
Probability Theory 2 Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due October 19, in the discussion section.

Homework 2

Exercise 1. Let X, Y be random variables with EX2 < ∞ and EY 2 < ∞. Prove the
Cauchy-Schwarz inequality:

E(XY ) ≤ (EX2)1/2(EY 2)1/2.

Then, deduce the following when X, Y both have finite variance:

|cov(X, Y )| ≤ (var(X))1/2(var(Y ))1/2.

(Hint: in the case that EY 2 > 0, expand out the product E(X − YE(XY )/EY 2)2.)

Exercise 2. Let X be a binomial random variable with parameters n = 2 and p = 1/2. So,
P(X = 0) = 1/4, P(X = 1) = 1/2 and P(X = 2) = 1/4. And X satisfies EX = 1 and
EX2 = 3/2.

Let Y be a geometric random variable with parameter 1/2. So, for any positive integer k,
P(Y = k) = 2−k. And Y satisfies EY = 2 and EY 2 = 6.

Let Z be a Poisson random variable with parameter 1. So, for any nonnegative integer k,
P(Z = k) = 1

e
1
k!

. And Z satisfies EZ = 1 and EZ2 = 2.

Let W be a discrete random variable such that P(W = 0) = 1/2 and P(W = 4) = 1/2, so
that EW = 2 and EW 2 = 8.

Assume that X, Y, Z and W are all independent. Compute

var(X + Y + Z + W ).

Exercise 3. Let X1, . . . , Xn be random variables with finite variance. Define an n×n matrix
A such that Aij = cov(Xi, Xj) for any 1 ≤ i, j ≤ n. Show that the matrix A is positive
semidefinite. That is, show that for any y = (y1, . . . , yn) ∈ Rn, we have

yTAy =
n∑

i,j=1

yiyjAij ≥ 0.

Exercise 4 (Another Total Expectation Theorem). Using the definition of E(X|Y ), prove
the following theorem, which can be considered as a version of a Total Expectation Theorem:

E(E(X|Y )) = E(X).
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Exercise 5. If X is a random variable, and if f(t) := E(X − t)2, t ∈ R, then the function
f : R→ R is uniquely minimized when t = EX. This follows e.g. by writing

E(X − t)2 = E(X − E(X) + E(X)− t)2

= E(X − E(X))2 + (EX − t)2 + 2E[(X − EX)(EX − t)] = E(X − E(X))2 + (EX − t)2.

So, the choice t = EX is the smallest, and it recovers the definition of variance, since
var(X) = E(X − EX)2.

A similar minimizing property holds for conditional expectation. Let h : R→ R. Show that
the quantity E(X−h(Y ))2 is minimized among all functions h when h(Y ) = E(X|Y ). (Hint:
Exercise 4 might be helpful.)

Exercise 6. Toys are stored in small boxes, small boxes are stored in large crates, and
large crates comprise a shipment. Let Xi be the number of toys in small box i ∈ {1, 2, . . .}.
Assume that X1, X2, . . . all have the same CDF. Let Yi be the number of small boxes in large
crate i ∈ {1, 2, . . .}. Assume that Y1, Y2, . . . all have the same CDF. Let Z be the number
of large crates in the shipment. Assume that X1, X2, . . . , Y1, Y2, . . . , Z are all independent,
nonnegative integer-valued random variables, each with expected value 10 and variance 16.

Compute the expected value and variance of the number of toys in the shipment.

Exercise 7. Let 0 < p < 1. Suppose you have a biased coin which has a probability p of
landing heads, and probability 1 − p of landing tails, each time it is flipped. Also, suppose
you have a fair six-sided die (so each face of the cube has a distinct label from the set
{1, 2, 3, 4, 5, 6}, and each time you roll the die, any face of the cube is rolled with equal
probability.)

Let N be the number of coin flips you need to do until the first head appears. Now, roll the
fair die N times. Let S be the sum of the results of the N rolls of the die. Compute ES and
var(S).

Exercise 8. Let f : R→ R be twice differentiable function. Assume that f is convex. That
is, f ′′(x) ≥ 0, or equivalently, the graph of f lies above any of its tangent lines. That is, for
any x, y ∈ R,

f(x) ≥ f(y) + f ′(y)(x− y).

(In Calculus class, you may have referred to these functions as “concave up.”) Let X be a
discrete random variable. By setting y = E(X), prove Jensen’s inequality:

Ef(X) ≥ f(E(X)).

In particular, choosing f(x) = x2, we have E(X2) ≥ (E(X))2.


