
170B Final Solutions, Fall 20171

1. Question 1

True/False
(a) Let A1, A2, . . . be subsets of a sample space Ω. Let P denote a probability law on Ω.

Then
∞∑
n=1

P(An) = P (∪∞n=1An)

FALSE. Let A1 = A2 = Ω and let ∅ = A3 = A4 = · · · . Then the left side is 1 + 1 = 2, but
the right side is P(Ω) = 1.

(b) Let X be a continuous random variable. Let fX be the density function of X. Then,
for any t ∈ R, d

dt
P(X ≤ t) exists, and

d

dt
P(X ≤ t) = fX(t).

FALSE. Let fX(t) := 1 for any t ∈ [0, 1] and let fX(t) := 0 otherwise. Then

P(X ≤ t) =


0 , if t < 0

t , if 0 ≤ t ≤ 1

1 , if t > 1

.

In particular, d
dt
P(X < t) does not exist at t = 0.

(c) Let X be a random variable such that EX4 <∞. Then EX2 <∞.
TRUE. By Jensen’s inequality, (EX2)2 ≤ EX4 <∞.
(d) Let X be a random variable such that E(X6) = 16. Then

P(|X| > 2) ≤ 1/4.

TRUE. By Markov’s inequality,

P(|X| > 2) = P(|X|6 > 26) ≤ EX6/26 = 24/26 = 1/4.

(e) Let i =
√
−1. Let X1, X2, . . . be random variables such that, for any t ∈ R,

lim
n→∞

EeitXn = e−t
2/2.

Then X1, X2, . . . converges in distribution to a standard Gaussian random variable.
TRUE. This is basically how we proved the Central Limit Theorem (Theorem 3.21 in the

notes). This assertion follows by the Levy Continuity Theorem, and using that EeitZ = e−t
2/2

for all t ∈ R where Z is a standard Gaussian random variable (Prop. 2.55 in the notes).
(f) Let X be a random variable with E |X| = 3. Then

P(X > t) ≤ 3

t
, ∀ t ∈ R

FALSE. If t = −1, then this says P(X > t) ≤ −3, which cannot be true.
(g) Let {N(s)}s≥0 be a Poisson Process with parameter λ = 1. Then

N(4)−N(3), N(3)−N(2), N(2)−N(1), N(1)

are all independent random variables.
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TRUE. This is the independent increment property (recalling N(1) = N(1)− 0 = N(1)−
N(0).)

(h) If a sequence of random variables X1, X2, . . . converges in distribution to a random
variable X, then X1, X2, . . . converges in probability to X.

FALSE. Let Ω = [0, 1]. For any n ≥ 1, let

Xn(ω) :=

{
(−1)n , ifω ∈ [0, 1/2)

(−1)n+1 , ifω ∈ [1/2, 1].

Then X1, X2, . . . all have the same distribution, so they converge in distribution to e.g.
X := X1, but they do not converge in probability; P(|Xn −X| > 1/2) = 1 for all n even, so
limn→∞P(|Xn −X| > 1/2) 6= 0.

(i) If a sequence of random variables X1, X2, . . . converges in distribution to a random
variable X, then

lim
n→∞

EX2
n = EX2

FALSE. Let Ω = [0, 1]. For any n ≥ 1, let

Xn(ω) :=

{
n , ifω ∈ [0, 1/n]

0 , ifω ∈ (1/n, 1].

Then EX2
n = n for all n ≥ 1, but X1, X2, . . . converges in probability to 0 as n → ∞, as

shown in class. So, limn→∞ EX2
n =∞ 6= 0 = EX.

2. Question 2

Let X, Y be independent random variables. Suppose X has Fourier Transform

φX(t) = e−t
2/2, ∀ t ∈ R.

(Recall that φX(t) = EeitX where i =
√
−1.) Suppose Y has Fourier Transform

φY (t) = cos(t), ∀ t ∈ R.

Compute E
[
(X + Y )2

]
.

Solution 1. Since X, Y are independent, we have φX+Y (t) = φX(t)φY (t) = e−t
2/2 cos(t) for

all t ∈ R by Proposition 2.54 in the notes. Also recalling the proof of Exercise 2.52,

d2

dt2
|t=0φX+Y (t) = E

d2

dt2
|t=0e

it(X+Y ) = i2E(X + Y )2.

So,

E(X + Y )2 = − d2

dt2
|t=0φX+Y (t) =

d

dt
|t=0(t cos(t)e−t

2/2 + sin(t)e−t
2/2)

= −t(t cos(t) + sin(t))e−t
2

+ (cos(t)− t sin(t) + cos(t))e−t
2/2|t=0 = 2.

Solution 2. As mentioned above, and using that

d

dt
|t=0φX(t) = E

d

dt
|t=0e

itX = iEX.

EX = −i d
dt
|t=0φX(t) = −i d

dt
|t=0e

−t2/2 = [ite−t
2/2]t=0 = 0.
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EX2 = − d2

dt2
|t=0φX(t) = − d2

dt2
|t=0e

−t2/2 =
d

dt
|t=0te

−t2/2 = 1.

EY = −i d
dt
|t=0φY (t) =

d

dt
|t=0 cos(t) = [i sin(t)]t=0 = 0.

EY 2 = − d2

dt2
|t=0φY (t) = − d2

dt2
|t=0 cos(t) = cos(0) = 1.

Therefore, using also that X, Y are independent,

E(X + Y )2 = EX2 + EY 2 + 2E(XY ) = 1 + 1 + (EX)(EY ) = 2 + 0 · 0 = 2.

3. Question 3

Let X be a random variable uniformly distributed on [0, 1].
Let Y be a random variable such that Y = X. (Note that Y is uniformly distributed on

[0, 1].)
Find the density of X + Y .
Solution. Using the definition of X and Y , we have

P(X + Y ≤ t) = P(2X ≤ t) = P(X ≤ t/2) =


0 , if t ≤ 0

t/2 , if 0 < t ≤ 2

1 , if t > 2.

So,

fX+Y (t) =
d

dt
P(X + Y ≤ t) =


0 , if t ≤ 0

1/2 , if 0 < t ≤ 2

0 , if t > 2.

4. Question 4

Markov’s inequality says: for any random variable X with X ≥ 0, we have

P(X > t) ≤ EX
t
, ∀ t > 0.

Prove Markov’s inequality.
Solution. Let t > 0. Let Y be a random variable such that

Y =

{
t , if X ≥ t

0 , if X < t.

By definition of Y , we have Y ≤ X. Therefore, EY ≤ EX by Exercise ??. By the definition
of Y , EY = tP(X ≥ t). That is,

tP(X ≥ t) ≤ E(X).
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5. Question 5

Using the Central Limit Theorem, prove the Weak Law of Large Numbers.
(You may assume that X1, X2, . . . are independent, identically distributed random vari-

ables such that E |X1| <∞ and 0 < var(X1) <∞.)

Solution. Let ε > 0. Let σ :=
√

var(X1). Then

P

(∣∣∣∣X1 + · · ·+Xn

n
− EX1

∣∣∣∣ > ε

)
= P

(∣∣∣∣X1 + · · ·+Xn − nEX1

n

∣∣∣∣ > ε

)
= P

(∣∣∣∣X1 + · · ·+Xn − nEX1

σ
√
n

∣∣∣∣ > √nεσ
)

So, for any N > 0, there exists m > 0 such that, for all n > m, we have

P

(∣∣∣∣X1 + · · ·+Xn

n
− EX1

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣X1 + · · ·+Xn − nEX1

σ
√
n

∣∣∣∣ > N

)
.

(For example, choose m = N2σ2/ε2, so if n > m, then
√
nε/σ >

√
mε/σ = N , so the set on

the left is contained in the set on the right.) Letting n → ∞ and using the Central Limit
Theorem,

0 ≤ lim
n→∞

P

(∣∣∣∣X1 + · · ·+Xn

n
− EX1

∣∣∣∣ > ε

)
≤ lim

n→∞
P

(∣∣∣∣X1 + · · ·+Xn − nEX1

σ
√
n

∣∣∣∣ > N

)
= 2

∫ ∞
N

e−x
2/2 dx√

2π
.

The left side does not depend on N , so we let N →∞ to conclude that

0 ≤ lim
n→∞

P

(∣∣∣∣X1 + · · ·+Xn

n
− EX1

∣∣∣∣ > ε

)
≤ lim

N→∞
2

∫ ∞
N

e−x
2/2 dx√

2π
= 0.

6. Question 6

Let X1, X2, . . . be a Bernoulli process with parameter p = 1/2. What is the expected
number of trials that have to occur before we see two consecutive “successes”?

(Your final answer can be left as an infinite sum of numbers.)
Solution 1. Let T be the number of coin flips that occur until two successive heads occur.

From the Total Expectation Theorem,

ET = E(T |X1 = 0)P(X1 = 0) + E(T |X1 = 1, X2 = 0)P(X1 = 1, X2 = 0)

+ E(T |X1 = 1, X2 = 1)P(X1 = 1, X2 = 1)

=
1

2
E(T |X1 = 0) +

1

4
E(T |X1 = 1, X2 = 0) +

1

4
E(T |X1 = 1, X2 = 1).

From the fresh-start property (or Markov property) of the Bernoulli process, X1, X2, . . . is
also a Bernoulli process. That is, if we condition on X1 = 0, then E(T |X1 = 0) = 1 + ET .
Similarly, E(T |X1 = 1, X2 = 0) = 2 + ET . Also, E(T |X1 = 1, X2 = 1) = 2, since both
successes occurred during the first two coin flips in this case. In summary,

ET =
1

2
(1 + ET ) +

1

4
(2 + ET ) +

1

4
(2).
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Rearranging, we get
1

4
ET =

3

2
.

That is, ET = 6.
Solution 2. Let T1 be the number of coin flips that occur until the first success occurs.

For any i ≥ 2, let Ti be the number of coin flips that occur between the ith success and the
(i − 1)st success. Then the event that two consecutive heads occurs can be written as the
disjoint union

∪∞j=2{Tj = 1, Ti > 1, ∀ 2 ≤ i < j}.
Let T be the number of coin flips that occur until two successive heads occur. Then, by the
Total Expectation Theorem, we have

ET =
∞∑
j=2

E(T |Tj = 1, Ti > 1, ∀ 2 ≤ i < j)P(Tj = 1, Ti > 1, ∀ 2 ≤ i < j)

=
∞∑
j=2

E(

j∑
k=1

Tk |Tj = 1, Ti > 1, ∀ 2 ≤ i < j)P(Tj = 1, Ti > 1, ∀ 2 ≤ i < j)

From the notes, we know that T1, T2, . . . are independent geometric random variables with
parameter p = 1/2. Therefore,

ET = ET1 +
∞∑
j=2

E(

j∑
k=2

Tk |Tj = 1, Ti > 1, ∀ 2 ≤ i < j)P(Tj = 1, Ti > 1, ∀ 2 ≤ i < j)

= ET1 + 1 +
∞∑
j=3

E(

j−1∑
k=2

Tk |Tj = 1, Ti > 1, ∀ 2 ≤ i < j)P(Tj = 1, Ti > 1, ∀ 2 ≤ i < j)

= ET1 + 1 +
∞∑
j=3

(j − 3)E(T1 |T1 > 1)2−(j−2) = ET1 + 1 +
∞∑
j=3

(j − 3)(1 + ET1)2−(j−2)

= ET1 + 1 + (1 + ET1)
∞∑
j=1

(j − 1)2−j = ET1 + 1 + (1 + ET1)(ET1 − 1) = 2 + 1 + (3)(1) = 6.

7. Question 7

Let X1, X2, . . . be a sequence of independent, identically distributed random variables.
Assume that EX1 = 1/2 and var(X1) = 3/4.

(i) Compute

lim
n→∞

P

(
X1 + · · ·+Xn

n
> 1

)
.

(ii) For any n ≥ 1, define

Yn :=
X2

1 + · · ·+X2
n

X1 + · · ·+Xn

.

Does Y1, Y2, . . . converge almost surely? If so, what does Y1, Y2, . . . converge to almost
surely?
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Solution. From the Weak Law of Large Numbers, for any ε > 0,

lim
n→∞

P

(∣∣∣∣X1 + · · ·+Xn

n
− 1

2

∣∣∣∣ > ε

)
= 0.

So, choosing ε = 1/2,

0 ≤ lim
n→∞

P

(
X1 + · · ·+Xn

n
> 1

)
= lim

n→∞
P

(
X1 + · · ·+Xn

n
− 1

2
>

1

2

)
≤ lim

n→∞
P

(∣∣∣∣X1 + · · ·+Xn

n
− 1

2

∣∣∣∣ > 1

2

)
= 0.

Therefore, limn→∞P
(
X1+···+Xn

n
> 1
)

= 0.
We now write

Yn =
X2

1 + · · ·+X2
n

X1 + · · ·+Xn

=
X2

1 + · · ·+X2
n

n

n

X1 + · · ·+Xn

.

From the Strong Law of Large numbers,
X2

1+···+X2
n

n
converges almost surely to EX2

1 =
var(X1) + (EX1)

2 = 3/4 + 1/4 = 1. (Note that X2
1 , X

2
2 , . . . are independent, identically

distributed since X1, X2, . . . are as well. For example, P(X2
i ≤ t) = P(Xi ≤

√
t) = P(X1 ≤√

t) = P(X2
1 ≤ t) for any i ≥ 1, t > 0.) Also, X1+···+Xn

n
converges almost surely to

EX1 = 1/2. That is, with probability 1, limn→∞
X1+···+Xn

n
= 1/2. So, applying limit laws,

with probability 1, limn→∞
X1+···+Xn

n
= 2.

In summary, on a set A ⊆ Ω with P(A) = 1, for all ω ∈ B, limn→∞
n

X1(ω)+···+Xn(ω)
= 2.

And on a set B ⊆ Ω with P(B) = 1, for all ω ∈ B, limn→∞
X2

1 (ω)+···+X2
n(ω)

n
= 1. Note that

P(A∩B)+P(ArB)+P(BrA)+P((A∪B)c) = 1 and P(ArB) ≤ P(Bc) = 1−P(B) = 0,
P(B rA) ≤ P(Ac) = 1−P(A) = 0, and P((A∪B)c) ≤ P(Bc) = 1−P(B) = 0. Therefore,
P(A∩B) = 1. So, on the set A∩B, using the product limit law, for all ω ∈ A∩B, we have

lim
n→∞

X2
1 (ω) + · · ·+X2

n(ω)

X1(ω) + · · ·+Xn(ω)
=
(

lim
n→∞

X2
1 (ω) + · · ·+X2

n(ω)

n

)(
lim
n→∞

n

X1(ω) + · · ·+Xn(ω)

)
= 1·2 = 2.

8. Question 8

Let X1, X2, . . . be a Bernoulli process with parameter p = 1/2. Define N := min{n ≥
1: Xn 6= X1}. For any n ≥ 1, define Yn := XN+n−2. Show that P(Yn = 1) = 1/2 for all
n ≥ 1, but Y1, Y2, . . . is not a Bernoulli process.

Solution. Since X1, X2, . . . are independent, identically distributed random variables, N−1
is a geometric random variable. Let n ≥ 3. By the Total Probability Theorem,

P(Yn = 1) =
∞∑

m=1

P(Yn = 1|N − 1 = m)P(N − 1 = m) =
∞∑

m=1

P(Xm+n−1 = 1|N − 1 = m)(1− p)m−1p

=
∞∑

m=1

P(Xm+n−1 = 1|X2 6= X1, . . . , Xm+1 6= X1, Xm+2 = X1)(1− p)m−1p

If n > 3, then independence of X1, X2, . . . says

P(Xm+n−1 = 1|X2 6= X1, . . . , Xm+1 6= X1, Xm+2 = X1) = P(Xm+n−2 = 1) = p.
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If n = 3, then

P(Xm+n−1 = 1|X2 6= X1, . . . , Xm+1 6= X1, Xm+2 = X1) = P(Xm+2 = 1|Xm+2 = X1) = p.

So, for any n ≥ 3,

P(Yn = 1) = p

∞∑
m=1

p(1− p)m−1 = p = 1/2.

If n = 1, then Yn = XN−1 = X1 by definition of N , so P(Yn = 1) = p = 1/2.
If n = 2, then Yn = XN = 1 − X1, by definition of n, so P(Yn = 1) = 1 − p = 1/2.

Also, since Y1 + Y2 = 1, EY1Y2 = EY1(1 − Y1) = p − 1 6= EY1EY2 = p2, so Y1, Y2 are not
independent, so Y1, Y2, . . . is not a Bernoulli process.

9. Question 9

Let X be a random variable such that |X| ≤ 1, X ≤ 1/2 and EX = 0.
Is it true that E(X2) ≤ 1/4?
If this inequality is true, prove it. If this inequality is false, provide a counterexample, and

justify your reasoning.
Solution. This inequality is false. LetX so that P(X = 1/2) = 2/3 and P(X = −1) = 1/3.

Then |X| ≤ 1, X ≤ 1/2, and EX = (2/3)(1/2) − (1/3) = 0. But EX2 = (1/3)(−1)2 +
(2/3)(1/2)2 = 1/3 + 1/6 = 1/2 > 1/4.

10. Question 10

Let X0 := x0 ∈ Z. Let X1, X2, . . . be independent random variables such that P(Xn =
1) = P(Xn = −1) = 1/2 for all n ≥ 1. Let S0, S1, . . . be the corresponding random walk
started at x0. Let a, b ∈ Z such that a < x0 < b. Let T := min{n ≥ 1: Sn ∈ {a, b}}. Show:

P(ST = a) =
x0 − b
a− b

.

(You may assume that P(T <∞) = 1.)
Solution. We claim that T is a stopping time. For any positive integer n,

{T = n} = {S0 ∈ {a, b}c, . . . , Sn−1 ∈ {a, b}c, Sn ∈ {a, b}}.
Also, |Sn∧T | ≤ max(|a| , |b|), so the Optional Stopping Theorem, Version 2, applies. Let
c := P(ST = a). Then

x0 = ES0 = EST = ac+ (1− c)b.
Solving for c, we get

c =
x0 − b
a− b

.
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