171 Midterm 2 Solutions, Winter 2017^{1}

1. Question 1

Let $\Omega=[0,1]$. Let \mathbf{P} be the uniform probability law on Ω. Let $X:[0,1] \rightarrow \mathbb{R}$ be a random variable such that $X(t)=t^{3}$ for all $t \in[0,1]$. Let

$$
\mathcal{A}=\{[0,1 / 4),[1 / 4,1 / 2),[1 / 2,3 / 4),[3 / 4,1]\}
$$

Compute explicitly the function $\mathbb{E}(X \mid \mathcal{A})$.
Solution. By definition, if $t \in[0,1 / 4)$, then

$$
\mathbb{E}(X \mid \mathcal{A})(t)=\mathbb{E}\left(X 1_{[0,1 / 4)}\right) / \mathbf{P}[0,1 / 4)=4 \int_{0}^{1 / 4} s^{3} d s=(1 / 4)^{4}=\frac{1}{256}
$$

Similarly,

$$
\mathbb{E}(X \mid \mathcal{A})(t)= \begin{cases}4 \int_{0}^{1 / 4} s^{3} d s=(1 / 4)^{4}=\frac{1}{256}, & \text { if } t \in[0,1 / 4) \\ 4 \int_{1 / 4}^{1 / 2} s^{3} d s=\left[(1 / 2)^{4}-(1 / 4)^{4}\right]=\frac{15}{256}, & \text { if } t \in[1 / 4,1 / 2) \\ 4 \int_{1 / 2}^{3 / 4} s^{3} d s=\left[(3 / 4)^{4}-(1 / 2)^{4}\right]=\frac{65}{256}, & \text { if } t \in[1 / 2,3 / 4) \\ 4 \int_{3 / 4}^{1} s^{3} d s=\left[1^{4}-(3 / 4)^{4}\right]=\frac{175}{256}, & \text { if } t \in[3,4 / 1]\end{cases}
$$

2. Question 2

Suppose we have a finite, irreducible, aperiodic Markov chain with transition matrix P. Since there exists a unique stationary distribution for this Markov chain, we know that one eigenvalue of P is 1 . Show that any other eigenvalue λ of P satisfies $|\lambda|<1$. (Hint: use the Convergence Theorem.)

Solution. We argue by contradiction. Suppose P has an eigenvalue λ with $|\lambda| \geq 1$ and $\lambda \neq 1$. Let μ be a (left) eigenvector of P with eigenvalue λ. Then $\mu P=\lambda \mu$, so that $\mu P^{n}=\lambda^{n} \mu$ for any $n \geq 1$. The Convergence Theorem (Theorem 3.62 in the notes) implies that as $n \rightarrow \infty, P^{n}$ converges to a matrix Π each of whose rows is the stationary distribution π. So,

$$
\mu \Pi=\lim _{n \rightarrow \infty} \mu P^{n}=\lim _{n \rightarrow \infty} \lambda^{n} \mu
$$

In particular, the limit on the right exists. This limit can only exist if $|\lambda| \leq 1$ and $\lambda \neq-1$. Since $\lambda \neq 1$, we conclude that $|\lambda|<1$.

3. Question 3

Give an example of a martingale that is not a Markov chain.
(Your example should be a discrete time stochastic process $Y_{0}, Y_{1}, Y_{2}, \ldots$.)
Solution. Here is one of many examples. We will take a Markov chain and "slow it down" so that each step of the Markov chain takes two values of n to be "completed."

Let $Y_{0}, Y_{2}, Y_{4}, \ldots$ be independent identically distributed random variables with $\mathbf{P}\left(Y_{n}=\right.$ $1)=\mathbf{P}\left(Y_{n}=-1\right)=1 / 2$ for every $n \geq 0$. For any $n \geq 0$ even, define $X_{n}:=Y_{n}+Y_{n-2}+\cdots+$ $Y_{2}+Y_{0}$ and for any $n \geq 1$ odd, let $X_{n}:=X_{n-1}$. Then $X_{n}-X_{n-1}=0$ for any $n \geq 1$ odd, and $\mathbb{E}\left(X_{n}-X_{n-1} \mid Y_{n-1}=y_{n-1}, \ldots, Y_{0}=y_{0}\right)=\left(\mathbb{E} Y_{n+1}\right)=0$, for any $n \geq 2$ even and for any $y_{0}, \ldots, y_{n} \in \mathbb{Z}$. So, X_{0}, X_{1}, \ldots is a martingale with respect to Y_{0}, Y_{1}, \ldots.

[^0]However, X_{0}, X_{1}, \ldots is not a Markov chain, since $\mathbf{P}\left(X_{1}=1 \mid X_{0}=1\right)=1$, but $\mathbf{P}\left(X_{2}=\right.$ $\left.1 \mid X_{1}=1\right)=\mathbf{P}\left(X_{2}=1 \mid X_{0}=1\right)=1 / 2$, both by definition of X_{0}, X_{1}, \ldots. (By the definition of a Markov chain, we should have $\left.\mathbf{P}\left(X_{1}=1 \mid X_{0}=1\right)=\mathbf{P}\left(X_{2}=1 \mid X_{1}=1\right)\right)$

4. Question 4

For the simple random walk on \mathbb{Z}, show that $\mathbb{E}_{1} T_{0}=\infty$.
Solution. From Lemma 3.69 in the notes, $\mathbf{P}_{1}\left(T_{0}>r\right)=\mathbf{P}_{0}\left(-1<X_{r} \leq 1\right) \geq \mathbf{P}_{0}\left(X_{r}=0\right)$. From an Exercise, $\lim _{n \rightarrow \infty} \sqrt{2 n} \mathbf{P}_{0}\left(X_{2 n}=0\right)=\sqrt{\frac{2}{\pi}}$. That is, there exists $m \geq 0$ and a constant $c>0$ such that, for all $n \geq m, \mathbf{P}_{0}\left(X_{2 n}=0\right) \geq c n^{-1 / 2}$. Combining our inequalities,

$$
\mathbf{P}_{1}\left(T_{0}>2 n\right) \geq c n^{-1 / 2}
$$

Therefore,

$$
\mathbb{E}_{1} T_{0}=\int_{0}^{\infty} \mathbf{P}_{1}\left(T_{0}>r\right) d r=\sum_{n=1}^{\infty} \mathbf{P}_{1}\left(T_{0} \geq n\right) \geq \sum_{n=1}^{\infty} \mathbf{P}_{1}\left(T_{2}>2 n\right) \geq \sum_{n=1}^{\infty} c n^{-1 / 2}=\infty
$$

5. Question 5

Let $X_{0}=0$, and let $a<0<b$ be integers. Let X_{1}, X_{2}, \ldots be independent identically distributed random variables so that $\mathbf{P}\left(X_{i}=1\right)=\mathbf{P}\left(X_{i}=-1\right)=1 / 2$ for all $i \geq 1$. For any $n \geq 0$, let $Y_{n}:=X_{0}+\cdots+X_{n}$. Define $T:=\min \left\{n \geq 1: Y_{n} \notin(a, b)\right\}$. First, show that $\mathbf{P}\left(Y_{T}=a\right)=-b /(a-b)$. Then, compute $\mathbb{E} T$.
(Hint: use martingales, somehow. And you are allowed to apply the Optional Stopping Theorem without verifying its assumptions.)

Solution. The random variables Y_{0}, Y_{1}, \ldots are a martingale with respect to X_{0}, X_{1}, \ldots (as proven in the notes), so the Optional Stopping Theorem (Version 2) says $\mathbb{E}\left(Y_{T}\right)=\mathbb{E} Y_{0}=0$, so $0=c a+(1-c) b$ where $c=\mathbf{P}\left(Y_{T}=a\right)$. Solving for c, we get $c=-b /(a-b)$.

We now claim that $\mathbb{E} T=-a b$. To see this, we use that $Y_{n}^{2}-n$ is a martingale with respect to X_{0}, X_{1}, \ldots and the Optional Stopping Theorem to get $0=\mathbb{E}\left(Y_{T}^{2}-T\right)$, then using $\mathbf{P}\left(Y_{T}=a\right)=-b /(a-b)$,

$$
\begin{aligned}
\mathbb{E} T & =\mathbb{E} Y_{T}^{2}=a^{2} \mathbf{P}\left(Y_{T}=a\right)+b^{2} \mathbf{P}\left(Y_{T}=b\right) \\
& =a^{2} \frac{b}{b-a}+b^{2} \frac{(-a)}{b-a}=a b \frac{a-b}{b-a}=-a b .
\end{aligned}
$$

Finally, $Y_{n}^{2}-n$ is a martingale, since

$$
\begin{aligned}
& \mathbb{E}\left(Y_{n+1}^{2}-(n+1)-\left[Y_{n}^{2}-n\right] \mid X_{n}=x_{n}, \ldots, X_{0}=x_{0}, Y_{0}^{2}=m_{0}\right) \\
& =\mathbb{E}\left(\left(X_{n+1}+x_{n}+\cdots+x_{0}\right)^{2}-\left(x_{n}+\cdots+x_{0}\right)^{2}-1\right) \\
& =\mathbb{E}\left(X_{n+1}^{2}-1\right)+\mathbb{E}\left(X_{n+1}\right)\left(x_{n}+\cdots+x_{0}\right)=0+0=0 .
\end{aligned}
$$

[^0]: ${ }^{1}$ March 3, 2017, © 2016 Steven Heilman, All Rights Reserved.

