
171 Final Solutions, Fall 20161

1. Question 1

True/False
(a) Let {N(s)}s≥0 be a Poisson Process with parameter λ = 1. Then

N(4)−N(3), N(3)−N(2), N(2)−N(1), N(1)

are all independent random variables.
TRUE. This is the independent increment property, Theorem 5.11 in the notes.
(b) Let {N(s)}s≥0 be a renewal process. Then N(1) and N(0) are independent random

variables.
FALSE. Let τ1, τ2, . . . be independent random variables so that P(τi = 1) = P(τi = 0) =

1/2 for all i ≥ 1. Then N(1) = max{n ≥ 0: Tn ≤ 1}, N(0) = max{n ≥ 0: Tn ≤ 0},

P(N(1) = 1, N(0) = 0) = P(τ1 = 1, τ2 = 1) = 1/4.

P(N(1) = 1) = P(τ1 = 1, τ2 = 1) = 1/4, P(N(0) = 0) = P(τ1 = 1) = 1/2

So, P(N(1) = 1, N(0) = 0) 6= P(N(1) = 1)P(N(0) = 0), so N(1) and N(0) are not
independent.

(c) Suppose we have a renewal process {N(s)}s≥0 with arrival increments τ1, τ2, . . .. Let
µ := Eτ1. Assume that 0 < µ <∞. Then

P

(
lim
s→∞

N(s)

s
=

1

µ

)
= 1.

TRUE. This is the Law of Large Numbers for renewal processes, Theorem 6.3 from the
notes.

(d) Let {B(t)}t≥0 be a standard Brownian motion. Let 0 < s < t. Then

EB(s)B(t) = t.

FALSE. EB(s)B(t) = s. Using that B(s) has variance s, and using the independent
increment property,

EB(s)B(t) = EB(s)(B(t)−B(s) +B(s)) = E(B(s))2 + EB(s)(B(t)−B(s))

= s+ (EB(s))(EB(t)−B(s)) = s.

(e) Let {B(t)}t≥0 be a standard Brownian motion. Let a, b > 0. Let Ta := inf{t ≥
0: B(t) = a}. Then

P(Ta < T−b) =
b

a+ b

TRUE. This was Proposition 7.11 from the notes. Let c := P(Ta < T−b). Let T := inf{t ≥
0: B(t) ∈ {a, b}}. From the Optional Stopping Theorem (for continuous-time martingales)
(noting that |B(t ∧ T )| ≤ max(a, b) for all t ≥ 0)

0 = EB(0) = EB(T ) = ac− b(1− c).

Solving for c proves the result.
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2. Question 2

Let Ω = [0, 1]. Let P be the uniform probability law on Ω. Let X : [0, 1]→ R be a random
variable such that X(t) = t3 for all t ∈ [0, 1]. Let

A = {[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1]}

Compute explicitly the function E(X|A).
Solution. By definition, if t ∈ [0, 1/4), then

E(X|A)(t) = E(X1[0,1/4))/P[0, 1/4) = 4

∫ 1/4

0

s3ds = (1/4)4 =
1

256
.

Similarly,

E(X|A)(t) =


4
∫ 1/4

0
s3ds = (1/4)4 = 1

256
, if t ∈ [0, 1/4)

4
∫ 1/2

1/4
s3ds = [(1/2)4 − (1/4)4] = 15

256
, if t ∈ [1/4, 1/2)

4
∫ 3/4

1/2
s3ds = [(3/4)4 − (1/2)4] = 65

256
, if t ∈ [1/2, 3/4)

4
∫ 1

3/4
s3ds = [14 − (3/4)4] = 175

256
, if t ∈ [3, 4/1]

3. Question 3

Give an example of a martingale that is a Markov chain.
Solution. Here is one of many examples. Let X0, X1, X2, . . . be independent identically

distributed random variables with P(Xn = 1) = P(Xn = −1) = 1/2 for every n ≥ 0. For
any n ≥ 0 define Yn = X0 + · · · + Xn. Then E(Yn+1 − Yn |Xn = xn, . . . , X0 = X0, Y0 =
y0) = EXn+1 = 0, for any y0, x0, . . . , xn ∈ Z. So, Y0, Y1, . . . is a martingale with respect to
X0, X1, . . .. And Y0, Y1, . . . is a Markov chain, since, for any y, y0, . . . , yn ∈ Z,

P(Yn+1 = yn+1 |Yn = yn, . . . , Y0 = y0) = P(Xn+1 + Yn = yn+1 |Yn = yn, . . . , Y0 = y0)

= P(Xn+1 = yn+1 − yn) = P(X1 = yn+1 − yn) = P(X1 + Y0 = yn+1 |Y0 = yn)

= P(Y1 = yn+1 |Y0 = yn).

4. Question 4

Give an example of a martingale that is not a Markov chain.
(Your example should be a discrete time stochastic process Y0, Y1, Y2, . . ..)
Solution. Here is one of many examples. We will take a Markov chain and “slow it down”

so that each step of the Markov chain takes two values of n to be “completed.”
Let Y0, Y2, Y4, . . . be independent identically distributed random variables with P(Yn =

1) = P(Yn = −1) = 1/2 for every n ≥ 0. For any n ≥ 0 even, define Xn := Yn +Yn−2 + · · ·+
Y2 + Y0 and for any n ≥ 1 odd, let Xn := Xn−1. Then Xn −Xn−1 = 0 for any n ≥ 1 odd,
and E(Xn −Xn−1 |Yn−1 = yn−1, . . . , Y0 = y0) = (EYn+1) = 0, for any n ≥ 2 even and for any
y0, . . . , yn ∈ Z. So, X0, X1, . . . is a martingale with respect to Y0, Y1, . . ..

However, X0, X1, . . . is not a Markov chain, since P(X1 = 1|X0 = 1) = 1, but P(X2 =
1|X1 = 1) = P(X2 = 1|X0 = 1) = 1/2, both by definition of X0, X1, . . .. (By the definition
of a Markov chain, we should have P(X1 = 1|X0 = 1) = P(X2 = 1|X1 = 1))
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5. Question 5

Let X ≥ 0 be a random variable such that P(X > 0) > 0. Show that

E(X |X > 0) ≤ EX2

EX
.

(Hint: you can freely use the Cauchy-Schwarz inequality: (EXY )2 ≤ EX2EY 2.)
Solution. Since X ≥ 0 and P(X > 0) > 0, we know that EX > 0. So, we are required

to show that EXE(X|X > 0) ≤ EX2. Since X = X · 1{X>0}, we are required to show that
[E(X · 1{X>0})]

2/P(X > 0) ≤ EX2. Rearranging, we need to show that [E(X · 1{X>0})]
2 ≤

EX2P(X > 0). Since E12
{X>0} = E1{X>0} = P(X > 0), our desired inequality follows from

the Cauchy-Schwarz inequality.

6. Question 6

Suppose you run a (busy) car wash, and the number of cars that come to the car wash
between time 0 and time s > 0 is a Poisson process with rate λ = 1. Suppose every car has
either one, two, three, or four people in it. The probability that a car has one, two, three or
four people in it is 1/4, 1/2, 1/12 and 1/6, respectively. What is the average number of cars
with four people that have arrived by time s = 60?
Solution. From Theorem 5.17 in the notes, the number of cars with four people in it

is a Poisson process with rate λ · (1/6) = 1/6. So, the average number of cars with four
people is the expected value EN(60) of a Poisson Process with rate 1/6. From Lemma 5.5
in the notes, N(60) is a Poisson random variable with parameter 60(1/6) = 10. That is,
P(N(60) = n) = e−1010n/n! for any nonnegative integer n. So,

EN(60) = e−10
∞∑
n=0

n
10n

n!
= e−1010

∞∑
n=0

10n

n!
= e−10e1010 = 10.

7. Question 7

Let X1, X2, . . . , Y1, Y2, . . . , Z1, Z2, . . . be random variables. Let a, b ∈ R.
Assume that Xn ≤ Yn ≤ Zn for any n ≥ 1. Assume that P(limn→∞Xn = a) = 1 and

P(limn→∞ Zn = a) = 1. Prove that P(limn→∞ Yn = a) = 1.
Solution. Let C := {limn→∞Xn = a} ∩ {limn→∞ Zn = a}. Note that

P(Cc) = P({ lim
n→∞

Xn 6= a} ∪ { lim
n→∞

Zn 6= a}) ≤ P({ lim
n→∞

Xn 6= a}) + P({ lim
n→∞

Zn 6= a}) = 0

So, P(C) = 1. If ω ∈ C, then limn→∞Xn(ω) = limn→∞ Zn(ω) = a. It follows from the
Squeeze Theorem from Calculus that limn→∞ Yn(ω) = a, since Xn ≤ Yn ≤ Zn. Therefore,
P(limn→∞ Yn = a) ≥ P(C) = 1, so P(limn→∞ Yn = a) = 1.

(If limn→∞Xn(ω) = limn→∞ Zn(ω) = a, then for all ε > 0, there exists n = n(ε) such
that, for all m ≥ n, |Xm(ω)− a| < ε and |Zm(ω)− a| < ε. Since Xn(ω) ≤ Yn(ω) ≤ Zn(ω),
we have Xn(ω) − a ≤ Yn(ω) − a ≤ Zn(ω) − a and a − Xn(ω) ≥ a − Yn(ω) ≥ a − Zn(ω).
So, |Yn(ω)− a| ≤ max(|Xm(ω)− a| , |Zm(ω)− a|) < ε. That is, for all ε > 0, there exists
n = n(ε) such that, for all m ≥ n, we have |Yn(ω)− a| < ε. That is, limn→∞ Yn(ω) = a.)
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8. Question 8

Let A := {1 + 1, 1 + 1/2, 1 + 1/3, 1 + 1/4, . . .}. Find inf(A), the greatest lower bound of A.
Let B := {1− 1, 1− 1/2, 1− 1/3, 1− 1/4, 1− 1/5, . . .}. Find inf(B).
Solution. inf(A) = 1. Since every element of a ∈ A is of the form a = 1 + 1/n, n ≥ 1,

we always have a ≥ 1. So, 1 is a lower bound for A. And 1 is also the greatest lower bound
for A, since for any real number x > 1, there exists n ≥ 1 such that x > 1 + 1/n, by the
Archimedean property of the real numbers. (Since x− 1 > 0, 1/(x− 1) > 0, and there exists
an integer n such that n > 1/(x− 1), so that 0 < 1/n < x− 1, i.e. 1 < 1 + 1/n < x.)

inf(B) = 0. Since every element of b ∈ B is of the form b = 1 − 1/n, n ≥ 1, we always
have b ≥ 0. So, 0 is a lower bound for B. And 0 is also the greatest lower bound for B, since
for any real number x > 0, satisfies x > 1− 1 = 0.

9. Question 9

Let {B(t)}t≥0 be a standard Brownian motion (so that B(0) = 0). For any x > 0, let
Tx := inf{t ≥ 0: B(t) = x}.

• Show the bound P(−x < B(t) < x) ≥ x
20
√
t

holds for all t > x2.

• Show that ETx =∞. (Hint: use a reflection principle.)

Solution. Let x > 0 and let t > 0. Since B(t) is a Brownian motion, B(t) has density

e−y
2/(2t) 1√

2πt
. If t > x2, and if y ∈ [−x, x], then t > y2, y2/t < 1 and −y2/(2t) > −1/2. So,

P(−x < B(t) < x) =

∫ x

−x
e−x

2/(2t) 1√
2πt
≥ e−1/2

∫ x

−x
dy

1√
2πt

= 2xe−1/2(2πt)−1/2 ≥ x

20
√
t
.

Now, from the Reflection principle, Proposition 7.15 in the notes,

P(Tx > t) = P(−x < B(t) < x) ≥ x

20
√
t
.

So, ETx =
∫∞
0

P(Tx > t)dt ≥ x
20

∫∞
x2
t−1/2dt =∞.

10. Question 10

Let x1, . . . , xn ∈ R, and let tn > · · · > t1 > 0. Show that the event

{B(t1) = x1, . . . , B(tn) = xn}
has a multivariate normal distribution. That is, the joint density of (B(t1), . . . , B(tn)) is

f(x1, . . . , xn) = ft1(x1)ft2−t1(x2 − x1) · · · ftn−tn−1(xn − xn−1)
where

ft(x) =
1√
2πt

e−x
2/(2t), ∀x ∈ R, t > 0.

Solution.

{B(t1) = x1, . . . , B(tn) = xn}
= {B(t1) = x1, B(t2)−B(t1) = x2 − x1, . . . , B(tn)−B(tn−1) = xn − xn−1}.

The random variables listed on the right are all independent, by the independent increment
property (i) of Brownian motion. So, the joint density of (B(t1), B(t2)−B(t1), . . . , B(tn)−
B(tn−1)) is the product of the respective densities of the random variables. By property
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(ii) of Brownian motion, B(s) − B(t) is a Gaussian random variable with mean zero and
variance t−s. So, the joint density of (B(t1), B(t2)−B(t1), . . . , B(tn)−B(tn−1)) has density
ft1(x1)ft2−t1(x2 − x1) · · · ftn−tn−1(xn − xn−1). The proof is complete.
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