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Final Exam

This exam contains 16 pages (including this cover page) and 10 problems. Check to see if
any pages are missing. Enter all requested information on the top of this page.

You may not use your books, notes, or any calculator on this exam. You are required to
show your work on each problem on this exam. The following rules apply:

• You have 180 minutes to complete the exam.

• If you use a theorem or proposition from
class or the notes or the book you must
indicate this and explain why the theorem
may be applied. It is okay to just say, “by
some theorem/proposition from class.”

• Organize your work, in a reasonably neat
and coherent way, in the space provided. Work
scattered all over the page without a clear or-
dering will receive very little credit.

• Mysterious or unsupported answers will
not receive full credit. A correct answer, un-
supported by calculations, explanation, or al-
gebraic work will receive no credit; an incorrect
answer supported by substantially correct cal-
culations and explanations might still receive
partial credit.

• If you need more space, use the back of the
pages; clearly indicate when you have done
this. Scratch paper is at the end of the doc-
ument.

Do not write in the table to the right. Good luck!a

aDecember 9, 2016, c© 2016 Steven Heilman, All Rights
Reserved.

Problem Points Score

1 15

2 10

3 10

4 10

5 10

6 5

7 10

8 10

9 10

10 10

Total: 100



Reference sheet

Below are some definitions that may be relevant.

A (finite or countable) Markov Chain is a stochastic process (X0, X1, X2, . . .) together
with a finite or countable set Ω, which is called the state space of the Markov Chain, and
function P : Ω×Ω→ [0, 1]. The random variables X0, X1, . . . take values in the finite set Ω.
P is stochastic, that is all of its entries are nonnegative and∑

y∈Ω

P (x, y) = 1, ∀ y ∈ Ω.

And the stochastic process satisfies the following Markov property: for all x, y ∈ Ω, for
any n ≥ 1, and for all events Hn−1 of the form Hn−1 = ∩n−1

k=0{Xk = xk}, where xk ∈ Ω for all
0 ≤ k ≤ n− 1, such that P(Hn−1 ∩ {Xn = x}) > 0, we have

P(Xn+1 = y |Hn−1 ∩ {Xn = x}) = P(Xn+1 = y |Xn = x) = P (x, y).

Suppose we have a Markov Chain X0, X1, . . . with state space Ω. Let y ∈ Ω. Define the first
return time of y to be the following random variable: Ty := min{n ≥ 1: Xn = y}. Also,
define ρyy := Py(Ty <∞).

If ρyy = 1, we say the state y ∈ Ω is recurrent. If ρyy < 1, we say the state y ∈ Ω is
transient. A Markov chain is irreducible if any state can reach any other state, with some
positive probability, if the chain runs long enough.

We say that π is a stationary distribution if π(x) ≥ 0 for every x ∈ Ω,
∑

x∈Ω π(x) = 1,
and if π satisfies π = πP (that is, π(x) =

∑
y∈Ω π(y)P (y, x) for every x ∈ Ω.)

Let P be the transition matrix of a finite Markov chain with state space Ω. We say that the
Markov chain is reversible if there exists a probability distribution π on Ω satisfying the
following detailed balance condition: π(x)P (x, y) = π(y)P (y, x), ∀x, y ∈ Ω.

Let µ, ν be probability distributions on a finite state space Ω. We define the total variation
distance between µ and ν to be ||µ− ν||TV := maxA⊆Ω |µ(A)− ν(A)| .

Let (X0, X1, . . .) be a real-valued stochastic process. A real-valued martingale with
respect to (X0, X1, . . .) is a stochastic process (M0,M1, . . .) such that E |Mn| < ∞ for all
n ≥ 0, and for any m0, x0, . . . , xn ∈ R,

E(Mn+1 −Mn|Xn = xn, . . . , X0 = x0,M0 = m0) = 0.

A stopping time for a martingale M0,M1, . . . is a random variable T taking values in
0, 1, 2, . . . ,∪{∞} such that, for any integer n ≥ 0, the event {T = n} is determined by
M0, X0, . . . , Xn. More formally, for any integer n ≥ 1, there is a set Bn ⊆ Rn+2 such that
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{T = n} = {(M0, X0, . . . , Xn) ∈ Bn}. Put another way, the indicator function 1{T=n} is a
function of the random variables M0, X0, . . . , Xn.

Let X be a random variables on a sample space Ω. Let A ⊆ Ω with P(A) > 0. Then the
conditional expectation of X given A, denoted E(X|A) is

E(X|A) :=
E(X · 1A)

P(A)
.

Suppose we have a partition of a sample space Ω. That is, we have sets A1, . . . , Ak ⊆ Ω
such that Ai ∩ Aj = ∅ for all i, j ∈ {1, . . . , k} with i 6= j, and ∪ki=1Ai = Ω. Denote
A = {A1, . . . , Ak}. Define E(X|A) to be a random variable that takes the value E(X|Ai)
on the set Ai.

Let λ > 0. Recall that a random variable T is exponential with parameter λ if T has
the density function given by fT (x) = λe−λx for all x ≥ 0, and fT (x) = 0 otherwise.

Let λ > 0. Let τ1, τ2, . . . be independent exponential random variables with parameter λ. Let
T0 = 0, and for any n ≥ 1, let Tn := τ1+· · ·+τn. A Poisson Process with parameter λ > 0 is
a set of integer-valued random variables {N(s)}s≥0 defined by N(s) := max{n ≥ 0: Tn ≤ s}.

Let τ1, τ2, . . . be nonnegative independent identically distributed variables. Let T0 = 0, and
for any n ≥ 1, let Tn := τ1 + · · ·+ τn. A Renewal process is a set of integer-valued random
variables {N(s)}s≥0 defined by N(s) := max{n ≥ 0: Tn ≤ s}.

Standard Brownian motion with B(0) = 0 is uniquely characterized by the following prop-
erties:

(i) (Independent increments) For any 0 < t1 < · · · < tn, the random variables B(t2) −
B(t1), . . . , B(tn)−B(tn−1) are all independent.

(ii) (Stationary Gaussian increments) for any 0 < s < t, B(t)−B(s) is a Gaussian random
variable with mean zero and variance t− s.

(iii) (Continuous Sample Paths) With probability 1, the function t 7→ B(t) is continuous
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1. Label the following statements as TRUE or FALSE. If the statement is true, explain
your reasoning. If the statement is false, provide a counterexample and explain your
reasoning. (In this question, you can freely cite results from the homeworks.)

(a) (3 points) Let {N(s)}s≥0 be a Poisson Process with parameter λ = 1. Then

N(4)−N(3), N(3)−N(2), N(2)−N(1), N(1)

are all independent random variables.

TRUE FALSE (circle one)

(b) (3 points) Let {N(s)}s≥0 be a renewal process. Then N(1) and N(0) are indepen-
dent random variables.

TRUE FALSE (circle one)

(c) (3 points) Suppose we have a renewal process {N(s)}s≥0 with arrival increments
τ1, τ2, . . .. Let µ := Eτ1. Assume that 0 < µ <∞. Then

P

(
lim
s→∞

N(s)

s
=

1

µ

)
= 1.

TRUE FALSE (circle one)
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(d) (3 points) Let {B(t)}t≥0 be a standard Brownian motion. Let 0 < s < t. Then

EB(s)B(t) = t.

TRUE FALSE (circle one)

(e) (3 points) Let {B(t)}t≥0 be a standard Brownian motion. Let a, b > 0. Let Ta :=
inf{t ≥ 0: B(t) = a}. Then

P(Ta < T−b) =
b

a+ b

TRUE FALSE (circle one)
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2. (10 points) Let Ω = [0, 1]. Let P be the uniform probability law on Ω. Let X : [0, 1]→ R
be a random variable such that X(t) = t3 for all t ∈ [0, 1]. Let

A = {[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1]}

Compute explicitly the function E(X|A).
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3. (10 points) Give an example of a martingale that is a Markov chain.

(Your example should be a discrete time stochastic process Y0, Y1, Y2, . . ..)
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4. (10 points) Give an example of a martingale that is not a Markov chain.

(Your example should be a discrete time stochastic process Y0, Y1, Y2, . . ..)
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5. (10 points) Let X ≥ 0 be a random variable such that P(X > 0) > 0. Show that

E(X |X > 0) ≤ EX2

EX
.

(Hint: you can freely use the Cauchy-Schwarz inequality: (EXY )2 ≤ EX2EY 2.)
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6. (5 points) Suppose you run a (busy) car wash, and the number of cars that come to the
car wash between time 0 and time s > 0 is a Poisson poisson with rate λ = 1. Suppose
every car has either one, two, three, or four people in it. The probability that a car has
one, two, three or four people in it is 1/4, 1/2, 1/12 and 1/6, respectively.

What is the average number of cars with four people that have arrived by time s = 60?
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7. (10 points) Let X1, X2, . . . , Y1, Y2, . . . , Z1, Z2, . . . be random variables. Let a, b ∈ R.

Assume that Xn ≤ Yn ≤ Zn for any n ≥ 1. Assume that P(limn→∞Xn = a) = 1 and
P(limn→∞ Zn = a) = 1. Prove that P(limn→∞ Yn = a) = 1.
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8. (10 points) Let A := {1 + 1, 1 + 1/2, 1 + 1/3, 1 + 1/4, . . .}.
Let B := {1− 1, 1− 1/2, 1− 1/3, 1− 1/4, 1− 1/5, . . .}.

• Find inf(A), the greatest lower bound of A.

• Find inf(B).
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9. (10 points) Let {B(t)}t≥0 be a standard Brownian motion (so that B(0) = 0). For any
x > 0, let Tx := inf{t ≥ 0: B(t) = x}.

• Show the bound P(−x < B(t) < x) ≥ x
20
√
t

holds for all t > x2.

• Show that ETx =∞. (Hint: use a reflection principle.)
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10. (10 points) Let {B(t)}t≥0 be a standard Brownian motion. Let x1, . . . , xn ∈ R, and let
tn > · · · > t1 > 0. Show that the event

{B(t1) = x1, . . . , B(tn) = xn}

has a multivariate normal distribution. That is, the joint density of (B(t1), . . . , B(tn))
is

f(x1, . . . , xn) = ft1(x1)ft2−t1(x2 − x1) · · · ftn−tn−1(xn − xn−1)

where

ft(x) =
1√
2πt

e−x
2/(2t), ∀x ∈ R, t > 0.
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(Scratch paper)
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(More scratch paper)
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