
Probability Theory 2 Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due November 30, in the discussion section.

Homework 7

Exercise 1. Let X1, X2, . . . be independent identically distributed random variables with
P(X1 = 1) = P(X1 = −1) = 1/2. For any n ≥ 1, define

Sn :=
X1 + · · ·+Xn√

n
.

The Central Limit Theorem says that Sn converges in distribution to a standard Gaussian
random variable. We show that Sn does not converge in probability to any random variable.
The intuition here is that if Sn did converge in probability to a random variable Z, then

when n is large, Sn is close to Z, Yn :=
√
2S2n−Sn√

2−1 is close to Z, but Sn and Yn are independent.

And this cannot happen.

Proceed as follows. Assume that Sn converges in probability to Z.

• Let ε > 0. For n very large (depending on ε), we have P(|Sn − Z| > ε) < ε and
P(|Yn − Z| > ε) < ε.
• Show that P(Sn > 0, Yn > 0) is around 1/4, using independence and the Central

Limit Theorem.
• From the first item, show P(Sn > 0|Z > ε) > 1 − ε, P(Yn > 0|Z > ε) > 1 − ε, so
P(Sn > 0, Yn > 0|Z > ε) > 1− 2ε.
• Without loss of generality, for ε small, we have P(Z > ε) > 4/9.
• By conditioning on Z > ε, show that P(Sn > 0, Yn > 0) is at least 3/8, when n is

large.

Exercise 2. Let X1, X2, . . . be random variables that converge almost surely to a random
variable X. That is,

P( lim
n→∞

Xn = X) = 1.

Show that X1, X2, . . . converges in probability to X in the following way.

• For any ε > 0 and for any positive integer n, let

An,ε :=
∞⋃

m=n

{ω ∈ Ω: |Xm(ω)−X(ω)| > ε}.

Show that An,ε ⊇ An+1,ε ⊇ An+2,ε ⊇ · · · .
• Show that P(∩∞n=1An,ε) = 0.
• Using Continuity of the Probability Law, deduce that limn→∞P(An,ε) = 0.
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Now, show that the converse is false. That is, find random variables X1, X2, . . . that converge
in probability to X, but where X1, X2, . . . do not converge to X almost surely.

Exercise 3. Using the Central Limit Theorem, prove the Weak Law of Large Numbers.

Exercise 4. Let m ≥ 1. Show by integral comparison of infinite series that
∞∑

j=m

1

j2
≤ 10

m
.

Exercise 5 (Renewal Theory). Let t1, t2, . . . be positive, independent identically distributed
random variables. Let µ ∈ R. Assume Et1 = µ. For any positive integer j, we interpret
tj as the lifetime of the jth lightbulb (before burning out, at which point it is replaced by
the (j + 1)st lightbulb). For any n ≥ 1, let Tn := t1 + · · · + tn be the total lifetime of the
first n lightbulbs. For any positive integer t, let Nt := min{n ≥ 1: Tn ≥ t} be the number
of lightbulbs that have been used up until time t. Show that Nt/t converges almost surely
to 1/µ as t → ∞. (Hint: by definition of Nt, we have TNt−1 < t ≤ TNt . Now divide the
inequalities by Nt and apply the Strong Law.)

Exercise 6 (Playing Monopoly Forever). Let t1, t2, . . . be independent random variables, all
of which are uniform on {1, 2, 3, 4, 5, 6}. For any positive integer j, we think of tj as the
result of rolling a single fair six-sided die. For any n ≥ 1, let Tn = t1 + · · · + tn be the
total number of spaces that have been moved after the nth roll. (We think of each roll as
the amount of moves forward of a game piece on a very large Monopoly game board.) For
any positive integer t, let Nt := min{n ≥ 1: Tn ≥ t} be the number of rolls needed to get
t spaces away from the start. Using Exercise 5, show that Nt/t converges almost surely to
2/7 as t→∞.

Exercise 7 (Random Numbers are Normal). Let X be a uniformly distributed random
variable on (0, 1). Let X1 be the first digit in the decimal expansion of X. Let X2 be the
second digit in the decimal expansion of X. And so on.

• Show that the random variables X1, X2, . . . are uniform on {0, 1, 2, . . . , 9} and inde-
pendent.
• Fix m ∈ {0, 1, 2, . . . , 9}. Using the Strong Law of Large Numbers, show that with

probability one, the fraction of appearances of the number m in the first n digits of
X converges to 1/10 as n→∞.

(Optional): Show that for any ordered finite set of digits of length k, the fraction of appear-
ances of this set of digits in the first n digits of X converges to 10−k as n→∞. (You already
proved the case k = 1 above.) That is, a randomly chosen number in (0, 1) is normal. On
the other hand, if we just pick some number such that

√
2 − 1, then it may not be easy to

say whether or not that number is normal.

(As an optional exercise, try to explicitly write down a normal number. This may not be so
easy to do, even though a random number in (0, 1) satisfies this property!)

Exercise 8. Let X1, X2, . . . be random variables with mean zero and variance one. The
Strong Law of Large Numbers says that 1

n
(X1 + · · · + Xn) converges almost surely to zero.

The Central Limit Theorem says that 1√
n
(X1 + · · · + Xn) converges in distribution to a
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standard Gaussian random variable. But what happens if we divide by some other power of
n? This Exercise gives a partial answer to this question.

Let ε > 0. Show that
X1 + · · ·+Xn

n1/2(log n)(1/2)+ε

converges to zero almost surely as n → ∞. (Hint: Re-do the proof of the Strong Law of
Large Numbers, but divide by n1/2(log n)(1/2)+ε instead of n.)

Exercise 9. Let A,B be events in a sample space. Let C1, . . . , Cn be events such that
Ci ∩ Cj = ∅ for any i, j ∈ {1, . . . , n}, and such that ∪ni=1Ci = B. Show:

P(A|B) =
n∑

i=1

P(A|B, Ci)P(Ci|B).

(Hint: consider using the Total Probability Theorem and that P(·|B) is a probability law.)


