |EYn − EZ| = 0, as desired. �

Remark 4.31. Let P be the uniform probability law on [0, 1]. For any n ≥ 1, consider
the function fn : [0, 1] → R such that fn = n1[0,1/n]. Then Efn = 1, but fn converges
in probability to 0, so 1 = limn→∞Efn 6= E0 = 0. So, the boundedness assumption is
important in Theorem 4.30

Theorem 4.32 (Optional Stopping Theorem, Version 2). Let (S0, S1, . . .) be a random
walk, and let T be a stopping time such that P(T < ∞) = 1. Let c ∈ R. Assume that
|Sn∧T | ≤ c for all n ≥ 0. Then EST = ES0.

Proof. From Theorem 4.29, ESn∧T = ES0 for all n ≥ 0. Also, since P(T <∞) = 1, we have

P( lim
n→∞

Sn∧T = ST ) = 1.

That is, S0∧T , S1∧T , . . . converges almost surely to ST . By Exercise 3.32, S0∧T , S1∧T , . . .
converges in probability to ST . So, by the Bounded Convergence Theorem 4.30,

ES0 = lim
n→∞

ESn∧T = EST .

�

Example 4.33. Let X0 := x0 ∈ Z. Let X0, X1, . . . be independent random variables such
that P(Xn = 1) = P(Xn = −1) = 1/2 for all n ≥ 1. Let S0, S1, . . . be the corresponding
random walk started at x0. Let a, b ∈ Z such that a < x0 < b. Let T := min{n ≥ 1: Sn ∈
{a, b}}. Then T is a stopping time by Exercise 4.27. Also, |Sn∧T | ≤ max(|a| , |b|), so Theorem
4.32 applies. Let c := P(ST = a). Then

x0 = ES0 = EST = ac+ (1− c)b.
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Solving for c, we get

c =
x0 − b
a− b

.

(It can be shown that P(T <∞) = 1, but we will not do so here.)
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5. Appendix: Notation

Let n,m be a positive integers. Let A,B be sets contained in a universal set Ω.

R denotes the set of real numbers

∈ means “is an element of.” For example, 2 ∈ R is read as “2 is an element of R.”

∀ means “for all”

∃ means “there exists”

Rn = {(x1, x2, . . . , xn) : xi ∈ R ∀ 1 ≤ i ≤ n}
f : A→ B means f is a function with domain A and range B. For example,

f : R2 → R means that f is a function with domain R2 and range R
∅ denotes the empty set

A ⊆ B means ∀ a ∈ A, we have a ∈ B, so A is contained in B

ArB := {a ∈ A : a /∈ B}
Ac := Ω r A, the complement of A in Ω

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B

P denotes a probability law on Ω

P(A|B) denotes the conditional probability of A, given B.

Let a1, . . . , an be real numbers. Let n be a positive integer.
n∑
i=1

ai = a1 + a2 + · · ·+ an−1 + an.

n∏
i=1

ai = a1 · a2 · · · an−1 · an.

min(a1, a2) denotes the minimum of a1 and a2.

max(a1, a2) denotes the maximum of a1 and a2.

Let X be a discrete random variable on a sample space Ω, so that X : Ω → R. Let P be
a probability law on Ω. Let x ∈ R. Let A ⊆ Ω. Let Y be another discrete random variable

pX(x) = P(X = x) = P({ω ∈ Ω: X(ω) = x}), ∀x ∈ R
the Probability Mass Function (PMF) of X

E(X) denotes the expected value of X

var(X) = E(X − E(X))2, the variance of X

σX =
√

var(X), the standard deviation of X

X|A denotes the random variable X conditioned on the event A.

E(X|A) denotes the expected value of X conditioned on the event A.
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1A : Ω→ {0, 1}, denotes the indicator function of A, so that

1A(ω) =

{
1 , if ω ∈ A
0 , otherwise.

Let X, Y be a continuous random variables on a sample space Ω, so that X, Y : Ω → R.
Let −∞ ≤ a ≤ b ≤ ∞, −∞ ≤ c ≤ d ≤ ∞. Let P be a probability law on Ω. Let A ⊆ Ω.

fX : R→ [0,∞) denotes the Probability Density Function (PDF) of X, so

P(a ≤ X ≤ b) =

∫ b

a

fX(x)dx

fX,Y : R→ [0,∞) denotes the joint PDF of X and Y , so

P(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ d

c

∫ b

a

fX,Y (x, y)dxdy

fX|A denotes the Conditional PDF of X given A

E(X|A) denotes the expected value of X conditioned on the event A.

Let X be a random variable on a sample space Ω, so that X : Ω → R. Let P be a
probability law on Ω. Let x ∈ R.

FX(x) = P(X ≤ x) = P({ω ∈ Ω: X(ω) ≤ x})
the Cumulative Distibution Function (CDF) of X.
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