Stochastic Processes Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due November 3, in the discussion section.

Homework 4

Exercise 1. Let 2 be a finite state space. This exercise demonstrates that the total variation
distance is a metric. That is, the following three properties are satisfied:

o ||t — v||py > 0 for all probability distributions u, v on €, and ||u — v||, = 0 if and
only if yu =v.

o |lp=vlpy =¥ = pllpy
o || —v||lpy < Il —nllpy + |In — v||py for all probability distributions g, v, n on €.

(Hint: you may want to use the triangle inequality for real numbers: |z —y| < |z — z| +
|z —y|, ¥V z,y,z € R.)
Exercise 2. Let u, v be probability distributions on a finite state space 2. Then

= vllay = § S lnta) — vla)].

xeQ)
(Hint: consider the set A = {z € Q: u(z) > v(x)}.)

Exercise 3. Let (Xo, Xi,...) be the simple random walk on Z. Show that Py(X, = 0)
decays like 1/y/n as n — oo. That is, show

2
lim V 2n PO(XQn = 0) = —.
n—oo T
Also, show the upper bound
1
Po(X, =k) < gy Vn>0keZ.

Vi’
(Hint 1: first consider the case n = 2r for r € Z. It may be helpful to show that (2T.) is

r+7
maximized when 7 = 0. To eventually deal with k£ odd, just condition on the first step of

the walk.)

(Hint 2: you can freely use Stirling’s formula:
n!
im —
n—o0 \/2mn(n/e)"

Or, there is a more precise estimate: for any n > 3, there exists 1/(12n+1) <¢, < 1/(12n)
such that
n! =V 2me "/ 2een )
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Exercise 4. Show that every state in the simple random walk on Z is recurrent. (You should
show this statement for any starting location of the Markov chain.)

Then, find a nearest-neighbor random walk on Z such that every state is transient.

Exercise 5. For the simple random walk on Z, show that Ey7Ty = oo. Conclude that, for
any x,y € Z, E;T,, = oo.

Exercise 6. Let (Xo, X1,...) be the “corner walk” on Z2. The transitions are described
as follows. From any point (z,y) € Z?, the Markov chain adds any of the following four
vector to (z,y) each with probability 1/4: {(1,1,), (1,—1), (—=1,1), (—1,—1)}. Using that
the coordinates of this walk are each independent simple random walks on Z, conclude that
there exists ¢ > 0 such that

lim nPo0)(X2, = (0,0)) = c.

n—oo

That is, P g,0)(X2, = (0,0)) is about ¢/n, when n is large.

Now, note that the usual nearest-neighbor simple random walk on Z? is a rotation of the
corner walk by an angle of /4. So, the above limiting statement also holds for the simple
random walk on Z2.

Exercise 7. Let 2 = [0, 1]. Let P be the uniform probability law on . Let X: [0,1] - R
be a random variable such that X (¢) = ¢* for all ¢ € [0,1]. Let

A= {[0,1/4),[1/4,1/2),[1/2,3/4),[3/4,1]}

Compute explicitly the function E(X].A). (It should be constant on each of the partition
elements.) Draw the function E(X|.A) and compare it to a drawing of X itself.

Now, for every integer k > 1, let s = 27% and let Ay, := {[0, s), [s, 25), [25,35),...,[1—2s,1—
s),[1 —s,1)}. Try to draw E(X|Ax). Convince yourself of the following fact (you can prove
it if you want, but you do not have to): for every t € [0, 1]

lim B(X|A)(t) = X (1)

The purpose of this exercise is to demonstrate that E(X|.A) is given by averaging X over
each partition element, such that E(X|.A) is constant on each partition element of A.

Exercise 8. Let X be a random variable with finite variance, and let ¢t € R. Consider the
function f: R — R defined by f(t) = E(X — )% Show that the function f is uniquely

minimized when t = EX. That is, f(EX) < f(¢) for all t € R such that t # EX. Put
another way, setting ¢ to be the mean of X minimizes the quantity E(X — ¢)? uniquely.

The conditional expectation, being a piecewise version of taking an average, has a similar
property. Let Ay, ..., Ay € Q such that A;NA; =0 forall 4,5 € {1,...,k} with ¢ # j, and
Uk A; = Q. Write A = {A;,..., A}. By definition, for each 1 <i < k, E(X|A) is constant
on A;. Now, let Y be any other random variable such that, for each 1 <1 < k, Y is constant
on A;. Show that the quantity E(X — Y)? is uniquely minimized by such a Y only when
Y =E(X|A).
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Exercise 9. Let Q2 = [0, 1]. Let P be the uniform probability law on Q. Let X : [0,1] — R be
a random variable such that X (¢) = * for all ¢t € [0, 1]. For every integer k > 1, let s = 27%,
let Ay :={[0, 5), [s,25),[2s,3s),...,[1—2s,1—35),[1 —s,1)}, and let M} := E(X|Ag). Show
that the increments My — My, M3 — Ms, ... are orthogonal in the following sense. For any
i,j > 1 withi# 7,
E(Miy1 — M;)(Mj41 — M;) = 0.

This property is sometimes called orthogonality of martingale increments. This prop-
erty holds for many martingales, but we will not prove this.



