171 Final Solutions, Fall $2016{ }^{1}$

1. Question 1

True/False
(a) Let $\{N(s)\}_{s \geq 0}$ be a Poisson Process with parameter $\lambda=1$. Then

$$
N(4)-N(3), N(3)-N(2), N(2)-N(1), N(1)
$$

are all independent random variables.
TRUE. This is the independent increment property, Theorem 5.11 in the notes.
(b) Let $\{N(s)\}_{s \geq 0}$ be a renewal process. Then $N(1)$ and $N(0)$ are independent random variables.

FALSE. Let $\tau_{1}, \tau_{2}, \ldots$ be independent random variables so that $\mathbf{P}\left(\tau_{i}=1\right)=\mathbf{P}\left(\tau_{i}=0\right)=$ $1 / 2$ for all $i \geq 1$. Then $N(1)=\max \left\{n \geq 0: T_{n} \leq 1\right\}, N(0)=\max \left\{n \geq 0: T_{n} \leq 0\right\}$,

$$
\begin{gathered}
\mathbf{P}(N(1)=1, N(0)=0)=\mathbf{P}\left(\tau_{1}=1, \tau_{2}=1\right)=1 / 4 \\
\mathbf{P}(N(1)=1)=\mathbf{P}\left(\tau_{1}=1, \tau_{2}=1\right)=1 / 4, \quad \mathbf{P}(N(0)=0)=\mathbf{P}\left(\tau_{1}=1\right)=1 / 2
\end{gathered}
$$

So, $\mathbf{P}(N(1)=1, N(0)=0) \neq \mathbf{P}(N(1)=1) \mathbf{P}(N(0)=0)$, so $N(1)$ and $N(0)$ are not independent.
(c) Suppose we have a renewal process $\{N(s)\}_{s \geq 0}$ with arrival increments $\tau_{1}, \tau_{2}, \ldots$. Let $\mu:=\mathbb{E} \tau_{1}$. Assume that $0<\mu<\infty$. Then

$$
\mathbf{P}\left(\lim _{s \rightarrow \infty} \frac{N(s)}{s}=\frac{1}{\mu}\right)=1 .
$$

TRUE. This is the Law of Large Numbers for renewal processes, Theorem 6.3 from the notes.
(d) Let $\{B(t)\}_{t \geq 0}$ be a standard Brownian motion. Let $0<s<t$. Then

$$
\mathbb{E} B(s) B(t)=t
$$

FALSE. $\mathbb{E} B(s) B(t)=s$. Using that $B(s)$ has variance s, and using the independent increment property,

$$
\begin{aligned}
\mathbb{E} B(s) B(t) & =\mathbb{E} B(s)(B(t)-B(s)+B(s))=\mathbb{E}(B(s))^{2}+\mathbb{E} B(s)(B(t)-B(s)) \\
& =s+(\mathbb{E} B(s))(\mathbb{E} B(t)-B(s))=s
\end{aligned}
$$

(e) Let $\{B(t)\}_{t \geq 0}$ be a standard Brownian motion. Let $a, b>0$. Let $T_{a}:=\inf \{t \geq$ $0: B(t)=a\}$. Then

$$
\mathbf{P}\left(T_{a}<T_{-b}\right)=\frac{b}{a+b}
$$

TRUE. This was Proposition 7.11 from the notes. Let $c:=\mathbf{P}\left(T_{a}<T_{-b}\right)$. Let $T:=\inf \{t \geq$ $0: B(t) \in\{a, b\}\}$. From the Optional Stopping Theorem (for continuous-time martingales) (noting that $|B(t \wedge T)| \leq \max (a, b)$ for all $t \geq 0$)

$$
0=\mathbb{E} B(0)=\mathbb{E} B(T)=a c-b(1-c)
$$

Solving for c proves the result.

[^0]
2. Question 2

Let $\Omega=[0,1]$. Let \mathbf{P} be the uniform probability law on Ω. Let $X:[0,1] \rightarrow \mathbb{R}$ be a random variable such that $X(t)=t^{3}$ for all $t \in[0,1]$. Let

$$
\mathcal{A}=\{[0,1 / 4),[1 / 4,1 / 2),[1 / 2,3 / 4),[3 / 4,1]\}
$$

Compute explicitly the function $\mathbb{E}(X \mid \mathcal{A})$.
Solution. By definition, if $t \in[0,1 / 4)$, then

$$
\mathbb{E}(X \mid \mathcal{A})(t)=\mathbb{E}\left(X 1_{[0,1 / 4)}\right) / \mathbf{P}[0,1 / 4)=4 \int_{0}^{1 / 4} s^{3} d s=(1 / 4)^{4}=\frac{1}{256}
$$

Similarly,

$$
\mathbb{E}(X \mid \mathcal{A})(t)= \begin{cases}4 \int_{0}^{1 / 4} s^{3} d s=(1 / 4)^{4}=\frac{1}{256}, & \text { if } t \in[0,1 / 4) \\ 4 \int_{1 / 4}^{1 / 2} s^{3} d s=\left[(1 / 2)^{4}-(1 / 4)^{4}\right]=\frac{15}{256}, & \text { if } t \in[1 / 4,1 / 2) \\ 4 \int_{1 / 2}^{3 / 4} s^{3} d s=\left[(3 / 4)^{4}-(1 / 2)^{4}\right]=\frac{65}{256}, & \text { if } t \in[1 / 2,3 / 4) \\ 4 \int_{3 / 4}^{1} s^{3} d s=\left[1^{4}-(3 / 4)^{4}\right]=\frac{175}{256}, & \text { if } t \in[3,4 / 1]\end{cases}
$$

3. Question 3

Give an example of a martingale that is a Markov chain.
Solution. Here is one of many examples. Let $X_{0}, X_{1}, X_{2}, \ldots$ be independent identically distributed random variables with $\mathbf{P}\left(X_{n}=1\right)=\mathbf{P}\left(X_{n}=-1\right)=1 / 2$ for every $n \geq 0$. For any $n \geq 0$ define $Y_{n}=X_{0}+\cdots+X_{n}$. Then $\mathbb{E}\left(Y_{n+1}-Y_{n} \mid X_{n}=x_{n}, \ldots, X_{0}=X_{0}, Y_{0}=\right.$ $\left.y_{0}\right)=\mathbb{E} X_{n+1}=0$, for any $y_{0}, x_{0}, \ldots, x_{n} \in \mathbb{Z}$. So, Y_{0}, Y_{1}, \ldots is a martingale with respect to X_{0}, X_{1}, \ldots And Y_{0}, Y_{1}, \ldots is a Markov chain, since, for any $y, y_{0}, \ldots, y_{n} \in \mathbb{Z}$,

$$
\begin{aligned}
& \mathbf{P}\left(Y_{n+1}=y_{n+1} \mid Y_{n}=y_{n}, \ldots, Y_{0}=y_{0}\right)=\mathbf{P}\left(X_{n+1}+Y_{n}=y_{n+1} \mid Y_{n}=y_{n}, \ldots, Y_{0}=y_{0}\right) \\
& \quad=\mathbf{P}\left(X_{n+1}=y_{n+1}-y_{n}\right)=\mathbf{P}\left(X_{1}=y_{n+1}-y_{n}\right)=\mathbf{P}\left(X_{1}+Y_{0}=y_{n+1} \mid Y_{0}=y_{n}\right) \\
& \quad=\mathbf{P}\left(Y_{1}=y_{n+1} \mid Y_{0}=y_{n}\right) .
\end{aligned}
$$

4. Question 4

Give an example of a martingale that is not a Markov chain.
(Your example should be a discrete time stochastic process $Y_{0}, Y_{1}, Y_{2}, \ldots$..)
Solution. Here is one of many examples. We will take a Markov chain and "slow it down" so that each step of the Markov chain takes two values of n to be "completed."

Let $Y_{0}, Y_{2}, Y_{4}, \ldots$ be independent identically distributed random variables with $\mathbf{P}\left(Y_{n}=\right.$ 1) $=\mathbf{P}\left(Y_{n}=-1\right)=1 / 2$ for every $n \geq 0$. For any $n \geq 0$ even, define $X_{n}:=Y_{n}+Y_{n-2}+\cdots+$ $Y_{2}+Y_{0}$ and for any $n \geq 1$ odd, let $X_{n}:=X_{n-1}$. Then $X_{n}-X_{n-1}=0$ for any $n \geq 1$ odd, and $\mathbb{E}\left(X_{n}-X_{n-1} \mid Y_{n-1}=y_{n-1}, \ldots, Y_{0}=y_{0}\right)=\left(\mathbb{E} Y_{n+1}\right)=0$, for any $n \geq 2$ even and for any $y_{0}, \ldots, y_{n} \in \mathbb{Z}$. So, X_{0}, X_{1}, \ldots is a martingale with respect to Y_{0}, Y_{1}, \ldots.

However, X_{0}, X_{1}, \ldots is not a Markov chain, since $\mathbf{P}\left(X_{1}=1 \mid X_{0}=1\right)=1$, but $\mathbf{P}\left(X_{2}=\right.$ $\left.1 \mid X_{1}=1\right)=\mathbf{P}\left(X_{2}=1 \mid X_{0}=1\right)=1 / 2$, both by definition of X_{0}, X_{1}, \ldots. (By the definition of a Markov chain, we should have $\left.\mathbf{P}\left(X_{1}=1 \mid X_{0}=1\right)=\mathbf{P}\left(X_{2}=1 \mid X_{1}=1\right)\right)$

5. Question 5

Let $X \geq 0$ be a random variable such that $\mathbf{P}(X>0)>0$. Show that

$$
\mathbb{E}(X \mid X>0) \leq \frac{\mathbb{E} X^{2}}{\mathbb{E} X}
$$

(Hint: you can freely use the Cauchy-Schwarz inequality: $(\mathbb{E} X Y)^{2} \leq \mathbb{E} X^{2} \mathbb{E} Y^{2}$.)
Solution. Since $X \geq 0$ and $\mathbf{P}(X>0)>0$, we know that $\mathbb{E} X>0$. So, we are required to show that $\mathbb{E} X \mathbb{E}(X \mid X>0) \leq \mathbb{E} X^{2}$. Since $X=X \cdot 1_{\{X>0\}}$, we are required to show that $\left[\mathbb{E}\left(X \cdot 1_{\{X>0\}}\right)\right]^{2} / \mathbf{P}(X>0) \leq \mathbb{E} X^{2}$. Rearranging, we need to show that $\left[\mathbb{E}\left(X \cdot 1_{\{X>0\}}\right)\right]^{2} \leq$ $\mathbb{E} X^{2} \mathbf{P}(X>0)$. Since $\mathbb{E} 1_{\{X>0\}}^{2}=\mathbb{E} 1_{\{X>0\}}=\mathbf{P}(X>0)$, our desired inequality follows from the Cauchy-Schwarz inequality.

6. Question 6

Suppose you run a (busy) car wash, and the number of cars that come to the car wash between time 0 and time $s>0$ is a Poisson process with rate $\lambda=1$. Suppose every car has either one, two, three, or four people in it. The probability that a car has one, two, three or four people in it is $1 / 4,1 / 2,1 / 12$ and $1 / 6$, respectively. What is the average number of cars with four people that have arrived by time $s=60$?

Solution. From Theorem 5.17 in the notes, the number of cars with four people in it is a Poisson process with rate $\lambda \cdot(1 / 6)=1 / 6$. So, the average number of cars with four people is the expected value $\mathbb{E} N(60)$ of a Poisson Process with rate $1 / 6$. From Lemma 5.5 in the notes, $N(60)$ is a Poisson random variable with parameter $60(1 / 6)=10$. That is, $\mathbf{P}(N(60)=n)=e^{-10} 10^{n} / n$! for any nonnegative integer n. So,

$$
\mathbb{E} N(60)=e^{-10} \sum_{n=0}^{\infty} n \frac{10^{n}}{n!}=e^{-10} 10 \sum_{n=0}^{\infty} \frac{10^{n}}{n!}=e^{-10} e^{10} 10=10
$$

7. Question 7

Let $X_{1}, X_{2}, \ldots, Y_{1}, Y_{2}, \ldots, Z_{1}, Z_{2}, \ldots$ be random variables. Let $a, b \in \mathbb{R}$.
Assume that $X_{n} \leq Y_{n} \leq Z_{n}$ for any $n \geq 1$. Assume that $\mathbf{P}\left(\lim _{n \rightarrow \infty} X_{n}=a\right)=1$ and $\mathbf{P}\left(\lim _{n \rightarrow \infty} Z_{n}=a\right)=1$. Prove that $\mathbf{P}\left(\lim _{n \rightarrow \infty} Y_{n}=a\right)=1$.

Solution. Let $C:=\left\{\lim _{n \rightarrow \infty} X_{n}=a\right\} \cap\left\{\lim _{n \rightarrow \infty} Z_{n}=a\right\}$. Note that

$$
\mathbf{P}\left(C^{c}\right)=\mathbf{P}\left(\left\{\lim _{n \rightarrow \infty} X_{n} \neq a\right\} \cup\left\{\lim _{n \rightarrow \infty} Z_{n} \neq a\right\}\right) \leq \mathbf{P}\left(\left\{\lim _{n \rightarrow \infty} X_{n} \neq a\right\}\right)+\mathbf{P}\left(\left\{\lim _{n \rightarrow \infty} Z_{n} \neq a\right\}\right)=0
$$

So, $\mathbf{P}(C)=1$. If $\omega \in C$, then $\lim _{n \rightarrow \infty} X_{n}(\omega)=\lim _{n \rightarrow \infty} Z_{n}(\omega)=a$. It follows from the Squeeze Theorem from Calculus that $\lim _{n \rightarrow \infty} Y_{n}(\omega)=a$, since $X_{n} \leq Y_{n} \leq Z_{n}$. Therefore, $\mathbf{P}\left(\lim _{n \rightarrow \infty} Y_{n}=a\right) \geq \mathbf{P}(C)=1$, so $\mathbf{P}\left(\lim _{n \rightarrow \infty} Y_{n}=a\right)=1$.
(If $\lim _{n \rightarrow \infty} X_{n}(\omega)=\lim _{n \rightarrow \infty} Z_{n}(\omega)=a$, then for all $\varepsilon>0$, there exists $n=n(\varepsilon)$ such that, for all $m \geq n,\left|X_{m}(\omega)-a\right|<\varepsilon$ and $\left|Z_{m}(\omega)-a\right|<\varepsilon$. Since $X_{n}(\omega) \leq Y_{n}(\omega) \leq Z_{n}(\omega)$, we have $X_{n}(\omega)-a \leq Y_{n}(\omega)-a \leq Z_{n}(\omega)-a$ and $a-X_{n}(\omega) \geq a-Y_{n}(\omega) \geq a-Z_{n}(\omega)$. So, $\left|Y_{n}(\omega)-a\right| \leq \max \left(\left|X_{m}(\omega)-a\right|,\left|Z_{m}(\omega)-a\right|\right)<\varepsilon$. That is, for all $\varepsilon>0$, there exists $n=n(\varepsilon)$ such that, for all $m \geq n$, we have $\left|Y_{n}(\omega)-a\right|<\varepsilon$. That is, $\lim _{n \rightarrow \infty} Y_{n}(\omega)=a$.)

8. Question 8

Let $A:=\{1+1,1+1 / 2,1+1 / 3,1+1 / 4, \ldots\}$. Find $\inf (A)$, the greatest lower bound of A. Let $B:=\{1-1,1-1 / 2,1-1 / 3,1-1 / 4,1-1 / 5, \ldots\}$. Find $\inf (B)$.
Solution. $\inf (A)=1$. Since every element of $a \in A$ is of the form $a=1+1 / n, n \geq 1$, we always have $a \geq 1$. So, 1 is a lower bound for A. And 1 is also the greatest lower bound for A, since for any real number $x>1$, there exists $n \geq 1$ such that $x>1+1 / n$, by the Archimedean property of the real numbers. (Since $x-1>0,1 /(x-1)>0$, and there exists an integer n such that $n>1 /(x-1)$, so that $0<1 / n<x-1$, i.e. $1<1+1 / n<x$.)
$\inf (B)=0$. Since every element of $b \in B$ is of the form $b=1-1 / n, n \geq 1$, we always have $b \geq 0$. So, 0 is a lower bound for B. And 0 is also the greatest lower bound for B, since for any real number $x>0$, satisfies $x>1-1=0$.

9. Question 9

Let $\{B(t)\}_{t \geq 0}$ be a standard Brownian motion (so that $B(0)=0$). For any $x>0$, let $T_{x}:=\inf \{t \geq 0: B(t)=x\}$.

- Show the bound $\mathbf{P}(-x<B(t)<x) \geq \frac{x}{20 \sqrt{t}}$ holds for all $t>x^{2}$.
- Show that $\mathbb{E} T_{x}=\infty$. (Hint: use a reflection principle.)

Solution. Let $x>0$ and let $t>0$. Since $B(t)$ is a Brownian motion, $B(t)$ has density $e^{-y^{2} /(2 t)} \frac{1}{\sqrt{2 \pi t}}$. If $t>x^{2}$, and if $y \in[-x, x]$, then $t>y^{2}, y^{2} / t<1$ and $-y^{2} /(2 t)>-1 / 2$. So,

$$
\mathbf{P}(-x<B(t)<x)=\int_{-x}^{x} e^{-x^{2} /(2 t)} \frac{1}{\sqrt{2 \pi t}} \geq e^{-1 / 2} \int_{-x}^{x} d y \frac{1}{\sqrt{2 \pi t}}=2 x e^{-1 / 2}(2 \pi t)^{-1 / 2} \geq \frac{x}{20 \sqrt{t}}
$$

Now, from the Reflection principle, Proposition 7.15 in the notes,

$$
\mathbf{P}\left(T_{x}>t\right)=\mathbf{P}(-x<B(t)<x) \geq \frac{x}{20 \sqrt{t}} .
$$

So, $\mathbb{E} T_{x}=\int_{0}^{\infty} \mathbf{P}\left(T_{x}>t\right) d t \geq \frac{x}{20} \int_{x^{2}}^{\infty} t^{-1 / 2} d t=\infty$.

10. Question 10

Let $x_{1}, \ldots, x_{n} \in \mathbb{R}$, and let $t_{n}>\cdots>t_{1}>0$. Show that the event

$$
\left\{B\left(t_{1}\right)=x_{1}, \ldots, B\left(t_{n}\right)=x_{n}\right\}
$$

has a multivariate normal distribution. That is, the joint density of $\left(B\left(t_{1}\right), \ldots, B\left(t_{n}\right)\right)$ is

$$
f\left(x_{1}, \ldots, x_{n}\right)=f_{t_{1}}\left(x_{1}\right) f_{t_{2}-t_{1}}\left(x_{2}-x_{1}\right) \cdots f_{t_{n}-t_{n-1}}\left(x_{n}-x_{n-1}\right)
$$

where

$$
f_{t}(x)=\frac{1}{\sqrt{2 \pi t}} e^{-x^{2} /(2 t)}, \quad \forall x \in \mathbb{R}, t>0
$$

Solution.

$$
\begin{aligned}
\left\{B\left(t_{1}\right)=x_{1}, \ldots,\right. & \left.B\left(t_{n}\right)=x_{n}\right\} \\
& =\left\{B\left(t_{1}\right)=x_{1}, B\left(t_{2}\right)-B\left(t_{1}\right)=x_{2}-x_{1}, \ldots, B\left(t_{n}\right)-B\left(t_{n-1}\right)=x_{n}-x_{n-1}\right\}
\end{aligned}
$$

The random variables listed on the right are all independent, by the independent increment property (i) of Brownian motion. So, the joint density of $\left(B\left(t_{1}\right), B\left(t_{2}\right)-B\left(t_{1}\right), \ldots, B\left(t_{n}\right)-\right.$ $B\left(t_{n-1}\right)$) is the product of the respective densities of the random variables. By property
(ii) of Brownian motion, $B(s)-B(t)$ is a Gaussian random variable with mean zero and variance $t-s$. So, the joint density of $\left(B\left(t_{1}\right), B\left(t_{2}\right)-B\left(t_{1}\right), \ldots, B\left(t_{n}\right)-B\left(t_{n-1}\right)\right)$ has density $f_{t_{1}}\left(x_{1}\right) f_{t_{2}-t_{1}}\left(x_{2}-x_{1}\right) \cdots f_{t_{n}-t_{n-1}}\left(x_{n}-x_{n-1}\right)$. The proof is complete.

[^0]: ${ }^{1}$ March 22, 2017, © 2016 Steven Heilman, All Rights Reserved.

