
170B Midterm 2 Solutions1

1. Question 1

Label the following statements as TRUE or FALSE. If the statement is true, explain your
reasoning. If the statement is false, provide a counterexample and explain your reasoning.

(a) Let X, Y be two random variables such that MX(t) = MY (t) for all t ∈ R (and such
that MX(t),MY (t) exist for all t ∈ R). (Recall that MX(t) = EetX for any t ∈ R). Then
X = Y .

FALSE. Let X be a standard Gaussian random variable, and let Y := −X. Then X 6= Y ,
but MX(t) = et

2/2 = MY (t) for all t ∈ R.
(b) Let f, g : R→ R. Recall that (f ∗ g)(t) =

∫∞
−∞ f(x)g(t− x)dx. Then

(f ∗ g)(t) = (g ∗ f)(t), ∀ t ∈ R.

TRUE. Changing variables u = t− x so that du = −dx,

(f ∗ g)(t) =

∫ ∞
−∞

f(x)g(t−x)dx = −
∫ −∞
∞

f(t−u)g(u)du =

∫ ∞
−∞

g(u)f(t−u)du = (g ∗f)(t).

(c) Let X1, X2, . . . be independent random variables. Let µ := EX1. Then, for any ε > 0,

lim
n→∞

P

( ∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ ε

)
= 0.

FALSE. We made no mention of being identically distributed. To get a counterexample,
let X1 = 0 and let Xn = 1 for all n ≥ 2. (Constant functions are automatically independent.)
Then X1+···+Xn

n
− µ = n−1

n
. So, if ε = 1/2 and n > 3, P

( ∣∣X1+···+Xn

n
− µ

∣∣ ≥ ε
)

= 1. That is,

limn→∞P
( ∣∣X1+···+Xn

n
− µ

∣∣ ≥ ε
)

= 1.

2. Question 2

Let X be a random variable such that EX = 0 and var(X) = 0. Show that

P(X = 0) = 1.

Solution 1. We argue by contradiction. Suppose there exists ε > 0 such that P(|X| >
ε) > 0. Then

var(X) = EX2 ≥ EX21{|X|>ε} ≥ ε2E1{|X|>ε} = ε2P(|X| > ε) > 0.

Having achieve a contradiction, we conclude that no such ε > 0 exists. That is, P(|X| >
ε) = 0 for every ε > 0. By continuity of the probability law, P(|X| > 0) = 0, so that
P(X = 0) = 1.

Solution 2. We argue by contradiction. Using the definition of EX2,

0 = var(X) = EX2 =

∫ ∞
0

P(X2 > t)dt.

The function of t, P(X2 > t), is a decreasing and nonnegative function whose integral is
zero. Therefore, P(X2 > t) = 0 for all t > 0. That is, P(X2 = 0) = 1.
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3. Question 3

Let X be a random variable that is uniformly distributed on [−1, 1].
For any t ∈ R, compute MX(t) = EetX .
Then, for any t ∈ R, compute φX(t) = EeitX , where i =

√
−1.

Solution.

MX(t) = EetX =
1

2

∫ 1

−1
etxdx = [(2t)−1etx]x=1

x=−1 = (2t)−1(et − e−t) = t−1 sinh(t).

φX(t) = EeitX =
1

2

∫ 1

−1
eitxdx = [(2it)−1eitx]x=1

x=−1 = (2it)−1(eit − e−it) = t−1 sin(t).

4. Question 4

Let X, Y be independent exponential random variables with parameter 1. So, X has
density

fX(x) :=

{
e−x , if x ≥ 0

0 , ifx < 0.

Find the density of X + Y .
Solution. From Proposition 2.60, if t > 0, then

fX+Y (t) =

∫ ∞
−∞

fX(x)fY (t− x)dx =

∫ t

0

e−xe−(t−x)dx =

∫ t

0

e−tdx = te−t

And if t < 0, then fX+Y (t) =
∫∞
−∞ fX(x)fY (t− x)dx = 0. In summary,

fX+Y (t) =

{
te−t , if t ≥ 0

0 , if t < 0.

5. Question 5

Suppose you flip a fair coin 80 times. During each coin flip, this coin has probability 1/2
of landing heads, and probability 1/2 of landing tails.

Let A be the event that you get more than 50 heads in total. Show that

P(A) ≤ 1

10
.

Solution 1. For any n ≥ 1, define Xn so that

Xn =

{
1 , if the nth coin flip is heads

0 , if the nth coin flip is tails.

By its definition EXn = 1/2 and var(Xn) = (1/2)(1/4) + (1/2)(1/4) = 1/4.
Let S := X1 + · · · + X80 be the number of heads that are flipped. Then ES = 40, and

var(S) = 80var(X1) = 20. Markov’s inequality says, for any t > 0

P(S > t) ≤ ES/t = 40/t.

This is not helpful. Instead, we use Chebyshev’s inequality. This says, for any t > 0,

P(|S − 40| > t) ≤ t−2var(S) = 20t−2.
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Choosing t = 10 shows that P(|S − 40| > 10) ≤ 1/5. Now, using symmetry of S (inter-
changing the roles of heads and tails),

P(|S − 40| > 10) = P(S < 30) + P(S > 50) = 2P(S > 50).

So,
2P(S > 50) = P(|S − 40| > 10) ≤ 1/5.

Solution 2. We use the notation of Solution 1, but instead of Chebyshev’s inequality, we
use the Chernoff bound. Since S is a sum of 80 independent identically distributed random
variables, Proposition 2.43 from the notes says

MS(t) = (MX1(t))
80, ∀ t ∈ R.

So, the Chernoff bound says, for any r, t > 0,

P(S > r) ≤ e−tr(MX1(t))
80 = e−tr((1/2)(1 + et))80 (∗).

Setting f(t) = e−rt(1 + et)80 and solving f ′(t) = 0 for t shows that t = log(5/3) minimizes
the quantity f(t). So, choosing r = 50 and t = log(5/3) in (∗) gives

P(S > 50) ≤ e−tr((1/2)(1 + 5/3))80 = (5/3)−50(4/3)80 ≤ 0.08 < 1/10.

Solution 3. (The following solution based on the Central Limit Theorem only received
partial credit, since it only approximately shows that P(A) < 1/10.) We use the notation
of Solution 1, but instead of Chebyshev’s inequality, we use the Central Limit Theorem.
Since X1, X2, . . . are independent identically distributed random variables with mean 1/2
and variance 1/4, the Central Limit Theorem implies that

lim
n→∞

P

(
X1 + · · ·+Xn − n/2√

(1/4)
√
n

> t

)
=

∫ ∞
t

e−x
2/2dx/

√
2π.

So, choosing n = 80 and t =
√

5, we have the approximation

P

(
X1 + · · ·+X80 − 40√

(1/4)
√

80
>
√

5

)
≈
∫ ∞
√
5

e−x
2/2dx/

√
2π.

Simplifying a bit,

P (S − 40 > 10) ≈
∫ ∞
√
5

e−x
2/2dx/

√
2π.

Using
√

5 > 2 and the approximation
∫∞
2
e−x

2/2dx/
√

2π ≈ .025, we have

P(S > 50) ≈
∫ ∞
√
5

e−x
2/2dx/

√
2π ≤

∫ ∞
2

e−x
2/2dx/

√
2π ≈ .025 < 1/10.
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