170B Midterm 2 Solutions¹

1. Question 1

Label the following statements as TRUE or FALSE. If the statement is true, explain your reasoning. If the statement is false, provide a counterexample and explain your reasoning.

(a) Let X be a random variable. Let $i := \sqrt{-1}$. Then $|\mathbf{E}e^{itX}| \leq 1$ for any $t \in \mathbf{R}$.

TRUE. $\left| \mathbf{E}e^{itX} \right| \le \mathbf{E} \left| e^{itX} \right| = 1$, using $\left| e^{itx} \right| = \sqrt{\cos^2(tx) + \sin^2(tx)} = 1$ for any $t, x \in \mathbf{R}$.

(b) Suppose I am flipping a coin over and over again. For any positive integer n, let A_n be the event that the n^{th} coin flip is heads. Suppose $\mathbf{P}(A_n) = n^{-2}$, for any positive integer n. Let B be the event that infinitely many of the coin flips are heads. Then $\mathbf{P}(B) = 0$.

TRUE. This follows from the Borel-Cantelli Lemma, since $\sum_{n=1}^{\infty} \mathbf{P}(A_n) = \sum_{n=1}^{\infty} n^{-2} < \infty$, so $\mathbf{P}(B) = 0$.

(c) Let X_1, X_2, \ldots be independent random variables. Let $\mu := \mathbf{E}X_1$ and let $\sigma := \operatorname{var}(X_1)$. Assume $0 < \sigma < \infty$ and $-\infty < \mu < \infty$. Then, for any $t \in \mathbf{R}$,

$$\lim_{n \to \infty} \mathbf{P}\left(\frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}} \le t\right) = \int_{-\infty}^t e^{-x^2/2} \frac{dx}{\sqrt{2\pi}}.$$

FALSE. We made no mention of being identically distributed. To get a counterexample, let X_1 so that $\mathbf{P}(X_1=1)=\mathbf{P}(X_1=-1)=1/2$ and let $X_n=0$ for all $n\geq 2$. (Constant functions are automatically independent of other random variables.) Then $\mu=0, \sigma=1$ and $\frac{X_1+\cdots+X_n-n\mu}{\sigma\sqrt{n}}=\frac{X_1}{\sqrt{n}}$. So,

$$\lim_{n \to \infty} \mathbf{P}\left(\frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}} \le t\right) = \begin{cases} 0 & \text{if } t < 0\\ 1 & \text{if } t \ge 0. \end{cases}$$

Moreover, the Central Limit Theorem should divide by the square root of the variance, not the variance, so this statement is false in two ways.

2. Question 2

Let X_1, X_2, \ldots be independent, identically distributed random variables such that $\mathbf{E}|X_1| < \infty$ and $\operatorname{var}(X_1) < \infty$. For any $n \geq 1$, define

$$Y_n := \frac{1}{n} \sum_{i=1}^n X_i^2.$$

Show that Y_1, Y_2, \ldots converges in probability. Express the limit in terms of $\mathbf{E}X_1$ and $\mathrm{var}(X_1)$. Solution. Note that X_1^2, X_2^2, \ldots are independent, identically distributed random variables (since X_1, X_2, \ldots are as well). (For example, $\mathbf{P}(X_i^2 \leq t) = \mathbf{P}(-\sqrt{t} \leq X_i \leq \sqrt{t}) = \mathbf{P}(-\sqrt{t} \leq X_i \leq \sqrt{t}) = \mathbf{P}(-\sqrt{t} \leq X_i \leq \sqrt{t}) = \mathbf{P}(X_1^2 \leq t)$ for any $t \geq 0$, $i \geq 1$, where the middle inequality follows since X_1, X_2, \ldots are identically distributed.) So, the Weak Law of Large Numbers says that Y_1, Y_2, \ldots converges in probability to its mean. In this case, we have for any $n \geq 1$,

$$\mathbf{E}Y_n = \frac{n}{n}\mathbf{E}X_1^2 = \mathbf{E}X_1^2 = \mathbf{E}X_1^2 - (\mathbf{E}X_1)^2 + (\mathbf{E}X_1)^2 = \operatorname{var}(X_1) + (\mathbf{E}X_1)^2.$$

So, Y_1, Y_2, \ldots converges in probability to the constant random variable $var(X_1) + (\mathbf{E}X_1)^2$.

¹November 21, 2017, © 2017 Steven Heilman, All Rights Reserved.

3. Question 3

Let X be a random variable. Let X_1, X_2, \ldots be a sequence of random variables such that

$$\lim_{n\to\infty} \mathbf{E} \left| X_n - X \right|^4 = 0.$$

Prove that X_1, X_2, \ldots converges in probability to X.

Solution. Let $\varepsilon > 0$. From Markov's Inequality,

$$0 \le \mathbf{P}(|X_n - X| > \varepsilon) = \mathbf{P}(|X_n - X|^4 > \varepsilon^4) \le \varepsilon^{-4} \mathbf{E} |X_n - X|^4.$$

So, letting $n \to \infty$ and using our assumption, we get $0 \le \lim_{n \to \infty} \mathbf{P}(|X_n - X| > \varepsilon) \le 0$. That is, $\lim_{n \to \infty} \mathbf{P}(|X_n - X| > \varepsilon) = 0$. Since this holds for any $\varepsilon > 0$, we conclude that X_1, X_2, \ldots converges in probability to X.

4. Question 4

Let $f, g: \mathbf{R} \to \mathbf{R}$. Recall that $(f * g)(t) = \int_{-\infty}^{\infty} f(x)g(t-x)dx$. Show that, for any $t \in \mathbf{R}$, (f * g)(t) = (g * f)(t).

Solution.

$$(f*g)(t) = \int_{-\infty}^{\infty} f(x)g(t-x)dx, \quad \text{, by the definition of convolution}$$

$$= -\int_{-\infty}^{\infty} f(t-u)g(u)du, \quad \text{, changing variables with } u = t-x, \text{ so } du = -dx$$

$$= \int_{-\infty}^{\infty} g(u)f(t-u)du, \quad \text{, by a property of integrals}$$

$$= (g*f)(t), \quad \text{, by the definition of convolution}$$

5. Question 5

Let X, Y be independent random variables. Suppose X is uniformly distributed in [0, 1]. And suppose Y has density given by

$$f_Y(t) = \begin{cases} 0 & \text{, if } t < 0 \\ t & \text{, if } 0 \le t \le 1 \\ 2 - t & \text{, if } 1 \le t \le 2 \\ 0 & \text{, if } t > 2. \end{cases}$$

Find the density of X + Y.

Solution 1. From Proposition 2.60 in the notes, $f_{X+Y} = f_X * f_Y$. So, we compute $f_X * f_Y$, by breaking into several cases. Using that $f_Y(t-x) = 0$ except when $0 \le t-x \le 2$, i.e. when $0 \ge x-t \ge -2$, i.e. when $t-2 \le x \le t$, we have $f_X(x)f_Y(t-x) = 0$ except when

 $0 \le x \le 1$ and $t - 2 \le x \le t$.

$$f_X * f_Y(t) = \int_{-\infty}^{\infty} f_X(x) f_Y(t-x) dx \qquad \text{, by the definition of convolution}$$

$$= \int_{x=0}^{x=1} f_Y(t-x) dx \qquad \text{, by the definition of } f_X$$

$$= \begin{cases} \int_{x=0}^{x=1} 0 dx & \text{, if } t < 0 \\ \int_{x=0}^{x=t} f_Y(t-x) dx & \text{, if } 0 \le t \le 1 \\ \int_{x=0}^{x=1} f_Y(t-x) dx & \text{, if } 1 \le t \le 2 \\ \int_{x=t-2}^{x=1} f_Y(t-x) dx & \text{, if } 2 \le t \le 3 \\ 0 & \text{, if } t > 3. \end{cases}$$

So, using the definition of f_Y , we get

Solution 2. From Proposition 2.60 in the notes, $f_{X+Y} = f_X * f_Y$. So, we compute $f_X * f_Y$, by breaking into several cases. From the previous problem, $f_X * f_Y = f_Y * f_X$, so we compute $f_Y * f_X$. Note that $f_X(t-x) = 1$ when $0 \le t-x \le 1$, and $f_X(t-x) = 0$ otherwise. So, $f_X(t-x)=1$ when $0 \ge x-t \ge -1$, i.e. when $-1+t \le x \le t$. These inequalities constrain the integral defining $f_Y * f_X(t)$ as follows.

$$f_Y * f_X(t) = \int_{-\infty}^{\infty} f_Y(x) f_X(t-x) dx$$
, by the definition of convolution
$$= \int_{x=t-1}^{x=t} f_Y(x) dx$$
, by the definition of f_X

Substituting now the (piecewise) definition of f_2

$$f_Y * f_X(t) = \begin{cases} \int_{x=t-1}^{x=t} 0 dx & \text{, if } t < 0 \\ \int_{x=0}^{x=t} x dx & \text{, if } 0 \le t \le 1 \\ \int_{x=t-1}^{x=t} x dx + \int_{x=1}^{x=t} (2-x) dx & \text{, if } 1 \le t \le 2 \\ \int_{x=t-1}^{x=2} (2-x) dx & \text{, if } t \ge t \le 3 \\ 0 & \text{, if } t > 3. \end{cases}$$

$$= \begin{cases} 0 & \text{, if } t < 0 \\ t^2/2 & \text{, if } 0 \le t \le 1 \\ (1-(t-1)^2)/2 + 2(t-1) - (t^2-1)/2 & \text{, if } 1 \le t \le 2 \\ 2(2-(t-1)) - (4-(t-1)^2)/2 & \text{, if } 2 \le t \le 3 \\ 0 & \text{, if } t > 3. \end{cases}$$

$$= \begin{cases} 0 & \text{, if } t < 0 \\ t^2/2 & \text{, if } 0 \le t \le 1 \\ -t^2 + 3t - 3/2 & \text{, if } 1 \le t \le 2 \\ t^2/2 - 3t + 9/2 & \text{, if } 2 \le t \le 3 \\ 0 & \text{, if } t > 3. \end{cases}$$