170B Final Solutions, Winter 2017"

1. QUESTION 1

True/False
(a) Let Ay, As, ... be subsets of a sample space 2. Let P denote a probability law on €.

Then
Z P<An) = P (USLO:IAn)
n=1

FALSE. Let A, = Ay = Q and let ) = A3 = Ay = ---. Then the left sideis 1+ 1 = 2, but
the right side is P(Q2) = 1.
(b) Let X be a continuous random variable. Let fx be the density function of X. Then,
for any t € R, 4P(X < t) exists, and
d
—P(X <t)= t).
7 (X <t) = fx(t)

FALSE. Let fx(t) :=1 for any t € [0, 1] and let fx(t) := 0 otherwise. Then

0 ,ift<0
PX<t)y=<t ,if0<t<1.
1L ift>1

In particular, 4P (X < t) does not exist at t = 0.

(c) Let X be a random variable such that EX* < oco. Then EX? < oo.

TRUE. By Jensen’s inequality, (EX?)? < EX? < oo.

(d) Let X be a random variable such that var(X) = 2. Then P(| X —EX| > 2) <1/2.

TRUE. By Chebyshev’s inequality,
P(|X —EX|>2) <var(X)/4=1/2.
(e) Let i = v/—1. Let Xj, Xy, ... be random variables such that, for any ¢ € R,

. ; _ 42
lim EeXn = ¢7t/2,
n—oo
Then Xy, Xs, ... converges in distribution to a standard Gaussian random variable.

TRUE. This is basically how we proved the Central Limit Theorem (Theorem 3.21 in the
notes). This assertion follows by the Levy Continuity Theorem, and using that Ee?? = e /2
for all ¢ € R where Z is a standard Gaussian random variable (Prop. 2.55 in the notes).

(f) Let X be a standard Gaussian random variable (so that P(X <t) = ffoo e~ 2dx /2w
for any ¢t € R.) Then

1
P(X>t)<¥, vt >0

TRUE. This follows from Markov’s inequality. First, note that E |X| =2 [° ze~"/ 2\?—2% =
/2/m < 1. So, using Markov’s inequality,
E|X|

1
P(X>t)§P(|X|>t)§T<;.
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(g) Let {N(s)}s>0 be a Poisson Process with parameter A = 1. Then
E((V(4) - N(2))N(2)) = 4.

TRUE. E(N(4) — N(2))N(2)) = E(N(4) — N(2)))EN(2) = [EN(2)]? = 22 = 4. Here we
used the independent increment property (that N(4)— N(2) is independent of N(2)—N(0) =
N(2)), and that N(2) is a Poisson random variable with parameter A - 2 = 2, so that
EN(2) =2.

(h) If a sequence of random variables X, X5, ... converges in distribution to a random

variable X, then X;, X5, ... converges almost surely to X.
FALSE. Let 2 = [0, 1]. For any n > 1, let

=y Jifwe0,1/2)
Xn(w) = {(_1)n+1  ifw e [1/2,1].

Then X;, X5, ... all have the same distribution, so they converge in distribution, but they
do not converge almost surely, since lim,,_,~, X,,(w) does not exist for every w € [0, 1].

(i) If a sequence of random variables X7, X, ... converges in distribution to a random
variable X, then

lim EX,, = EX

n—o0

FALSE. Let 2 = [0, 1]. For any n > 1, let

_Jn L ifwe0,1/n]
Xnlw) = {0 Jifw e (1/n, 1],

Then EX,, = 1 for all n > 1, but X, Xs,... converges in probability to 0 as n — oo, as
shown in class. So, lim, .. EX,, =1# 0=EX.

2. (QUESTION 2

Let A, B be events in a sample space. Let C1, ..., C, be events such that C; N C; = 0 for
any i,7 € {1,...,n}, and such that U ,C; = B. Show:

P(A|B) = ZP(A|Ba Ci)P(Ci|B).
i=1
Solution. From the Total Probability Theorem applied to P(-|B), and then using the defini-
tion of conditional probability,

P(A|B) = ZP ANC|B) = Z P(Agé)ﬂ Cy)

*Z A;ﬁgC) (5(2)@) :ZP(A|B, C,)P(Ci|B).




3. QUESTION 3

Let X be a random variable that is uniformly distributed in [0, 1]. Let Y := 4X (1 — X).
Find fy, the density function of Y.

Solution. Using the quadratic formula, the function f(t) = 4¢(1 — t) takes the value
c € 10,1] when z = (1/2) £ (1/2)y/1 — c. So, if z € [0, 1], we have

PAUX(1—X)<z)=P(X €[0,1/2— (1/2vT— 2] or X € [1/2+ (1/2)v1 —z,1])
=(1/2) -~ (1/2VT—z+1-(1/2+(1/2VI—2)=1-V1—=.

We differentiate the CDF to find the density. Then if 0 < 2 < 1, we have

fY(IL“) = i — \/E) = %(1 _ x)_1/2,

1
dx(

4. QUESTION 4
Let X,Y be independent random variables. Suppose X has moment generating function
Mx(t)=1+1t°  VteR.
Suppose Y has moment generating function

My(t)=1+t*  VteR.

Compute E [(X - Y)Q} :

Solution 1. Since X,Y are independent, we have Mx vy (t) = Mx(t)My(t) = (1 +t°)(1 +
t?) = 1+ 12 + 5+ ¢8 for all + € R by Proposition 2.43 in the notes. As mentioned in the
notes,

d2

E(X+Y)* = 2

— im0 Mx 1y (2).

Therefore,

d2
E(X +Y)? =~ 5l o(14+ 82 410+ 4) = 24 301" + 56¢%) o = 2.

Solution 2. As mentioned in the notes,
d
EX = oM (t) = plico(l + ) = (60 = 0.

d? d?
EX? = olimoMy(t) = Slimo(1+1) = 30t = 0.

dt?

d
EY = dt’t —oMy (t) = %‘t:()(l + t2) = [2t];=o = 0.
d? d? )
EY? dt2 |t OMY( ) @L&:o(l +t ) = 2.

Therefore, using also that X,Y are independent,
E(X+Y) =EX’+EY*+2E(XY)=0+2+ (EX)(EY)=2+0-0=2.



5. QUESTION 5

Using the Central Limit Theorem, prove the Weak Law of Large Numbers.
(You may assume that X, Xs, ... are independent, identically distributed random vari-
ables such that E|X;| < oo and 0 < var(X;) < oc0.)
>Q

Solution. Let € > 0. Let o := y/var(X;). Then
- \/ﬁe)

quu~~+xL >Q—P<
n
g

n
(‘X1+~~+Xn—nEX1
=P
>N).

-EX;

ov/n

So, for any N > 0, there exists m > 0 such that, for all n > m, we have
Xi+--+X Xi+--+ X, —nEX
P(‘ o+ X, >€)§P( 1+ + X, —nEX,

n o\/n
Letting n — oo and using the Central Limit Theorem,
X+ 4+ X, )
> €

n
< limP(‘

n—oo

& 2 dx
=2 e’ /2—.
/N V2T

The left side does not depend on N, so we let N — oo to conclude that

X, ++ X, o0 d
(’ 1t >5> < lim 2/ e_IQ/z—x =0.
N—oc0 N \/27‘{'

n
6. QUESTION 6

—-EX,

—-EX,

OSIimP(

n—oo

X1+ -+ X, —nEX;
o\vn

- )

0< lim P

n—oo

—-EX,

Suppose you flip a fair coin 120 times. During each coin flip, this coin has probability 1/2
of landing heads, and probability 1/2 of landing tails.
Let A be the event that you get more than 90 heads in total. Show that

1
P(A) < —.
(4) < 60
Solution 1. For any n > 1, define X, so that
X _ 1 , if the n'® coin flip is heads
" 10 , if the n' coin flip is tails.
By its definition EX,, = 1/2 and var(X,,) = (1/2)(1/4) + (1/2)(1/4) = 1/4.
Let S := X; + -+ 4+ X5 be the number of heads that are flipped. Then ES = 60, and
var(S) = 120var(X;) = 30. Markov’s inequality says, for any ¢ > 0

P(S>t) <ES/t =60/t.
This is not helpful. Instead, we use Chebyshev’s inequality. This says, for any ¢ > 0,
P(|S — 60| > t) <t ?var(S) = 30t 2.
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Choosing t = 30 shows that P(|S — 60| > 10) < 1/30. Now, using symmetry of S (inter-
changing the roles of heads and tails),

P(|S — 60| > 30) = P(S < 30) + P(S > 90) = 2P(S > 90).
So,
2P (S > 90) = P(|S — 60 > 30) < 1/30.

Solution 2. We use the notation of Solution 1, but instead of Chebyshev’s inequality, we
use the Chernoff bound. Since S is a sum of 120 independent identically distributed random
variables, Proposition 2.43 from the notes says

Ms(t) = (Mx, ()%, VteR.
So, the Chernoff bound says, for any r,t > 0,
P(S>7) < e (Mx, ()™ = e7"((1/2)(1 + )™ (%)

Setting f(t) = e " (1 + €")'* and solving f’(t) = 0 for ¢ shows that ¢ = log(3) minimizes the
quantity f(t). So, choosing r = 90 and ¢t = log(3) in (*) gives

P(S >90) < e ((1/2)(144))" = (3)7%(5/2)'*° < .0006 < 1/60.

Solution 3. (The following solution based on the Central Limit Theorem only received
partial credit, since it only approximately shows that P(A) < 1/10.) We use the notation
of Solution 1, but instead of Chebyshev’s inequality, we use the Central Limit Theorem.
Since Xi, Xy, ... are independent identically distributed random variables with mean 1/2
and variance 1/4, the Central Limit Theorem implies that

im X1+---+Xn—n/2 _ oo€_$2/2 - -
nl_>ooP< NOONG >t> /t dx /2.

So, choosing n = 120 and ¢ = /30, we have the approximation

Xy 4+ Xy — 60 /°° L
P >30 | ~ e~ 2dx /N 2.
( V(1/4)v/120 ) /30 /

Simplifying a bit,
P (S — 60 > 30) ~ / e " 2dx )/ 2m.
V30
Using v/30 > 3 and the approximation [, e~ 2dx/\/2m ~ 0014, we have

P(S > 50) ~ / e Pdx /2w < / e~ 2dx /27 ~ 0014 < 1/60.
V5 2

7. QUESTION 7

Let Xi, Xs,... be a Bernoulli process with parameter p = 1/2. What is the expected
number of trials that have to occur before we see two consecutive “successes”?

(Your final answer can be left as an infinite sum of numbers. You get three bonus points
if your final answer is a single real number that is justified correctly.)
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Solution 1. Let T be the number of coin flips that occur until two successive heads occur.
From the Total Expectation Theorem,

ET =E(T|X, = 0)P(X; =0)+E(T|X; =1, X, = 0)P(X; = 1, X, = 0)

From the fresh—start property (or Markov property) of the Bernoulli process, Xi, Xs,... is
also a Bernoulli process. That is, if we condition on X; = 0, then E(7|X; = 0) = 1 + ET.
Similarly, E(T|X; = 1,Xs = 0) = 24+ ET. Also, E(TX; = 1,X, = 1) = 2, since both
successes occurred during the first two coin flips in this case. In summary,

1 1 1
ET = §(1 +ET) + 1(2 +ET) + 1(2).

Rearranging, we get
T2
4 2

That is, ET = 6.

Solution 2. Let T1 be the number of coin flips that occur until the first success occurs.
For any i > 2, let T; be the number of coin flips that occur between the i** success and the
(i — 1)** success. Then the event that two consecutive heads occurs can be written as the
disjoint union

U2 {T; =1, T; > 1, V2 <i < j}
Let T be the number of coin flips that occur until two successive heads occur. Then, by the
Total Expectation Theorem, we have

ET =Y E(T|T;=1,T,>1,V2<i<j)P(T; =1,T;>1,V2 < i < j)
j=2

[e.e]

J
E) Te|Tj=1,T>1,V2<i<j)P(T;=1,T;>1, V2 <i < j)
=2 k=1
From the notes, we know that 77,75, ... are independent geometric random variables with
parameter p = 1/2. Therefore,

o] J
ET =ETy+ Y EQ Th|T;=1,T;>1,V2<i<j))P(T;=1,T,>1,V2<i<})
j=2 k=2
7—1
_ET1+1+ZEZT;€|T =1, T,>1,V2<i<j)P(T;=1,T,>1,¥2<i<j)

7=3 k=2

=ET +1+ Y (j=3)ET |7 >1)2702 =BT +1+ ) (j—3)(1+ET)27 02
Jj=3 =3

=BT+ 1+ (1+EN) Y (j—1)27 =ET + 1+ (1+EL)EL — 1) =2+ 1+ (3)(1) = 6.

Jj=1



8. QUESTION &

Let X1, X5, ... be a sequence of independent, identically distributed random variables such
that, for any ¢ > 1
i ift > 0.
P(ngt): t+1 71ft_0
0 ,ift < 0.

For any n > 1, let M,, := max(Xy,..., X,).
(i) Explicitly compute P(M,, < t) for any ¢t € R.
(ii) Show that % converges in distribution to some random variable W, as n — oo.
(iii) Explicitly compute P(1/W > t) for any t € R.
Solution. For any t > 0, {M,, <t} = {X; < t,...,X, < t}. Using this equality and
independence,

Pw@ga:fimxﬁg)(P@ﬁgwmze——Laé

i=1

And if t <0, then P(M,, <t) =0. Now,

P(M,/n <t)=P(M, <tn)= (1 B tni—l)

So, using the power series expansion of the logarithm (or the definition of e), and letting
t>0

1 n

lim P(M,/n <t)= lim {1-— = Ut
n—oo n—00 tn + 1

So, if we define a random variable W such that P(W < t) = e '/* for any ¢t > 0, and

P(W <t) =0 for any t <0, then M, /n converges to W in distribution, as n — oo. Finally,

if t > 0, then

P(1/W >t) = P(W <

y=e".

~ | =

That is, 1/W is an exponential random variable with parameter 1.

9. QUESTION 9

Let t1,t5, ... be positive, independent identically distributed random variables. Let u € R.
Assume Et; = pu. For any n > 1, let T,, :== t; + --- + t,. For any positive integer ¢, let
Ny :==min{n > 1: T, > t}.

Show that N/t converges almost surely to 1/u as t — oo.

(Hint: if ¢, ¢ are positive integers, then {N; < ¢t} = {T,, > t}. Apply the Strong Law to
Te.)

Solution. From the Strong Law of Large Numbers,

P(lim 7/t = pu) = 1. (%)
t—o00
By the definition of N;, we have for any t > 1,

TNt,1 <t< TNt-

7



Dividing by N; > 0, we get
Iy N =1 < * < TNt. ()
N—1 N N, Ny
Also by definition of Ny, for any fixed integer m > 0, we have P(N, < m) = P(T,, > t) <

ET,,/t = mu/t — 0 as t — oo. So, using this fact and (x), the left and right sides of ()
converge to p with probability 1. The Theorem follows.

10. QUESTION 10

Let Xy := xg € Z. Let X1, Xs,... be independent random variables such that P(X,, =
1) =P(X,, = —1) = 1/2 for all n > 1. Let Sy, Si,... be the corresponding random walk
started at zo. Let a,b € Z such that a < xy < b. Let T := min{n > 1: S,, € {a,b}}. Show:

P(Sp = a) = 00

a—>b
(You may assume that P(7T" < oc0) = 1.)
Solution. We claim that T is a stopping time. For any positive integer n,

{T =n} ={Xo€{a,b}, ..., X;,.1 € {a,b}, X, € {a,b}}.

Also, |Spar| < max(|al, [b]), so the Optlonal Stopping Theorem, Version 2, applies. Let
c:=P(Sr =a). Then

Wiy :ESO = EST =ac+ (1 —C)b.

Solving for ¢, we get
To — b

a—>b"

C =
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