171 Final Solutions, Fall 2016!

1. QUESTION 1

True/False
(a) Let {N(s)}s>0 be a Poisson Process with parameter A = 1. Then

N(4) = N(3),N(3) = N(2),N(2) = N(1), N(1)

are all independent random variables.

TRUE. This is the independent increment property, Theorem 5.11 in the notes.

(b) Let {N(s)}s>0 be a renewal process. Then N(1) and N(0) are independent random
variables.

FALSE. Let 71,79, ... be independent random variables so that P(r; = 1) = P(r; = 0) =
1/2 for all ¢ > 1. Then N(1) = max{n > 0: T,, < 1}, N(0) = max{n > 0: T,, < 0},

P(N1)=1,N0)=0)=P(n=1,n=1)=1/4.
P(N1)=1)=P(rn=1,m=1)=1/4, P(N0)=0)=P(r,=1)=1/2
So, P(N(1) = 1,N(0) = 0) # P(N(1) = 1)P(N(0) = 0), so N(1) and N(0) are not
independent.
(c) Suppose we have a renewal process {N(s)}s>¢ with arrival increments 7,79, .... Let
p:=E7. Assume that 0 < p < co. Then

P(lim N(s) :1) ~ 1.
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TRUE. This is the Law of Large Numbers for renewal processes, Theorem 6.3 from the
notes.
(d) Let {B(t)}+>0 be a standard Brownian motion. Let 0 < s < ¢. Then
EB(s)B(t) = t.
FALSE. EB(s)B(t) = s. Using that B(s) has variance s, and using the independent
increment property,
EB(s)B(t) = EB(s)(B(t) — B(s) + B(s)) = E(B(s))* + EB(s)(B(t) — B(s))
= s+ (EB(s))(EB(t) — B(s)) = s.
(e) Let {B(t)}+>0 be a standard Brownian motion. Let a,b > 0. Let T, := inf{t >
0: B(t) = a}. Then
b
a+b
TRUE. This was Proposition 7.11 from the notes. Let ¢ := P(T, < T_;). Let T := inf{t >

0: B(t) € {a,b}}. From the Optional Stopping Theorem (for continuous-time martingales)
(noting that |B(t A T)| < max(a,b) for all ¢t > 0)

0=EB(0) = EB(T) = ac — b(1 — c).

P(Ta < be) =

Solving for ¢ proves the result.
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2. QUESTION 2

Let ©Q = [0, 1]. Let P be the uniform probability law on Q. Let X : [0, 1] — R be a random
variable such that X (¢) =3 for all t € [0, 1]. Let

A= {[0,1/4),[1/4,1/2),[1/2,3/4),[3/4,1]}

Compute explicitly the function E(X].A).
Solution. By definition, if ¢ € [0,1/4), then

1/4 1
BXLA) = B(XLoaya) PO/ =4 [ s = (1/4)" =
Similarly,
4 [ rds = (1)4)% = L, ift € [0,1/4)
A sas =112 - (/0 =2, ifte[1/4,1/2)
BXIAw = 4]3/4 Sds = [(3/4)* — (1/2)") = &, ift € [1/2,3/4)
4 [y, 8%ds = [1* = (3/4)"] = 3%, ift € (3,4/1]

3. QUESTION 3

Give an example of a martingale that is a Markov chain.

Solution. Here is one of many examples. Let Xg, X1, X5,... be independent identically
distributed random variables with P(X,, = 1) = P(X,, = —1) = 1/2 for every n > 0. For
any n > 0 define Y, = Xo+ --- 4+ X,,. Then E(Y,11 — Y, | X, = z,,..., Xo = X0, Yy =
yo) = EX,,11 = 0, for any yo, zo, ..., 2, € Z. So, Yy, Y, ... is a martingale with respect to
Xo, X1q,.... And Yy, Yy, ... is a Markov chain, since, for any v, yo, ...,y € Z,

P(Yn+1 :yn+1|Yn :ynw--ayb :yO) :P(Xn+1+yn :yn+1|Yn :yna"-ayb :yO)
= P<Xn+1 = Ynt1 — yn) = P(Xl = Ynt1 — yn) = P<X1 + Y0 = Ynt1 ’ Yo = yn)
=P(Y1 = ynt1| Yo = vn).

4. QUESTION 4

Give an example of a martingale that is not a Markov chain.

(Your example should be a discrete time stochastic process Yy, Y1, Ys, .. ..)

Solution. Here is one of many examples. We will take a Markov chain and “slow it down”
so that each step of the Markov chain takes two values of n to be “completed.”

Let Yy, Ys,Yy, ... be independent identically distributed random variables with P(Y,, =
1) =P(Y, =—1) =1/2 for every n > 0. For any n > 0 even, define X,, ==Y, +VY, o+---+
Ys + Yy and for any n > 1 odd, let X,, := X,,_1. Then X,, — X,,_; = 0 for any n > 1 odd,
and E(X, — X, 1|Yn1 =Yn-1,---, Yo =10) = (EY,,11) =0, for any n > 2 even and for any
Yo, - - -, Yn € Z. So, Xy, X1,...1s a martingale with respect to Yy, Y7,.. ..

However, Xy, X1,... is not a Markov chain, since P(X; = 1| X, = 1) = 1, but P(X, =
11X, =1) = P(Xy = 1|Xy = 1) = 1/2, both by definition of X, Xi,.... (By the definition
of a Markov chain, we should have P(X; = 1| X, =1) = P(Xy, = 1|X; = 1))
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5. QUESTION 5
Let X > 0 be a random variable such that P(X > 0) > 0. Show that

2

EX| X >0)< :
(XX >0 <20
(Hint: you can freely use the Cauchy-Schwarz inequality: (EXY)? < EX2EY?2.)

Solution. Since X > 0 and P(X > 0) > 0, we know that EX > 0. So, we are required
to show that EXE(X|X > 0) < EX? Since X = X - 11y}, we are required to show that
[E(X - 1ixs0p)]?/P(X > 0) < EX?. Rearranging, we need to show that [E(X - 1ix=0)]* <
EX?P(X > 0). Since E1y_ g = El{xs0) = P(X > 0), our desired inequality follows from
the Cauchy-Schwarz inequality.

6. QUESTION 6

Suppose you run a (busy) car wash, and the number of cars that come to the car wash
between time 0 and time s > 0 is a Poisson process with rate A = 1. Suppose every car has
either one, two, three, or four people in it. The probability that a car has one, two, three or
four people in it is 1/4, 1/2, 1/12 and 1/6, respectively. What is the average number of cars
with four people that have arrived by time s = 607

Solution. From Theorem 5.17 in the notes, the number of cars with four people in it
is a Poisson process with rate A - (1/6) = 1/6. So, the average number of cars with four
people is the expected value EN(60) of a Poisson Process with rate 1/6. From Lemma 5.5
in the notes, N(60) is a Poisson random variable with parameter 60(1/6) = 10. That is,
P(N(60) = n) = ¢ '°10"/n! for any nonnegative integer n. So,

o0

10" = 10"
EN(60) =10 n—-=e 10 > —- = ¢ %1°10 = 10.
n: n.

7. QUESTION 7

Let X1, X,,....Y1.Y5, ..., Z1,Z5, ... be random variables. Let a,b € R.

Assume that X,, <Y, < Z, for any n > 1. Assume that P(lim, ., X,, = a) = 1 and
P(lim, o Z, = a) = 1. Prove that P(lim,, o Y, = a) = 1.

Solution. Let C' = {lim, oo X;, = a} N{lim, o Z, = a}. Note that

So, P(C) = 1. If w € C, then lim, o, X, (w) = lim, ;o Z,(w) = a. It follows from the
Squeeze Theorem from Calculus that lim,, ., Y,(w) = a, since X,, <Y, < Z,. Therefore,
P(lim, 0 Y, =a) > P(C) =1, so P(lim, o Y, = a) = 1.

(If limy, 00 Xp(w) = lim, o0 Zn(w) = a, then for all ¢ > 0, there exists n = n(e) such
that, for all m > n, |X,,(w) —a| < € and |Z,,,(w) — a] < e. Since X, (w) < Y, (w) < Z,(w),
we have X, (w) —a < Y,(w) —a < Z,(w) —a and a — X,(w) > a — Y,(w) > a — Z,(w).
So, |Yn(w) —a| < max(|X,,(w) —a|,|Zm(w) —a|) < e. That is, for all € > 0, there exists
n = n(e) such that, for all m > n, we have |Y,,(w) — a| < e. That is, lim,_, Y, (w) = a.)
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8. QUESTION &

Let A:={1+1,14+1/2,14+1/3,14+1/4,...}. Find inf(A), the greatest lower bound of A.

Let B:={l1—1,1—1/2,1—1/3,1—1/4,1—1/5,...}. Find inf(B).

Solution. inf(A) = 1. Since every element of a € A is of the foom a =1+ 1/n, n > 1,
we always have a > 1. So, 1 is a lower bound for A. And 1 is also the greatest lower bound
for A, since for any real number x > 1, there exists n > 1 such that x > 1+ 1/n, by the
Archimedean property of the real numbers. (Since z —1 > 0, 1/(z—1) > 0, and there exists
an integer n such that n > 1/(z —1),sothat 0 < 1/n <z —1,ie. 1 <1+ 1/n<z.)

inf(B) = 0. Since every element of b € B is of the form b =1 —1/n, n > 1, we always
have b > 0. So, 0 is a lower bound for B. And 0 is also the greatest lower bound for B, since
for any real number z > 0, satisfies x > 1 —1=0.

9. QUESTION 9

Let {B(t)}+>0 be a standard Brownian motion (so that B(0) = 0). For any = > 0, let
T, :=inf{t > 0: B(t) = z}.
e Show the bound P(—z < B(t) < z) > 5% holds for all ¢ > 2.
e Show that ET,, = co. (Hint: use a reflection principle.)

Solution. Let x > 0 and let ¢ > 0. Since B(¢) is a Brownian motion, B(t) has density
e*yQ/(%)ﬁ. Ift > 2% and if y € [—z,z], then t > 32, y?/t <1 and —y?/(2t) > —1/2. So,

P —x < B t < )= e_xz/(Qt) > 6_1/2/ d
( ( ) ) \/—m 27t B —x Y V 27t

Now, from the Reflection principle, Proposition 7.15 in the notes,

P(T, > t) = P(—z < B(t) < z) > %\/%

T

20Vt

= 2ze V2 (2mt) 712 >

So, ET, = [[°P(T, > t)dt > & [ ¢1/2dt = cc.

10. QUESTION 10
Let z1,...,2, € R, and let t,, > --- > t; > 0. Show that the event

{B(tl) = T1,... ,B(tn) = an}
has a multivariate normal distribution. That is, the joint density of (B(t),..., B(t,)) is

f($17 s 71:”) - ftl (Il)ft2—t1 (IQ - 1‘1) T ftn_tnfl (SL‘n - xn—l)
where .
filz) = ———=e /1), Ve e R, t > 0.
V27t

Solution.
(B(t)) = a1,..., B(ty) = 2}
= {B(tl) = a1, B(tg) — B(tl) = T2 — TL1y..., B(tn) — B(tn—l) = Tpn — l’n_l}.

The random variables listed on the right are all independent, by the independent increment
property (i) of Brownian motion. So, the joint density of (B(t1), B(t2) — B(t1), ..., B(t,) —
B(t,—1)) is the product of the respective densities of the random variables. By property
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(ii) of Brownian motion, B(s) — B(t) is a Gaussian random variable with mean zero and
variance t —s. So, the joint density of (B(t;), B(ta) — B(t1), ..., B(t,) — B(t,—1)) has density
fo (1) fro—ty (x2 — 1) - -+ fr,,—t, 1 (X, — Tp_1). The proof is complete.
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