171 Midterm 2 Solutions, Fall $2016{ }^{1}$

1. Question 1

True/False
(a) Every Markov chain has at most one stationary distribution.

FALSE. Consider the Markov chain with transition matrix $P=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Then $\pi=(1,0)$ and $\pi=(0,1)$ are both distinct stationary distributions for P, since $\pi=\pi P$.
(b) Let P be a transition matrix for a finite Markov chain on a state space Ω such that $P(x, y)=P(y, x)$ for all $x, y \in \Omega$. Then this Markov chain is reversible.

TRUE. Define $\pi(x)=1 /|\Omega|$ for all $x \in \Omega$. Then the reversibility condition holds.
(c) Let P be the transition matrix of a finite, irreducible Markov chain, with state space Ω and with (unique) stationary distribution π. Then there exist constants $\alpha \in(0,1)$ and $C>0$ such that

$$
\max _{x \in \Omega}\left\|P^{n}(x, \cdot)-\pi(\cdot)\right\|_{\mathrm{TV}} \leq C \alpha^{n}, \quad \forall n \geq 1
$$

FALSE. If the Markov chain is not aperiodic, this can be false. Suppose $P=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Then $\pi=(1 / 2,1 / 2)$ and $P^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, so if n is even, then for any x in the state space $\{1,2\}$, we have $\left\|P^{n}(x, \cdot)-\pi(\cdot)\right\|_{\mathrm{TV}}=\|(1,0)-(1 / 2,1 / 2)\|_{\mathrm{TV}} \geq 1 / 2$, using $A=\{1\}$ in the definition of total variation distance.
(d) Every irreducible Markov chain has a stationary distribution. (A stationary distribution π for a countable Markov chain Ω satisfies $\sum_{x \in \Omega} \pi(x)=1, \pi(x) \geq 0$ and $\pi(x)=$ $\sum_{y \in \Omega} \pi(y) P(y, x)$, for all $x \in \Omega$, where P is the transition matrix of the Markov chain)

FALSE. The simple random walk on the integers has no stationary distribution. If it did have a stationary distribution, then $\pi(z)=\frac{1}{2}(\pi(z+1)+\pi(z-1))$ for every $z \in \mathbb{Z}$. Let $y \in \mathbb{Z}$ such that $\pi(y)=\max _{z \in \mathbb{Z}} \pi(z)$. (A set of nonnegative numbers summing to 1 must have a maximum element.) Then by stationarity and the definition of y, we have $\pi(y)=\frac{1}{2}(\pi(y+1)+\pi(y-1)) \leq \frac{1}{2}(\pi(y)+\pi(y))=\pi(y)$. That is, $\pi(y)=\pi(y+1)=\pi(y-1)$. Similarly, $\pi(z)=\pi(y)$ for every $y \in \mathbb{Z}$. But then $\sum_{z \in \Omega} \pi(z)=0$ or ∞. In either case, this is a contradiction.
(e) Let $M_{0}=0$ and let M_{0}, M_{1}, \ldots be a martingale. Let T be a stopping time for the martingale. Then $\mathbb{E} M_{T}=0$.

FALSE. Consider the simple random walk on the integers, and let $T:=\min \left\{n \geq 1: M_{n}=\right.$ $1\}$. Then $M_{T}=1$ so $\mathbb{E} M_{T}=1 \neq 0$.

2. Question 2

Consider a finite state Markov chain with state space Ω satisfying $P(x, y)>0$ for all $x, y \in \Omega$ with $x \neq y$. Show that the stationary distribution of the Markov chain satisfies the detailed balance condition if and only if

$$
P(x, y) P(y, z) P(z, x)=P(x, z) P(z, y) P(y, x)
$$

[^0]for all $x, y, z \in \Omega$. (Hint: for the reverse implication, fix $z \in \Omega$ and define $\mu: \Omega \rightarrow \mathbb{R}$ so that $\mu(z)=1$ and $\mu(y)=\frac{P(z, y)}{P(y, z)}$ for all $y \in \Omega, y \neq z$.)

Solution Suppose the detailed balance condition is satisfied. Since $P(x, y)>0$ for all $x, y \in \Omega$ with $x \neq y$, the Markov chain is irreducible. So, there exists a unique stationary distribution π by Theorem 3.36 in the notes. Moreover, $\pi(x)>0$ for every $x \in \Omega$, by Theorem 3.33 in the notes. So, if $x \in \Omega$, we repeatedly apply the detailed balance condition to get

$$
\begin{aligned}
\pi(x) P(x, y) P(y, z) P(z, x) & =P(y, x) \pi(y) P(y, z) P(z, x) \\
& =P(y, x) P(z, y) \pi(z) P(z, x)=P(y, x) P(z, y) P(x, z) \pi(x)
\end{aligned}
$$

Dividing by $\pi(x)$ completes the forward implication.
Now assume that $P(x, y) P(y, z) P(z, x)=P(x, z) P(z, y) P(y, x)$ for all $x, y, z \in \Omega$. Fix $x \in \Omega$ and define $\mu(y)$ as above. Then $P(x, y) \mu(x)=P(y, x) \mu(y)$. So, μ is reversible. So, if we define $\nu(x):=\mu(x) / \sum_{y \in \Omega} \mu(y)$ for any $x \in \Omega$, then ν is a reversible probability distribution. Proposition 3.46 from the notes implies that ν is stationary. Uniqueness of the stationary distribution (Theorem 3.36) therefore implies that $\nu=\pi$, so π is reversible, as desired.

3. Question 3

Let $X_{0}=0$, and let $a<0<b$ be integers. Let X_{1}, X_{2}, \ldots be independent identically distributed random variables so that $\mathbf{P}\left(X_{i}=1\right)=\mathbf{P}\left(X_{i}=-1\right)=1 / 2$ for all $i \geq 1$. For any $n \geq 0$, let $Y_{n}:=X_{0}+\cdots+X_{n}$. Define $T:=\min \left\{n \geq 1: Y_{n} \notin(a, b)\right\}$. First, show that $\mathbf{P}\left(Y_{T}=a\right)=-b /(a-b)$. Then, compute $\mathbb{E} T$. (Hint: use martingales, somehow.)

Solution. The random variables Y_{0}, Y_{1}, \ldots are a martingale with respect to X_{0}, X_{1}, \ldots, so the Optional Stopping Theorem says $\mathbb{E}\left(Y_{T}\right)=\mathbb{E} Y_{0}=0$, so $0=c a+(1-c) b$ where $c=\mathbf{P}\left(Y_{T}=a\right)$. Solving for c, we get $c=-b /(a-b)$. (Note that $\left|Y_{n \wedge T}\right| \leq \max (|a|,|b|)$ for all $n \geq 0$, and $\mathbf{P}(T<\infty)=1$ by Theorem 3.66 in the notes, so the Optional Stopping Theorem, Version 2, (Theorem 4.26) applies.)

We now claim that $\mathbb{E} T=-a b$. To see this, we use that $Y_{n}^{2}-n$ is a martingale with respect to X_{0}, X_{1}, \ldots and the Optional Stopping Theorem to get $0=\mathbb{E}\left(Y_{T}^{2}-T\right)$, then using $\mathbf{P}\left(Y_{T}=a\right)=-b /(a-b)$,

$$
\begin{aligned}
\mathbb{E} T & =\mathbb{E} Y_{T}^{2}=a^{2} \mathbf{P}\left(Y_{T}=a\right)+b^{2} \mathbf{P}\left(Y_{T}=b\right) \\
& =a^{2} \frac{b}{b-a}+b^{2} \frac{(-a)}{b-a}=a b \frac{a-b}{b-a}=-a b .
\end{aligned}
$$

(Technically, Version 2 of the Optional Stopping Theorem does not apply here, since the martingale is not bounded. Filling in the details of the above argument requires using Version 1 of the Optional Stopping Theorem, noting that $\mathbf{P}(T<\infty)=1$ by Theorem 3.66, then letting $n \rightarrow \infty$. Since the details here are beyond this class, no one will be penalized for having difficulties filling in these details.)

Finally, $Y_{n}^{2}-n$ is a martingale, since

$$
\begin{aligned}
& \mathbb{E}\left(Y_{n+1}^{2}-(n+1)-\left[Y_{n}^{2}-n\right] \mid X_{n}=x_{n}, \ldots, X_{0}=x_{0}, Y_{0}^{2}=m_{0}\right) \\
& =\mathbb{E}\left(\left(X_{n+1}+x_{n}+\cdots+x_{0}\right)^{2}-\left(x_{n}+\cdots+x_{0}\right)^{2}-1\right) \\
& =\mathbb{E}\left(X_{n+1}^{2}-1\right)+\mathbb{E}\left(X_{n+1}\right)\left(x_{n}+\cdots+x_{0}\right)=0+0=0 .
\end{aligned}
$$

4. Question 4

For any states x, y in a (countable) Markov chain $\left(X_{0}, X_{1}, \ldots\right)$, define

$$
p^{(n)}(x, y):=\mathbf{P}\left(X_{n}=y \mid X_{0}=x\right), \quad \forall n \geq 1
$$

Fix a state y. Let N_{y} be the number of times that the Markov chains returns to y. That is, N_{y} is the number of positive integers n such that $X_{n}=y$. First, show that y is transient if and only if $\mathbb{E}_{y} N_{y}<\infty$.

Now, fix two states x, y, fix $n \geq 1$ and assume that $p^{(n)}(x, y)>0$ and $p^{(n)}(y, x)>0$. Show that x is transient if and only if y is transient.

Solution. From Remark 2.23 in the notes, $\mathbb{E}_{y} N_{y}=\sum_{k=1}^{\infty} \mathbf{P}\left(N_{y} \geq k\right)$. Now, $\mathbf{P}_{y}\left(N_{y} \geq k\right)=$ $\mathbf{P}_{y}\left(T_{y}^{(k)}<\infty\right)=\rho_{y y}^{k}$, by Proposition 3.21 in the notes, where $T_{y}^{(k)}$ is the $k^{t h}$ return time of the Markov chain. So, if y is transient, then $\mathbb{E}_{y} N_{y}=\sum_{k=1}^{\infty} \rho_{y y}^{k}=\rho_{y y} /\left(1-\rho_{y y}\right)<\infty$. And if y is not transient, then $\mathbb{E}_{y} N_{y}=\infty$.

Now, assume that x is transient. From the Chapman-Kolmogorov equation, for any $n, m \geq$ 1 ,

$$
p^{(n+m+n)}(x, x) \geq p^{(n)}(x, y) p^{(m)}(y, y) p^{(n)}(y, x)
$$

Summing from $m=1$ to ∞, this equation says

$$
\mathbb{E}_{x} N_{x} \geq \sum_{m=1}^{\infty} p^{(n+m+n)}(x, x) \geq p^{(n)}(x, y) \mathbb{E}_{y} N_{y} p^{(n)}(y, x)
$$

So, if x is transient, then $\mathbb{E}_{y} N_{y}<\infty$, so $\mathbb{E}_{y} N_{y}<\infty$, so y is transient. Interchanging the roles of x and y, we see that if y is transient, then x is transient.

[^0]: ${ }^{1}$ February 24, 2017, © 2016 Steven Heilman, All Rights Reserved.

