170B Midterm 2 Solutions¹

1. Question 1

Label the following statements as TRUE or FALSE. If the statement is true, explain your reasoning. If the statement is false, provide a counterexample and explain your reasoning.

(a) Let X, Y be two random variables such that $M_X(t) = M_Y(t)$ for all $t \in \mathbf{R}$ (and such that $M_X(t), M_Y(t)$ exist for all $t \in \mathbf{R}$). (Recall that $M_X(t) = \mathbf{E}e^{tX}$ for any $t \in \mathbf{R}$). Then X = Y.

FALSE. Let X be a standard Gaussian random variable, and let Y := -X. Then $X \neq Y$, but $M_X(t) = e^{t^2/2} = M_Y(t)$ for all $t \in \mathbf{R}$.

(b) Let $f, g: \mathbf{R} \to \mathbf{R}$. Recall that $(f * g)(t) = \int_{-\infty}^{\infty} f(x)g(t-x)dx$. Then

$$(f * g)(t) = (g * f)(t), \quad \forall t \in \mathbf{R}$$

TRUE. Changing variables u = t - x so that du = -dx,

$$(f*g)(t) = \int_{-\infty}^{\infty} f(x)g(t-x)dx = -\int_{\infty}^{-\infty} f(t-u)g(u)du = \int_{-\infty}^{\infty} g(u)f(t-u)du = (g*f)(t).$$

(c) Let X_1, X_2, \ldots be independent random variables. Let $\mu := \mathbf{E}X_1$. Then, for any $\varepsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}\left(\left| \frac{X_1 + \dots + X_n}{n} - \mu \right| \ge \varepsilon \right) = 0.$$

FALSE. We made no mention of being identically distributed. To get a counterexample, let $X_1=0$ and let $X_n=1$ for all $n\geq 2$. (Constant functions are automatically independent.) Then $\frac{X_1+\dots+X_n}{n}-\mu=\frac{n-1}{n}$. So, if $\varepsilon=1/2$ and n>3, $\mathbf{P}\left(\left|\frac{X_1+\dots+X_n}{n}-\mu\right|\geq\varepsilon\right)=1$. That is, $\lim_{n\to\infty}\mathbf{P}\left(\left|\frac{X_1+\dots+X_n}{n}-\mu\right|\geq\varepsilon\right)=1$.

2. Question 2

Let X be a random variable such that $\mathbf{E}X = 0$ and $\mathrm{var}(X) = 0$. Show that

$$P(X = 0) = 1.$$

Solution 1. We argue by contradiction. Suppose there exists $\varepsilon > 0$ such that $\mathbf{P}(|X| > \varepsilon) > 0$. Then

$$\operatorname{var}(X) = \mathbf{E}X^2 \ge \mathbf{E}X^2 \mathbf{1}_{\{|X| > \varepsilon\}} \ge \varepsilon^2 \mathbf{E} \mathbf{1}_{\{|X| > \varepsilon\}} = \varepsilon^2 \mathbf{P}(|X| > \varepsilon) > 0.$$

Having achieve a contradiction, we conclude that no such $\varepsilon > 0$ exists. That is, $\mathbf{P}(|X| > \varepsilon) = 0$ for every $\varepsilon > 0$. By continuity of the probability law, $\mathbf{P}(|X| > 0) = 0$, so that $\mathbf{P}(X = 0) = 1$.

Solution 2. We argue by contradiction. Using the definition of $\mathbf{E}X^2$,

$$0 = \text{var}(X) = \mathbf{E}X^2 = \int_0^\infty \mathbf{P}(X^2 > t)dt.$$

The function of t, $\mathbf{P}(X^2 > t)$, is a decreasing and nonnegative function whose integral is zero. Therefore, $\mathbf{P}(X^2 > t) = 0$ for all t > 0. That is, $\mathbf{P}(X^2 = 0) = 1$.

¹March 6, 2017, © 2017 Steven Heilman, All Rights Reserved.

3. Question 3

Let X be a random variable that is uniformly distributed on [-1, 1].

For any $t \in \mathbf{R}$, compute $M_X(t) = \mathbf{E}e^{tX}$.

Then, for any $t \in \mathbf{R}$, compute $\phi_X(t) = \mathbf{E}e^{itX}$, where $i = \sqrt{-1}$. Solution.

$$M_X(t) = \mathbf{E}e^{tX} = \frac{1}{2} \int_{-1}^1 e^{tx} dx = [(2t)^{-1}e^{tx}]_{x=-1}^{x=1} = (2t)^{-1}(e^t - e^{-t}) = t^{-1}\sinh(t).$$

$$\phi_X(t) = \mathbf{E}e^{itX} = \frac{1}{2} \int_{-1}^1 e^{itx} dx = [(2it)^{-1}e^{itx}]_{x=-1}^{x=1} = (2it)^{-1}(e^{it} - e^{-it}) = t^{-1}\sin(t).$$

4. Question 4

Let X, Y be independent exponential random variables with parameter 1. So, X has density

$$f_X(x) := \begin{cases} e^{-x} & \text{, if } x \ge 0\\ 0 & \text{, if } x < 0. \end{cases}$$

Find the density of X + Y.

Solution. From Proposition 2.60, if t > 0, then

$$f_{X+Y}(t) = \int_{-\infty}^{\infty} f_X(x) f_Y(t-x) dx = \int_{0}^{t} e^{-x} e^{-(t-x)} dx = \int_{0}^{t} e^{-t} dx = t e^{-t}$$

And if t < 0, then $f_{X+Y}(t) = \int_{-\infty}^{\infty} f_X(x) f_Y(t-x) dx = 0$. In summary,

$$f_{X+Y}(t) = \begin{cases} te^{-t} & \text{, if } t \ge 0\\ 0 & \text{, if } t < 0. \end{cases}$$

5. Question 5

Suppose you flip a fair coin 80 times. During each coin flip, this coin has probability 1/2 of landing heads, and probability 1/2 of landing tails.

Let A be the event that you get more than 50 heads in total. Show that

$$\mathbf{P}(A) \le \frac{1}{10}.$$

Solution 1. For any $n \geq 1$, define X_n so that

$$X_n = \begin{cases} 1 & \text{, if the } n^{th} \text{ coin flip is heads} \\ 0 & \text{, if the } n^{th} \text{ coin flip is tails.} \end{cases}$$

By its definition $\mathbf{E}X_n = 1/2$ and $\text{var}(X_n) = (1/2)(1/4) + (1/2)(1/4) = 1/4$.

Let $S := X_1 + \cdots + X_{80}$ be the number of heads that are flipped. Then $\mathbf{E}S = 40$, and $var(S) = 80var(X_1) = 20$. Markov's inequality says, for any t > 0

$$\mathbf{P}(S > t) \le \mathbf{E}S/t = 40/t.$$

This is not helpful. Instead, we use Chebyshev's inequality. This says, for any t > 0,

$$\mathbf{P}(|S - 40| > t) \le t^{-2} \text{var}(S) = 20t^{-2}.$$

Choosing t = 10 shows that $\mathbf{P}(|S - 40| > 10) \le 1/5$. Now, using symmetry of S (interchanging the roles of heads and tails),

$$\mathbf{P}(|S - 40| > 10) = \mathbf{P}(S < 30) + \mathbf{P}(S > 50) = 2\mathbf{P}(S > 50).$$

So,

$$2\mathbf{P}(S > 50) = \mathbf{P}(|S - 40| > 10) < 1/5.$$

Solution 2. We use the notation of Solution 1, but instead of Chebyshev's inequality, we use the Chernoff bound. Since S is a sum of 80 independent identically distributed random variables, Proposition 2.43 from the notes says

$$M_S(t) = (M_{X_1}(t))^{80}, \quad \forall t \in \mathbf{R}$$

So, the Chernoff bound says, for any r, t > 0,

$$\mathbf{P}(S > r) \le e^{-tr} (M_{X_1}(t))^{80} = e^{-tr} ((1/2)(1 + e^t))^{80} \tag{*}$$

Setting $f(t) = e^{-rt}(1 + e^t)^{80}$ and solving f'(t) = 0 for t shows that $t = \log(5/3)$ minimizes the quantity f(t). So, choosing t = 50 and $t = \log(5/3)$ in (*) gives

$$\mathbf{P}(S > 50) \le e^{-tr}((1/2)(1+5/3))^{80} = (5/3)^{-50}(4/3)^{80} \le 0.08 < 1/10.$$

Solution 3. (The following solution based on the Central Limit Theorem only received partial credit, since it only approximately shows that $\mathbf{P}(A) < 1/10$.) We use the notation of Solution 1, but instead of Chebyshev's inequality, we use the Central Limit Theorem. Since X_1, X_2, \ldots are independent identically distributed random variables with mean 1/2 and variance 1/4, the Central Limit Theorem implies that

$$\lim_{n\to\infty} \mathbf{P}\left(\frac{X_1+\cdots+X_n-n/2}{\sqrt{(1/4)}\sqrt{n}}>t\right) = \int_t^\infty e^{-x^2/2} dx/\sqrt{2\pi}.$$

So, choosing n = 80 and $t = \sqrt{5}$, we have the approximation

$$\mathbf{P}\left(\frac{X_1 + \dots + X_{80} - 40}{\sqrt{(1/4)}\sqrt{80}} > \sqrt{5}\right) \approx \int_{\sqrt{5}}^{\infty} e^{-x^2/2} dx / \sqrt{2\pi}.$$

Simplifying a bit,

$$\mathbf{P}(S - 40 > 10) \approx \int_{\sqrt{5}}^{\infty} e^{-x^2/2} dx / \sqrt{2\pi}.$$

Using $\sqrt{5} > 2$ and the approximation $\int_2^\infty e^{-x^2/2} dx/\sqrt{2\pi} \approx .025$, we have

$$\mathbf{P}(S > 50) \approx \int_{\sqrt{5}}^{\infty} e^{-x^2/2} dx / \sqrt{2\pi} \le \int_{2}^{\infty} e^{-x^2/2} dx / \sqrt{2\pi} \approx .025 < 1/10.$$