Stochastic Processes Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due November 3, in the discussion section.

Homework 4

Exercise 1. Let Ω be a finite state space. This exercise demonstrates that the total variation distance is a metric. That is, the following three properties are satisfied:

- $||\mu \nu||_{\text{TV}} \ge 0$ for all probability distributions μ, ν on Ω , and $||\mu \nu||_{\text{TV}} = 0$ if and only if $\mu = \nu$.
- $||\mu \nu||_{\text{TV}} = ||\nu \mu||_{\text{TV}}$ $||\mu \nu||_{\text{TV}} \le ||\mu \eta||_{\text{TV}} + ||\eta \nu||_{\text{TV}}$ for all probability distributions μ, ν, η on Ω .

(Hint: you may want to use the triangle inequality for real numbers: $|x-y| \leq |x-z| +$ $|z-y|, \, \forall \, x,y,z \in \mathbf{R}.)$

Exercise 2. Let μ, ν be probability distributions on a finite state space Ω . Then

$$||\mu - \nu||_{\text{TV}} = \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \nu(x)|.$$

(Hint: consider the set $A = \{x \in \Omega : \mu(x) \ge \nu(x)\}.$)

Exercise 3. Let (X_0, X_1, \ldots) be the simple random walk on \mathbb{Z} . Show that $\mathbf{P}_0(X_n = 0)$ decays like $1/\sqrt{n}$ as $n \to \infty$. That is, show

$$\lim_{n \to \infty} \sqrt{2n} \, \mathbf{P}_0(X_{2n} = 0) = \sqrt{\frac{2}{\pi}}.$$

Also, show the upper bound

$$\mathbf{P}_0(X_n = k) \le \frac{10}{\sqrt{n}}, \quad \forall n \ge 0, k \in \mathbb{Z}.$$

(Hint 1: first consider the case n=2r for $r\in\mathbb{Z}$. It may be helpful to show that $\binom{2r}{r+i}$ is maximized when j=0. To eventually deal with k odd, just condition on the first step of the walk.)

(Hint 2: you can freely use **Stirling's formula**:

$$\lim_{n \to \infty} \frac{n!}{\sqrt{2\pi n} (n/e)^n} = 1.$$

Or, there is a more precise estimate: for any $n \geq 3$, there exists $1/(12n+1) \leq \varepsilon_n \leq 1/(12n)$ such that

$$n! = \sqrt{2\pi}e^{-n}n^{n+1/2}e^{\varepsilon_n}.$$

Exercise 4. Show that every state in the simple random walk on \mathbb{Z} is recurrent. (You should show this statement for any starting location of the Markov chain.)

Then, find a nearest-neighbor random walk on \mathbb{Z} such that every state is transient.

Exercise 5. For the simple random walk on \mathbb{Z} , show that $\mathbf{E}_0 T_0 = \infty$. Conclude that, for any $x, y \in \mathbb{Z}$, $\mathbf{E}_x T_y = \infty$.

Exercise 6. Let $(X_0, X_1, ...)$ be the "corner walk" on \mathbb{Z}^2 . The transitions are described as follows. From any point $(x, y) \in \mathbb{Z}^2$, the Markov chain adds any of the following four vector to (x, y) each with probability 1/4: $\{(1, 1,), (1, -1), (-1, 1), (-1, -1)\}$. Using that the coordinates of this walk are each independent simple random walks on \mathbb{Z} , conclude that there exists c > 0 such that

$$\lim_{n \to \infty} n \mathbf{P}_{(0,0)}(X_{2n} = (0,0)) = c.$$

That is, $\mathbf{P}_{(0,0)}(X_{2n}=(0,0))$ is about c/n, when n is large.

Now, note that the usual nearest-neighbor simple random walk on \mathbb{Z}^2 is a rotation of the corner walk by an angle of $\pi/4$. So, the above limiting statement also holds for the simple random walk on \mathbb{Z}^2 .

Exercise 7. Let $\Omega = [0, 1]$. Let **P** be the uniform probability law on Ω . Let $X : [0, 1] \to \mathbf{R}$ be a random variable such that $X(t) = t^2$ for all $t \in [0, 1]$. Let

$$\mathcal{A} = \{[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1]\}$$

Compute explicitly the function $\mathbf{E}(X|\mathcal{A})$. (It should be constant on each of the partition elements.) Draw the function $\mathbf{E}(X|\mathcal{A})$ and compare it to a drawing of X itself.

Now, for every integer k > 1, let $s = 2^{-k}$, and let $\mathcal{A}_k := \{[0, s), [s, 2s), [2s, 3s), \dots, [1-2s, 1-s), [1-s, 1)\}$. Try to draw $\mathbf{E}(X|\mathcal{A}_k)$. Convince yourself of the following fact (you can prove it if you want, but you do not have to): for every $t \in [0, 1]$

$$\lim_{k\to\infty} \mathbf{E}(X|\mathcal{A}_k)(t) = X(t).$$

The purpose of this exercise is to demonstrate that $\mathbf{E}(X|\mathcal{A})$ is given by averaging X over each partition element, such that $\mathbf{E}(X|\mathcal{A})$ is constant on each partition element of \mathcal{A} .

Exercise 8. Let X be a random variable with finite variance, and let $t \in \mathbf{R}$. Consider the function $f : \mathbf{R} \to \mathbf{R}$ defined by $f(t) = \mathbf{E}(X - t)^2$. Show that the function f is uniquely minimized when $t = \mathbf{E}X$. That is, $f(\mathbf{E}X) < f(t)$ for all $t \in \mathbf{R}$ such that $t \neq \mathbf{E}X$. Put another way, setting t to be the mean of X minimizes the quantity $\mathbf{E}(X - t)^2$ uniquely.

The conditional expectation, being a piecewise version of taking an average, has a similar property. Let $A_1, \ldots, A_k \subseteq \Omega$ such that $A_i \cap A_j = \emptyset$ for all $i, j \in \{1, \ldots, k\}$ with $i \neq j$, and $\bigcup_{i=1}^k A_i = \Omega$. Write $\mathcal{A} = \{A_1, \ldots, A_k\}$. By definition, for each $1 \leq i \leq k$, $\mathbf{E}(X|\mathcal{A})$ is constant on A_i . Now, let Y be any other random variable such that, for each $1 \leq i \leq k$, Y is constant on A_i . Show that the quantity $\mathbf{E}(X - Y)^2$ is uniquely minimized by such a Y only when $Y = \mathbf{E}(X|\mathcal{A})$.

Exercise 9. Let $\Omega = [0, 1]$. Let **P** be the uniform probability law on Ω . Let $X: [0, 1] \to \mathbf{R}$ be a random variable such that $X(t) = t^2$ for all $t \in [0, 1]$. For every integer k > 1, let $s = 2^{-k}$, let $\mathcal{A}_k := \{[0, s), [s, 2s), [2s, 3s), \dots, [1 - 2s, 1 - s), [1 - s, 1)\}$, and let $M_k := \mathbf{E}(X|\mathcal{A}_k)$. Show that the increments $M_2 - M_1, M_3 - M_2, \dots$ are orthogonal in the following sense. For any $i, j \geq 1$ with $i \neq j$,

$$\mathbf{E}(M_{i+1} - M_i)(M_{j+1} - M_j) = 0.$$

This property is sometimes called **orthogonality of martingale increments**. This property holds for many martingales, but we will not prove this.