
170B Final Solutions, Winter 20171

1. Question 1

True/False
(a) Let A1, A2, . . . be subsets of a sample space Ω. Let P denote a probability law on Ω.

Then
∞∑
n=1

P(An) = P (∪∞n=1An)

FALSE. Let A1 = A2 = Ω and let ∅ = A3 = A4 = · · · . Then the left side is 1 + 1 = 2, but
the right side is P(Ω) = 1.

(b) Let X be a continuous random variable. Let fX be the density function of X. Then,
for any t ∈ R, d

dt
P(X ≤ t) exists, and

d

dt
P(X ≤ t) = fX(t).

FALSE. Let fX(t) := 1 for any t ∈ [0, 1] and let fX(t) := 0 otherwise. Then

P(X ≤ t) =


0 , if t < 0

t , if 0 ≤ t ≤ 1

1 , if t > 1

.

In particular, d
dt
P(X < t) does not exist at t = 0.

(c) Let X be a random variable such that EX4 <∞. Then EX2 <∞.
TRUE. By Jensen’s inequality, (EX2)2 ≤ EX4 <∞.
(d) Let X be a random variable such that var(X) = 2. Then P(|X − EX| > 2) ≤ 1/2.
TRUE. By Chebyshev’s inequality,

P(|X − EX| > 2) ≤ var(X)/4 = 1/2.

(e) Let i =
√
−1. Let X1, X2, . . . be random variables such that, for any t ∈ R,

lim
n→∞

EeitXn = e−t
2/2.

Then X1, X2, . . . converges in distribution to a standard Gaussian random variable.
TRUE. This is basically how we proved the Central Limit Theorem (Theorem 3.21 in the

notes). This assertion follows by the Levy Continuity Theorem, and using that EeitZ = e−t
2/2

for all t ∈ R where Z is a standard Gaussian random variable (Prop. 2.55 in the notes).

(f) Let X be a standard Gaussian random variable (so that P(X ≤ t) =
∫ t
−∞ e

−x2/2dx/
√

2π
for any t ∈ R.) Then

P(X > t) <
1

t
, ∀ t > 0

TRUE. This follows from Markov’s inequality. First, note that E |X| = 2
∫∞
0
xe−x

2/2 dx√
2π

=√
2/π < 1. So, using Markov’s inequality,

P(X > t) ≤ P(|X| > t) ≤ E |X|
t

<
1

t
.
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(g) Let {N(s)}s≥0 be a Poisson Process with parameter λ = 1. Then

E((N(4)−N(2))N(2)) = 4.

TRUE. E((N(4)−N(2))N(2)) = E((N(4)−N(2)))EN(2) = [EN(2)]2 = 22 = 4. Here we
used the independent increment property (that N(4)−N(2) is independent of N(2)−N(0) =
N(2)), and that N(2) is a Poisson random variable with parameter λ · 2 = 2, so that
EN(2) = 2.

(h) If a sequence of random variables X1, X2, . . . converges in distribution to a random
variable X, then X1, X2, . . . converges almost surely to X.

FALSE. Let Ω = [0, 1]. For any n ≥ 1, let

Xn(ω) :=

{
(−1)n , ifω ∈ [0, 1/2)

(−1)n+1 , ifω ∈ [1/2, 1].

Then X1, X2, . . . all have the same distribution, so they converge in distribution, but they
do not converge almost surely, since limn→∞Xn(ω) does not exist for every ω ∈ [0, 1].

(i) If a sequence of random variables X1, X2, . . . converges in distribution to a random
variable X, then

lim
n→∞

EXn = EX

FALSE. Let Ω = [0, 1]. For any n ≥ 1, let

Xn(ω) :=

{
n , ifω ∈ [0, 1/n]

0 , ifω ∈ (1/n, 1].

Then EXn = 1 for all n ≥ 1, but X1, X2, . . . converges in probability to 0 as n → ∞, as
shown in class. So, limn→∞ EXn = 1 6= 0 = EX.

2. Question 2

Let A,B be events in a sample space. Let C1, . . . , Cn be events such that Ci ∩ Cj = ∅ for
any i, j ∈ {1, . . . , n}, and such that ∪ni=1Ci = B. Show:

P(A|B) =
n∑
i=1

P(A|B, Ci)P(Ci|B).

Solution. From the Total Probability Theorem applied to P(·|B), and then using the defini-
tion of conditional probability,

P(A|B) =
n∑
i=1

P(A ∩ Ci|B) =
n∑
i=1

P(A ∩B ∩ Ci)
P(B)

=
n∑
i=1

P(A ∩B ∩ Ci)
P(B ∩ Ci)

P(B ∩ Ci)
P(B)

=
n∑
i=1

P(A|B, Ci)P(Ci|B).
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3. Question 3

Let X be a random variable that is uniformly distributed in [0, 1]. Let Y := 4X(1−X).
Find fY , the density function of Y .

Solution. Using the quadratic formula, the function f(t) = 4t(1 − t) takes the value
c ∈ [0, 1] when x = (1/2)± (1/2)

√
1− c. So, if x ∈ [0, 1], we have

P(4X(1−X) ≤ x) = P(X ∈ [0, 1/2− (1/2)
√

1− x] or X ∈ [1/2 + (1/2)
√

1− x, 1])

= (1/2)− (1/2)
√

1− x+ 1− (1/2 + (1/2)
√

1− x) = 1−
√

1− x.

We differentiate the CDF to find the density. Then if 0 ≤ x ≤ 1, we have

fY (x) =
d

dx
(1−

√
1− x) =

1

2
(1− x)−1/2.

4. Question 4

Let X, Y be independent random variables. Suppose X has moment generating function

MX(t) = 1 + t6, ∀ t ∈ R.

Suppose Y has moment generating function

MY (t) = 1 + t2, ∀ t ∈ R.

Compute E
[
(X + Y )2

]
.

Solution 1. Since X, Y are independent, we have MX+Y (t) = MX(t)MY (t) = (1 + t6)(1 +
t2) = 1 + t2 + t6 + t8 for all t ∈ R by Proposition 2.43 in the notes. As mentioned in the
notes,

E(X + Y )2 =
d2

dt2
|t=0MX+Y (t).

Therefore,

E(X + Y )2 =
d2

dt2
|t=0

(
1 + t2 + t6 + t8

)
= [2 + 30t4 + 56t6]t=0 = 2.

Solution 2. As mentioned in the notes,

EX =
d

dt
|t=0MX(t) =

d

dt
|t=0(1 + t6) = [6t5]t=0 = 0.

EX2 =
d2

dt2
|t=0MX(t) =

d2

dt2
|t=0(1 + t6) = [30t4]t=0 = 0.

EY =
d

dt
|t=0MY (t) =

d

dt
|t=0(1 + t2) = [2t]t=0 = 0.

EY 2 =
d2

dt2
|t=0MY (t) =

d2

dt2
|t=0(1 + t2) = 2.

Therefore, using also that X, Y are independent,

E(X + Y )2 = EX2 + EY 2 + 2E(XY ) = 0 + 2 + (EX)(EY ) = 2 + 0 · 0 = 2.
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5. Question 5

Using the Central Limit Theorem, prove the Weak Law of Large Numbers.
(You may assume that X1, X2, . . . are independent, identically distributed random vari-

ables such that E |X1| <∞ and 0 < var(X1) <∞.)

Solution. Let ε > 0. Let σ :=
√

var(X1). Then

P

(∣∣∣∣X1 + · · ·+Xn

n
− EX1

∣∣∣∣ > ε

)
= P

(∣∣∣∣X1 + · · ·+Xn − nEX1

n

∣∣∣∣ > ε

)
= P

(∣∣∣∣X1 + · · ·+Xn − nEX1

σ
√
n

∣∣∣∣ > √nεσ
)

So, for any N > 0, there exists m > 0 such that, for all n > m, we have

P

(∣∣∣∣X1 + · · ·+Xn

n
− EX1

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣X1 + · · ·+Xn − nEX1

σ
√
n

∣∣∣∣ > N

)
.

Letting n→∞ and using the Central Limit Theorem,

0 ≤ lim
n→∞

P

(∣∣∣∣X1 + · · ·+Xn

n
− EX1

∣∣∣∣ > ε

)
≤ lim

n→∞
P

(∣∣∣∣X1 + · · ·+Xn − nEX1

σ
√
n

∣∣∣∣ > N

)
= 2

∫ ∞
N

e−x
2/2 dx√

2π
.

The left side does not depend on N , so we let N →∞ to conclude that

0 ≤ lim
n→∞

P

(∣∣∣∣X1 + · · ·+Xn

n
− EX1

∣∣∣∣ > ε

)
≤ lim

N→∞
2

∫ ∞
N

e−x
2/2 dx√

2π
= 0.

6. Question 6

Suppose you flip a fair coin 120 times. During each coin flip, this coin has probability 1/2
of landing heads, and probability 1/2 of landing tails.

Let A be the event that you get more than 90 heads in total. Show that

P(A) ≤ 1

60
.

Solution 1. For any n ≥ 1, define Xn so that

Xn =

{
1 , if the nth coin flip is heads

0 , if the nth coin flip is tails.

By its definition EXn = 1/2 and var(Xn) = (1/2)(1/4) + (1/2)(1/4) = 1/4.
Let S := X1 + · · · + X120 be the number of heads that are flipped. Then ES = 60, and

var(S) = 120var(X1) = 30. Markov’s inequality says, for any t > 0

P(S > t) ≤ ES/t = 60/t.

This is not helpful. Instead, we use Chebyshev’s inequality. This says, for any t > 0,

P(|S − 60| > t) ≤ t−2var(S) = 30t−2.
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Choosing t = 30 shows that P(|S − 60| > 10) ≤ 1/30. Now, using symmetry of S (inter-
changing the roles of heads and tails),

P(|S − 60| > 30) = P(S < 30) + P(S > 90) = 2P(S > 90).

So,

2P(S > 90) = P(|S − 60| > 30) ≤ 1/30.

Solution 2. We use the notation of Solution 1, but instead of Chebyshev’s inequality, we
use the Chernoff bound. Since S is a sum of 120 independent identically distributed random
variables, Proposition 2.43 from the notes says

MS(t) = (MX1(t))
120, ∀ t ∈ R.

So, the Chernoff bound says, for any r, t > 0,

P(S > r) ≤ e−tr(MX1(t))
120 = e−tr((1/2)(1 + et))120 (∗).

Setting f(t) = e−rt(1 + et)120 and solving f ′(t) = 0 for t shows that t = log(3) minimizes the
quantity f(t). So, choosing r = 90 and t = log(3) in (∗) gives

P(S > 90) ≤ e−tr((1/2)(1 + 4))120 = (3)−90(5/2)120 ≤ .0006 < 1/60.

Solution 3. (The following solution based on the Central Limit Theorem only received
partial credit, since it only approximately shows that P(A) < 1/10.) We use the notation
of Solution 1, but instead of Chebyshev’s inequality, we use the Central Limit Theorem.
Since X1, X2, . . . are independent identically distributed random variables with mean 1/2
and variance 1/4, the Central Limit Theorem implies that

lim
n→∞

P

(
X1 + · · ·+Xn − n/2√

(1/4)
√
n

> t

)
=

∫ ∞
t

e−x
2/2dx/

√
2π.

So, choosing n = 120 and t =
√

30, we have the approximation

P

(
X1 + · · ·+X120 − 60√

(1/4)
√

120
>
√

30

)
≈
∫ ∞
√
30

e−x
2/2dx/

√
2π.

Simplifying a bit,

P (S − 60 > 30) ≈
∫ ∞
√
30

e−x
2/2dx/

√
2π.

Using
√

30 > 3 and the approximation
∫∞
3
e−x

2/2dx/
√

2π ≈ .0014, we have

P(S > 50) ≈
∫ ∞
√
5

e−x
2/2dx/

√
2π ≤

∫ ∞
2

e−x
2/2dx/

√
2π ≈ .0014 < 1/60.

7. Question 7

Let X1, X2, . . . be a Bernoulli process with parameter p = 1/2. What is the expected
number of trials that have to occur before we see two consecutive “successes”?

(Your final answer can be left as an infinite sum of numbers. You get three bonus points
if your final answer is a single real number that is justified correctly.)
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Solution 1. Let T be the number of coin flips that occur until two successive heads occur.
From the Total Expectation Theorem,

ET = E(T |X1 = 0)P(X1 = 0) + E(T |X1 = 1, X2 = 0)P(X1 = 1, X2 = 0)

+ E(T |X1 = 1, X2 = 1)P(X1 = 1, X2 = 1)

=
1

2
E(T |X1 = 0) +

1

4
E(T |X1 = 1, X2 = 0) +

1

4
E(T |X1 = 1, X2 = 1).

From the fresh-start property (or Markov property) of the Bernoulli process, X1, X2, . . . is
also a Bernoulli process. That is, if we condition on X1 = 0, then E(T |X1 = 0) = 1 + ET .
Similarly, E(T |X1 = 1, X2 = 0) = 2 + ET . Also, E(T |X1 = 1, X2 = 1) = 2, since both
successes occurred during the first two coin flips in this case. In summary,

ET =
1

2
(1 + ET ) +

1

4
(2 + ET ) +

1

4
(2).

Rearranging, we get
1

4
ET =

3

2
.

That is, ET = 6.
Solution 2. Let T1 be the number of coin flips that occur until the first success occurs.

For any i ≥ 2, let Ti be the number of coin flips that occur between the ith success and the
(i − 1)st success. Then the event that two consecutive heads occurs can be written as the
disjoint union

∪∞j=2{Tj = 1, Ti > 1, ∀ 2 ≤ i < j}.
Let T be the number of coin flips that occur until two successive heads occur. Then, by the
Total Expectation Theorem, we have

ET =
∞∑
j=2

E(T |Tj = 1, Ti > 1, ∀ 2 ≤ i < j)P(Tj = 1, Ti > 1, ∀ 2 ≤ i < j)

=
∞∑
j=2

E(

j∑
k=1

Tk |Tj = 1, Ti > 1, ∀ 2 ≤ i < j)P(Tj = 1, Ti > 1, ∀ 2 ≤ i < j)

From the notes, we know that T1, T2, . . . are independent geometric random variables with
parameter p = 1/2. Therefore,

ET = ET1 +
∞∑
j=2

E(

j∑
k=2

Tk |Tj = 1, Ti > 1, ∀ 2 ≤ i < j)P(Tj = 1, Ti > 1, ∀ 2 ≤ i < j)

= ET1 + 1 +
∞∑
j=3

E(

j−1∑
k=2

Tk |Tj = 1, Ti > 1, ∀ 2 ≤ i < j)P(Tj = 1, Ti > 1, ∀ 2 ≤ i < j)

= ET1 + 1 +
∞∑
j=3

(j − 3)E(T1 |T1 > 1)2−(j−2) = ET1 + 1 +
∞∑
j=3

(j − 3)(1 + ET1)2−(j−2)

= ET1 + 1 + (1 + ET1)
∞∑
j=1

(j − 1)2−j = ET1 + 1 + (1 + ET1)(ET1 − 1) = 2 + 1 + (3)(1) = 6.
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8. Question 8

Let X1, X2, . . . be a sequence of independent, identically distributed random variables such
that, for any i ≥ 1

P(Xi ≤ t) =

{
t
t+1

, if t ≥ 0.

0 , if t < 0.

For any n ≥ 1, let Mn := max(X1, . . . , Xn).

(i) Explicitly compute P(Mn ≤ t) for any t ∈ R.
(ii) Show that Mn

n
converges in distribution to some random variable W , as n→∞.

(iii) Explicitly compute P(1/W ≥ t) for any t ∈ R.

Solution. For any t > 0, {Mn ≤ t} = {X1 ≤ t, . . . , Xn ≤ t}. Using this equality and
independence,

P(Mn ≤ t) =
n∏
i=1

P(Xi ≤ t) = (P(X1) ≤ t)n =

(
1− 1

t+ 1

)n
.

And if t < 0, then P(Mn ≤ t) = 0. Now,

P(Mn/n ≤ t) = P(Mn ≤ tn) =

(
1− 1

tn+ 1

)n
So, using the power series expansion of the logarithm (or the definition of e), and letting
t > 0

lim
n→∞

P(Mn/n ≤ t) = lim
n→∞

(
1− 1

tn+ 1

)n
= e−1/t.

So, if we define a random variable W such that P(W ≤ t) = e−1/t for any t > 0, and
P(W ≤ t) = 0 for any t ≤ 0, then Mn/n converges to W in distribution, as n→∞. Finally,
if t > 0, then

P(1/W ≥ t) = P(W ≤ 1

t
) = e−t.

That is, 1/W is an exponential random variable with parameter 1.

9. Question 9

Let t1, t2, . . . be positive, independent identically distributed random variables. Let µ ∈ R.
Assume Et1 = µ. For any n ≥ 1, let Tn := t1 + · · · + tn. For any positive integer t, let
Nt := min{n ≥ 1: Tn ≥ t}.

Show that Nt/t converges almost surely to 1/µ as t→∞.
(Hint: if c, t are positive integers, then {Nt ≤ ct} = {Tct ≥ t}. Apply the Strong Law to

Tct.)
Solution. From the Strong Law of Large Numbers,

P( lim
t→∞

Tt/t = µ) = 1. (∗)

By the definition of Nt, we have for any t ≥ 1,

TNt−1 < t ≤ TNt .
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Dividing by Nt > 0, we get

TNt−1

Nt − 1

Nt − 1

Nt

≤ t

Nt

<
TNt

Nt

. (∗∗)

Also by definition of Nt, for any fixed integer m > 0, we have P(Nt < m) = P(Tm > t) ≤
ETm/t = mµ/t → 0 as t → ∞. So, using this fact and (∗), the left and right sides of (∗∗)
converge to µ with probability 1. The Theorem follows.

10. Question 10

Let X0 := x0 ∈ Z. Let X1, X2, . . . be independent random variables such that P(Xn =
1) = P(Xn = −1) = 1/2 for all n ≥ 1. Let S0, S1, . . . be the corresponding random walk
started at x0. Let a, b ∈ Z such that a < x0 < b. Let T := min{n ≥ 1: Sn ∈ {a, b}}. Show:

P(ST = a) =
x0 − b
a− b

.

(You may assume that P(T <∞) = 1.)
Solution. We claim that T is a stopping time. For any positive integer n,

{T = n} = {X0 ∈ {a, b}c, . . . , Xn−1 ∈ {a, b}c, Xn ∈ {a, b}}.
Also, |Sn∧T | ≤ max(|a| , |b|), so the Optional Stopping Theorem, Version 2, applies. Let
c := P(ST = a). Then

x0 = ES0 = EST = ac+ (1− c)b.
Solving for c, we get

c =
x0 − b
a− b

.
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