
Stochastic Processes Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due November 3, in the discussion section.

Homework 4

Exercise 1. Let Ω be a finite state space. This exercise demonstrates that the total variation
distance is a metric. That is, the following three properties are satisfied:

• ||µ− ν||TV ≥ 0 for all probability distributions µ, ν on Ω, and ||µ− ν||TV = 0 if and
only if µ = ν.
• ||µ− ν||TV = ||ν − µ||TV

• ||µ− ν||TV ≤ ||µ− η||TV + ||η − ν||TV for all probability distributions µ, ν, η on Ω.

(Hint: you may want to use the triangle inequality for real numbers: |x− y| ≤ |x− z| +
|z − y|, ∀ x, y, z ∈ R.)

Exercise 2. Let µ, ν be probability distributions on a finite state space Ω. Then

||µ− ν||TV =
1

2

∑
x∈Ω

|µ(x)− ν(x)| .

(Hint: consider the set A = {x ∈ Ω: µ(x) ≥ ν(x)}.)

Exercise 3. Let (X0, X1, . . .) be the simple random walk on Z. Show that P0(Xn = 0)
decays like 1/

√
n as n→∞. That is, show

lim
n→∞

√
2nP0(X2n = 0) =

√
2

π
.

Also, show the upper bound

P0(Xn = k) ≤ 10√
n
, ∀n ≥ 0, k ∈ Z.

(Hint 1: first consider the case n = 2r for r ∈ Z. It may be helpful to show that
(

2r
r+j

)
is

maximized when j = 0. To eventually deal with k odd, just condition on the first step of
the walk.)

(Hint 2: you can freely use Stirling’s formula:

lim
n→∞

n!√
2πn(n/e)n

= 1.

Or, there is a more precise estimate: for any n ≥ 3, there exists 1/(12n+ 1) ≤ εn ≤ 1/(12n)
such that

n! =
√

2πe−nnn+1/2eεn .)
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Exercise 4. Show that every state in the simple random walk on Z is recurrent. (You should
show this statement for any starting location of the Markov chain.)

Then, find a nearest-neighbor random walk on Z such that every state is transient.

Exercise 5. For the simple random walk on Z, show that E0T0 = ∞. Conclude that, for
any x, y ∈ Z, ExTy =∞.

Exercise 6. Let (X0, X1, . . .) be the “corner walk” on Z2. The transitions are described
as follows. From any point (x, y) ∈ Z2, the Markov chain adds any of the following four
vector to (x, y) each with probability 1/4: {(1, 1, ), (1,−1), (−1, 1), (−1,−1)}. Using that
the coordinates of this walk are each independent simple random walks on Z, conclude that
there exists c > 0 such that

lim
n→∞

nP(0,0)(X2n = (0, 0)) = c.

That is, P(0,0)(X2n = (0, 0)) is about c/n, when n is large.

Now, note that the usual nearest-neighbor simple random walk on Z2 is a rotation of the
corner walk by an angle of π/4. So, the above limiting statement also holds for the simple
random walk on Z2.

Exercise 7. Let Ω = [0, 1]. Let P be the uniform probability law on Ω. Let X : [0, 1]→ R
be a random variable such that X(t) = t2 for all t ∈ [0, 1]. Let

A = {[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1]}

Compute explicitly the function E(X|A). (It should be constant on each of the partition
elements.) Draw the function E(X|A) and compare it to a drawing of X itself.

Now, for every integer k > 1, let s = 2−k, and let Ak := {[0, s), [s, 2s), [2s, 3s), . . . , [1−2s, 1−
s), [1− s, 1)}. Try to draw E(X|Ak). Convince yourself of the following fact (you can prove
it if you want, but you do not have to): for every t ∈ [0, 1]

lim
k→∞

E(X|Ak)(t) = X(t).

The purpose of this exercise is to demonstrate that E(X|A) is given by averaging X over
each partition element, such that E(X|A) is constant on each partition element of A.

Exercise 8. Let X be a random variable with finite variance, and let t ∈ R. Consider the
function f : R → R defined by f(t) = E(X − t)2. Show that the function f is uniquely
minimized when t = EX. That is, f(EX) < f(t) for all t ∈ R such that t 6= EX. Put
another way, setting t to be the mean of X minimizes the quantity E(X − t)2 uniquely.

The conditional expectation, being a piecewise version of taking an average, has a similar
property. Let A1, . . . , Ak ⊆ Ω such that Ai ∩ Aj = ∅ for all i, j ∈ {1, . . . , k} with i 6= j, and
∪ki=1Ai = Ω. Write A = {A1, . . . , Ak}. By definition, for each 1 ≤ i ≤ k, E(X|A) is constant
on Ai. Now, let Y be any other random variable such that, for each 1 ≤ i ≤ k, Y is constant
on Ai. Show that the quantity E(X − Y )2 is uniquely minimized by such a Y only when
Y = E(X|A).
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Exercise 9. Let Ω = [0, 1]. Let P be the uniform probability law on Ω. Let X : [0, 1]→ R be
a random variable such that X(t) = t2 for all t ∈ [0, 1]. For every integer k > 1, let s = 2−k,
let Ak := {[0, s), [s, 2s), [2s, 3s), . . . , [1− 2s, 1− s), [1− s, 1)}, and let Mk := E(X|Ak). Show
that the increments M2 −M1,M3 −M2, . . . are orthogonal in the following sense. For any
i, j ≥ 1 with i 6= j,

E(Mi+1 −Mi)(Mj+1 −Mj) = 0.

This property is sometimes called orthogonality of martingale increments. This prop-
erty holds for many martingales, but we will not prove this.


