
171 Midterm 2 Solutions, Fall 20161

1. Question 1

True/False
(a) Every Markov chain has at most one stationary distribution.

FALSE. Consider the Markov chain with transition matrix P =

(
1 0
0 1

)
. Then π = (1, 0)

and π = (0, 1) are both distinct stationary distributions for P , since π = πP .
(b) Let P be a transition matrix for a finite Markov chain on a state space Ω such that

P (x, y) = P (y, x) for all x, y ∈ Ω. Then this Markov chain is reversible.
TRUE. Define π(x) = 1/ |Ω| for all x ∈ Ω. Then the reversibility condition holds.
(c) Let P be the transition matrix of a finite, irreducible Markov chain, with state space

Ω and with (unique) stationary distribution π. Then there exist constants α ∈ (0, 1) and
C > 0 such that

max
x∈Ω
‖P n(x, ·)− π(·)‖TV ≤ Cαn, ∀n ≥ 1.

FALSE. If the Markov chain is not aperiodic, this can be false. Suppose P =

(
0 1
1 0

)
.

Then π = (1/2, 1/2) and P 2 =

(
1 0
0 1

)
, so if n is even, then for any x in the state space

{1, 2}, we have ‖P n(x, ·)− π(·)‖TV = ‖(1, 0)− (1/2, 1/2)‖TV ≥ 1/2, using A = {1} in the
definition of total variation distance.

(d) Every irreducible Markov chain has a stationary distribution. (A stationary distri-
bution π for a countable Markov chain Ω satisfies

∑
x∈Ω π(x) = 1, π(x) ≥ 0 and π(x) =∑

y∈Ω π(y)P (y, x), for all x ∈ Ω, where P is the transition matrix of the Markov chain)
FALSE. The simple random walk on the integers has no stationary distribution. If it

did have a stationary distribution, then π(z) = 1
2
(π(z + 1) + π(z − 1)) for every z ∈ Z.

Let y ∈ Z such that π(y) = maxz∈Z π(z). (A set of nonnegative numbers summing to 1
must have a maximum element.) Then by stationarity and the definition of y, we have
π(y) = 1

2
(π(y+ 1) +π(y− 1)) ≤ 1

2
(π(y) +π(y)) = π(y). That is, π(y) = π(y+ 1) = π(y− 1).

Similarly, π(z) = π(y) for every y ∈ Z. But then
∑

z∈Ω π(z) = 0 or ∞. In either case, this
is a contradiction.

(e) Let M0 = 0 and let M0,M1, . . . be a martingale. Let T be a stopping time for the
martingale. Then EMT = 0.

FALSE. Consider the simple random walk on the integers, and let T := min{n ≥ 1: Mn =
1}. Then MT = 1 so EMT = 1 6= 0.

2. Question 2

Consider a finite state Markov chain with state space Ω satisfying P (x, y) > 0 for all
x, y ∈ Ω with x 6= y. Show that the stationary distribution of the Markov chain satisfies the
detailed balance condition if and only if

P (x, y)P (y, z)P (z, x) = P (x, z)P (z, y)P (y, x)
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for all x, y, z ∈ Ω. (Hint: for the reverse implication, fix z ∈ Ω and define µ : Ω→ R so that

µ(z) = 1 and µ(y) = P (z,y)
P (y,z)

for all y ∈ Ω, y 6= z.)

Solution Suppose the detailed balance condition is satisfied. Since P (x, y) > 0 for all
x, y ∈ Ω with x 6= y, the Markov chain is irreducible. So, there exists a unique stationary
distribution π by Theorem 3.36 in the notes. Moreover, π(x) > 0 for every x ∈ Ω, by
Theorem 3.33 in the notes. So, if x ∈ Ω, we repeatedly apply the detailed balance condition
to get

π(x)P (x, y)P (y, z)P (z, x) = P (y, x)π(y)P (y, z)P (z, x)

= P (y, x)P (z, y)π(z)P (z, x) = P (y, x)P (z, y)P (x, z)π(x).

Dividing by π(x) completes the forward implication.
Now assume that P (x, y)P (y, z)P (z, x) = P (x, z)P (z, y)P (y, x) for all x, y, z ∈ Ω. Fix

x ∈ Ω and define µ(y) as above. Then P (x, y)µ(x) = P (y, x)µ(y). So, µ is reversible.
So, if we define ν(x) := µ(x)/

∑
y∈Ω µ(y) for any x ∈ Ω, then ν is a reversible probability

distribution. Proposition 3.46 from the notes implies that ν is stationary. Uniqueness of the
stationary distribution (Theorem 3.36) therefore implies that ν = π, so π is reversible, as
desired.

3. Question 3

Let X0 = 0, and let a < 0 < b be integers. Let X1, X2, . . . be independent identically
distributed random variables so that P(Xi = 1) = P(Xi = −1) = 1/2 for all i ≥ 1. For any
n ≥ 0, let Yn := X0 + · · · + Xn. Define T := min{n ≥ 1: Yn /∈ (a, b)}. First, show that
P(YT = a) = −b/(a− b). Then, compute ET . (Hint: use martingales, somehow.)

Solution. The random variables Y0, Y1, . . . are a martingale with respect to X0, X1, . . .,
so the Optional Stopping Theorem says E(YT ) = EY0 = 0, so 0 = ca + (1 − c)b where
c = P(YT = a). Solving for c, we get c = −b/(a − b). (Note that |Yn∧T | ≤ max(|a| , |b|)
for all n ≥ 0, and P(T < ∞) = 1 by Theorem 3.66 in the notes, so the Optional Stopping
Theorem, Version 2, (Theorem 4.26) applies.)

We now claim that ET = −ab. To see this, we use that Y 2
n − n is a martingale with

respect to X0, X1, . . . and the Optional Stopping Theorem to get 0 = E(Y 2
T − T ), then using

P(YT = a) = −b/(a− b),

ET = EY 2
T = a2P(YT = a) + b2P(YT = b)

= a2 b

b− a
+ b2 (−a)

b− a
= ab

a− b
b− a

= −ab.

(Technically, Version 2 of the Optional Stopping Theorem does not apply here, since the
martingale is not bounded. Filling in the details of the above argument requires using
Version 1 of the Optional Stopping Theorem, noting that P(T <∞) = 1 by Theorem 3.66,
then letting n → ∞. Since the details here are beyond this class, no one will be penalized
for having difficulties filling in these details.)
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Finally, Y 2
n − n is a martingale, since

E(Y 2
n+1 − (n+ 1)− [Y 2

n − n] |Xn = xn, . . . , X0 = x0, Y
2

0 = m0)

= E((Xn+1 + xn + · · ·+ x0)2 − (xn + · · ·+ x0)2 − 1)

= E(X2
n+1 − 1) + E(Xn+1)(xn + · · ·+ x0) = 0 + 0 = 0.

4. Question 4

For any states x, y in a (countable) Markov chain (X0, X1, . . .), define

p(n)(x, y) := P(Xn = y |X0 = x), ∀n ≥ 1.

Fix a state y. Let Ny be the number of times that the Markov chains returns to y. That is,
Ny is the number of positive integers n such that Xn = y. First, show that y is transient if
and only if EyNy <∞.

Now, fix two states x, y, fix n ≥ 1 and assume that p(n)(x, y) > 0 and p(n)(y, x) > 0. Show
that x is transient if and only if y is transient.

Solution. From Remark 2.23 in the notes, EyNy =
∑∞

k=1 P(Ny ≥ k). Now, Py(Ny ≥ k) =

Py(T
(k)
y < ∞) = ρkyy, by Proposition 3.21 in the notes, where T

(k)
y is the kth return time of

the Markov chain. So, if y is transient, then EyNy =
∑∞

k=1 ρ
k
yy = ρyy/(1− ρyy) <∞. And if

y is not transient, then EyNy =∞.
Now, assume that x is transient. From the Chapman-Kolmogorov equation, for any n,m ≥

1,
p(n+m+n)(x, x) ≥ p(n)(x, y)p(m)(y, y)p(n)(y, x).

Summing from m = 1 to ∞, this equation says

ExNx ≥
∞∑

m=1

p(n+m+n)(x, x) ≥ p(n)(x, y)EyNyp
(n)(y, x).

So, if x is transient, then EyNy < ∞, so EyNy < ∞, so y is transient. Interchanging the
roles of x and y, we see that if y is transient, then x is transient.
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