## 171 Midterm 1 Solutions, Fall $2016{ }^{1}$

## 1. Question 1

True/False
(a) Let $\Omega$ be a universe. Let $A_{1}, A_{2}, \ldots \subseteq \Omega$. Then

$$
\bigcup_{i=1}^{\infty} A_{i}=\left\{x \in \Omega: \forall \text { positive integers } j, \quad x \in A_{j}\right\}
$$

FALSE. If $A_{1}=\Omega$ and $A_{2}=\emptyset$, then $\bigcup_{i=1}^{\infty} A_{i}=\Omega$, but $\emptyset=\{x \in \Omega: \forall$ positive integers $j, \quad x \in$ $\left.A_{j}\right\}$.
(b) For any positive integers $i, j$, let $a_{i j}$ be a real number. Then

$$
\sum_{i=1}^{\infty}\left(\sum_{j=1}^{\infty} a_{i j}\right)=\sum_{j=1}^{\infty}\left(\sum_{i=1}^{\infty} a_{i j}\right) .
$$

FALSE. For any $i \geq 1$, let $a_{i(i+1)}=1$, let $a_{i i}=-1$, and let $a_{i j}=0$ for any other $i, j$. Then $\sum_{i=1}^{\infty}\left(a_{i i}+a_{i(i+1)}\right)=\sum_{i=1}^{\infty}(0)=0 \neq-1=a_{11}+0=a_{11}+\sum_{j=2}^{\infty}\left(a_{(j-1) j}+a_{j j}\right)=$ $\sum_{j=1}^{\infty}\left(\sum_{i=1}^{\infty} a_{i j}\right)$
(c) The Markov Chain with transition matrix $P=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$ has exactly two recurrent states.

FALSE; All three states are recurrent. Since $P^{3}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, for any $x \in\{1,2,3\}$ we have $\mathbf{P}_{x}\left(X_{3}=x\right)=1$. So, $\mathbf{P}_{x}\left(T_{x} \leq 3\right)=1$, and $\mathbf{P}_{x}\left(T_{x}<\infty\right)=1$.

## 2. Question 2

Suppose $X$ and $Y$ are independent standard Gaussian distributed random variables. (So, $\mathbf{P}(a \leq X \leq b)=\int_{a}^{b} e^{-t^{2} / 2} d t / \sqrt{2 \pi}$, for any $-\infty \leq a \leq b \leq \infty$.) Find the probability density function of $X+Y$. That is, find a function $f_{X+Y}: \mathbb{R} \rightarrow[0, \infty)$ such that $\mathbf{P}(a \leq X+Y \leq$ $b)=\int_{a}^{b} f_{X+Y}(t) d t$ for all $-\infty \leq a \leq b \leq \infty$.

[^0]Solution. Let $t \in \mathbb{R}$. Then

$$
\begin{aligned}
f_{X+Y}(t) & =\frac{d}{d t} \mathbf{P}(X+Y<t)=\frac{d}{d t} \iint_{\{x+y<t\}} f_{X, Y}(x, y) d x d y \\
& =\frac{d}{d t} \iint_{\{x+y<t\}} f_{X}(x) f_{Y}(y) d x d y, \quad \text { since } X, Y \text { are independent } \\
& =\frac{d}{d t} \int_{y=-\infty}^{y=\infty} \int_{x=-\infty}^{x=t-y} f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{y=-\infty}^{y=\infty} f_{X}(t-y) f_{Y}(y) d y, \quad \text { by the Fundamental Theorem of Calculus } \\
& =\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{2 \pi}} \int_{y=-\infty}^{y=\infty} e^{-(t-y)^{2} / 2} e^{-y^{2} / 2} d y, \quad \text { by definition of } X, Y \\
& =\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{2 \pi}} \int_{y=-\infty}^{y=\infty} e^{-t^{2} / 2-y^{2}+t y} d y=\frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 4} \frac{1}{\sqrt{2 \pi}} \int_{y=-\infty}^{y=\infty} e^{-(y-t / 2)^{2}} d y \\
& =\frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 4} \frac{1}{\sqrt{2 \pi}} \int_{y=-\infty}^{y=\infty} e^{-y^{2}} d y \\
& =\frac{1}{2 \sqrt{\pi}} e^{-t^{2} / 4} \frac{1}{\sqrt{2 \pi}} \int_{y=-\infty}^{y=\infty} e^{-y^{2} / 2} d y, \quad \text { changing variables } \\
& =\frac{1}{2 \sqrt{\pi}} e^{-t^{2} / 4}
\end{aligned}
$$

## 3. Question 3

Suppose we have a Markov Chain $\left(X_{0}, X_{1}, \ldots\right)$ with state space $\Omega=\{1,2,3,4,5\}$ and with the following transition matrix

$$
P=\left(\begin{array}{ccccc}
1 / 4 & 3 / 4 & 0 & 0 & 0 \\
3 / 4 & 1 / 4 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 1 / 2 & 1 / 2 & 0
\end{array}\right)
$$

Classify all states in the Markov chain as either transient or recurrent.
Is this Markov Chain irreducible? Prove your assertions.
Solution. State 1 is recurrent, since

$$
\mathbf{P}_{1}\left(T_{1}=\infty\right)=\mathbf{P}_{1}\left(2=X_{2}=X_{3}=X_{4}=\cdots\right)=\lim _{n \rightarrow \infty} P(1,2)(P(2,2))^{n}=\lim _{n \rightarrow \infty}(3 / 4)(1 / 4)^{n}=0
$$

State 2 is recurrent, since

$$
\mathbf{P}_{2}\left(T_{2}=\infty\right)=\mathbf{P}_{2}\left(1=X_{2}=X_{3}=X_{4}=\cdots\right)=\lim _{n \rightarrow \infty}(P(1,1))^{n}=\lim _{n \rightarrow \infty}(1 / 4)^{n}=0 .
$$

State 3 is recurrent since $\mathbf{P}_{3}\left(T_{3}=1\right)=1$, so $\mathbf{P}_{3}\left(T_{3}<\infty\right)=1$.
States 4 and 5 are transient, since

$$
\begin{aligned}
& \mathbf{P}_{4}\left(T_{4}=\infty\right) \geq \mathbf{P}_{4}\left(3=X_{2}=X_{3}=X_{4}=\cdots\right)=P(4,3) \lim _{n \rightarrow \infty} P(3,3)^{n}=P(4,3)>0 \\
& \mathbf{P}_{5}\left(T_{5}=\infty\right) \geq \mathbf{P}_{5}\left(3=X_{2}=X_{3}=X_{4}=\cdots\right)=P(5,3) \lim _{n \rightarrow \infty} P(3,3)^{n}=P(5,3)>0
\end{aligned}
$$

The Markov chain is not irreducible, since $P$ is a block matrix of the form $P=\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$ where $A$ is $2 \times 2$ and $B$ is $3 \times 3$. So, for any $n \geq 1, P^{n}=\left(\begin{array}{cc}A^{n} & 0 \\ 0 & B^{n}\end{array}\right)$. So, $P^{n}(1,3)=0$ for any $n \geq 1$. So, the Markov chain is not irreducible.

## 4. Question 4

Let $x, y$ be any states in a finite irreducible Markov chain. Show that $\mathbb{E}_{x} T_{y}<\infty$.
Solution. From Lemma 3.27 in the notes, there exists $0<\alpha<1$ and $j>0$ such that, for any $x, y \in \Omega$ and for any $k>0, \mathbf{P}_{x}\left(T_{y}>k j\right) \leq \alpha^{k}$. So, $\mathbf{P}_{x}\left(T_{y}>k j\right) \leq \alpha^{k}$. So, using Remark 2.23 in the notes,

$$
\begin{gathered}
\mathbb{E}_{x} T_{y}=\sum_{k=1}^{\infty} \mathbf{P}_{x}\left(T_{y} \geq k\right)=\sum_{k=1}^{\infty} \sum_{j(k-1)<i \leq j k} \mathbf{P}_{x}\left(T_{y} \geq i\right) \\
\leq \sum_{k=1}^{\infty} j \mathbf{P}_{x}\left(T_{y}>j(k-1)\right) \leq j \sum_{k=1}^{\infty} \alpha^{k-1}=j /(1-\alpha)<\infty . \\
\text { 5. QUESTION } 5
\end{gathered}
$$

Prove or disprove the following statement.
Every finite Markov chain on a nonempty state space has at least one recurrent state.
Solution. This statement is True. We argue by contradiction. Suppose every state is transient. That is, every $y \in \Omega$ satisfies $0 \leq \rho_{y y}<1$, where $\rho_{y y}=\mathbf{P}_{y}\left(T_{y}<\infty\right)$. As in the notes, let $T_{y}^{(1)}:=T_{y}$, and for any $k \geq 2$, define a random variable $T_{y}^{(k)}:=\min \{n>$ $\left.T_{y}^{(k-1)}: X_{n}=y\right\}$. That is, $T_{y}^{(k)}$ is the $k^{\text {th }}$ return time of the Markov chain. If $k \geq 1$ is fixed, by the pigeonhole principle, at the $|\Omega| \cdot k^{\text {th }}$ step of the Markov chain, the chain has returned to some state $k$ times. That is, for any $k \geq 1$ fixed, there exists $y \in \Omega$ such that $T_{y}^{(k)}<\infty$ with probability one. That is, for any fixed $k \geq 1$,

$$
1=\mathbf{P}\left(\cup_{y \in \Omega}\left\{T_{y}^{(k)}<\infty\right\}\right)
$$

Using the union bound,

$$
1 \leq \sum_{y \in \Omega} \mathbf{P}\left(T_{y}^{(k)}<\infty\right)
$$

From Proposition 3.21 in the notes, $\mathbf{P}\left(T_{y}^{(k)}<\infty\right)=\rho_{y y}^{k}$. So,

$$
1 \leq \sum_{y \in \Omega} \rho_{y y}^{k} \leq|\Omega|\left(\max _{y \in \Omega} \rho_{y y}\right)^{k} .
$$

Since $\Omega$ is finite, $0 \leq \max _{y \in \Omega} \rho_{y y}<1$. So, if $k>\frac{\log |\Omega|}{\log \left(1 / \max _{y \in \Omega} \rho_{y y}\right)}$, we have $1<1$, a contradiction. The proof is complete.


[^0]:    ${ }^{1}$ February 1, 2017, © 2016 Steven Heilman, All Rights Reserved.

