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1. Introduction

A stochastic process is a collection of random variables. These random variables are
often indexed by time, and the random variables are often related to each other by the evo-
lution of some physical procedure. Stochastic processes can then model random phenomena
that depend on time.
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A basic question we will always try to answer is: what does the stochastic process “look
like” after it runs for along period of time?

We will use conditional probabilities all the time, and the random variables we consider
will often not be independent; indeed, the dependence of the random variables on each other
makes stochastic processes interesting.

Also, whereas other probability classes focus mostly on equalities, we will additionally deal
with inequalities and limits.

2. Review of Probability Theory

2.1. Random Variables, Conditional Probability, Expectation.

Definition 2.1 (Universal Set). In a specific problem, we assume the existence of a sample
space, or universal set C which contains all other sets. The universal set represents all pos-
sible outcomes of some random process. We sometimes call the universal set the universe.
The universe is always assumed to be nonempty.

Definition 2.2 (Countable Set Operations). Let A1, A2, . . . ⊆ C. We define
∞⋃
i=1

Ai = {x ∈ C : ∃ a positive integer j such that x ∈ Aj}.

∞⋂
i=1

Ai = {x ∈ C : x ∈ Aj, ∀ positive integers j}.

Exercise 2.3. Prove that the set of real numbers R can be written as the countable union

R =
∞⋃
j=1

[−j, j].

(Hint: you should show that the left side contains the right side, and also show that the
right side contains the left side.)

Prove that the singleton set {0} can be written as

{0} =
∞⋂
j=1

[−1/j, 1/j].

Definition 2.4. A Probability Law (or probability distribution) P on a sample space
C is a function whose domain is the set of all subsets of C, and whose range is contained in
[0, 1], such that

(i) For any A ⊆ C, we have P(A) ≥ 0. (Nonnegativity)
(ii) For any A,B ⊆ C such that A ∩B = ∅, we have

P(A ∪B) = P(A) + P(B).

If A1, A2, . . . ⊆ C and Ai ∩Aj = ∅ whenever i, j are positive integers with i 6= j, then

P

(
∞⋃
k=1

Ak

)
=
∞∑
k=1

P(Ak). (Additivity)

(iii) We have P(C) = 1. (Normalization)
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Exercise 2.5 (Continuity of a Probability Law). Let P be a probability law on a sample
space C. Let A1, A2, . . . be sets in C which are increasing, so that A1 ⊆ A2 ⊆ · · · . Then

lim
n→∞

P(An) = P(∪∞n=1An).

In particular, the limit on the left exists. Similarly, let A1, A2, . . . be sets in C which are
decreasing, so that A1 ⊇ A2 ⊇ · · · . Then

lim
n→∞

P(An) = P(∩∞n=1An).

Definition 2.6 (Conditional Probability). Let A,B be subsets of some sample space
C. Let P be a probability law on C. Assume that P(B) > 0. We define the conditional
probability of A given B, denoted by P(A|B), as

P(A|B) =
P(A ∩B)

P(B)
.

Let B1, . . . , Bn ⊆ C. We use the following notation to denote the conditional probability of
A given ∩ni=1Bi:

P(A|B1, . . . , Bn) := P(A| ∩ni=1 Bi).

Proposition 2.7 (A Very Important Proposition). Let B be a fixed subset of some
sample space C. Let P be a probability law on C. Assume that P(B) > 0. Given any subset
A in C, define P(A|B) = P(A ∩B)/P(B) as above. Then P(A|B) is itself a probability law
on C, when viewed as a function of subsets A in C.

Proposition 2.8 (Multiplication Rule). Let n be a positive integer. Let A1, . . . , An be
sets in some sample space C, and let P be a probability law on C. Assume that P(Ai) > 0
for all i ∈ {1, . . . , n}. Then

P

(
n⋂
i=1

Ai

)
= P(A1)P(A2|A1)P(A3|A2 ∩ A1) · · ·P(An| ∩n−1

i=1 Ai).

Theorem 2.9 (Total Probability Theorem). Let A1, . . . , An be disjoint events in a sam-
ple space C. That is, Ai ∩ Aj = ∅ whenever i, j ∈ {1, . . . , n} satisfy i 6= j. Assume also that
∪ni=1Ai = C. Let P be a probability law on C. Then, for any event B ⊆ C, we have

P(B) =
n∑
i=1

P(B ∩ Ai) =
n∑
i=1

P(Ai)P(B|Ai).

Theorem 2.10 (Bayes’ Rule). Let A1, . . . , An be disjoint events in a sample space C. That
is, Ai ∩ Aj = ∅ whenever i, j ∈ {1, . . . , n} satisfy i 6= j. Assume also that ∪ni=1Ai = C. Let
P be a probability law on C. Then, for any event B ⊆ C with P(B) > 0, and for any
j ∈ {1, . . . , n}, we have

P(Aj|B) =
P(Aj)P(B|Aj)

P(B)
=

P(Aj)P(B|Aj)∑n
i=1 P(Ai)P(B|Ai)

.

Definition 2.11 (Independent Sets). Let n be a positive integer. Let A1, . . . , An be
subsets of a sample space C, and let P be a probability law on C. We say that A1, . . . , An
are independent if, for any subset S of {1, . . . , n}, we have

P (∩i∈SAi) =
∏
i∈S

P(Ai).
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Definition 2.12 (Random Variable). Let C be a sample space. Let P be a probability law
on C. A random variable X is a function X : C → R. (Sometimes we might also consider
a random variable to be a function from C to another set.) A discrete random variable
is a random variable whose range is either finite or countably infinite. A probability
density function (PDF) is a function f : R → [0,∞) such that

∫∞
−∞ f(x)dx = 1, and

such that, for any −∞ ≤ a ≤ b ≤ ∞, the integral
∫ b
a
f(x)dx exists. A random variable

X is called continuous if there exists a probability density function f such that, for any
−∞ ≤ a ≤ b ≤ ∞, we have

P(a ≤ X ≤ b) =

∫ b

a

f(x)dx.

When this equality holds, we call f the probability density function of X.
Let X be any random variable. We then define the cumulative distribution function

(CDF) F : R→ [0, 1] of X by

F (x) := P(X ≤ x), ∀x ∈ R.
We say two random variables X, Y are identically distributed if they have the same CDF.

Definition 2.13 (Probability Mass Function). Let X be a discrete random variable on
a sample space C, so that X : C → R. The probability mass function (or PMF) of X,
denote pX : R→ [0, 1] is defined by

pX(x) = P(X = x) = P({X = x}) = P({c ∈ C : X(c) = x}), x ∈ R.
Let A ⊆ R. We denote {X ∈ A} := {c ∈ C : X(c) ∈ A}.

We now give descriptions of some commonly encountered random variables.

Definition 2.14 (Bernoulli Random Variable). Let 0 < p < 1. A random variable X is
called a Bernoulli random variable with parameter p if X has the following PMF:

pX(x) =


p , if x = 1

1− p , if x = 0

0 , otherwise.

Definition 2.15 (Binomial Random Variable). Let 0 < p < 1 and let n be a positive
integer. A random variable X is called a binomial random variable with parameters
n and p if X has the following PMF. If k is an integer with 0 ≤ k ≤ n, then

pX(k) = P(X = k) =

(
n

k

)
pk(1− p)n−k.

For any other x, we have pX(x) = 0.

Recall that a sum of n independent Bernoulli random variables with parameter 0 < p < 1
is a binomial random variable with parameters n and p.

Definition 2.16 (Geometric Random Variable). Let 0 < p < 1. A random variable X
is called a geometric random variable with parameter p if X has the following PMF.
If k is a positive integer, then

pX(k) = P(X = k) = (1− p)k−1p.

For any other x, we have pX(x) = 0.
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Definition 2.17 (Poisson Random Variable). Let λ > 0. A random variable X is called
a Poisson random variable with parameter λ if X has the following PMF. If k is a
nonnegative integer, then

pX(k) = P(X = k) = e−λ
λk

k!
.

For any other x, we have pX(x) = 0.

Example 2.18. We say that a random variable X is uniformly distributed in [c, d] when
X has the following density function: f(x) = 1

d−c when x ∈ [c, d], and f(x) = 0 otherwise.

Example 2.19. Let λ > 0. A random variable X is called an exponential random
variable with parameter λ if X has the following density function: f(x) = λe−λx when
x ≥ 0, and f(x) = 0 otherwise.

Definition 2.20 (Normal Random Variable). Let µ ∈ R, σ > 0. A continuous random
variable X is said to be normal or Gaussian with mean µ and variance σ2 if X has the
following density function:

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , ∀x ∈ R.

In particular, a standard normal or standard Gaussian random variable is defined to
be a normal with µ = 0 and σ = 1.

Definition 2.21 (Indicator Function). Let A ⊆ C be a set. We define the indicator
function of A, denoted 1A : C → R so that 1A(c) = 0 if c /∈ A, and 1A(c) = 1 if c ∈ A.

Definition 2.22 (Expected Value). Let C be a sample space, let P be a probability law on
C. Let X be a random variable on C. Assume that X : C → [0,∞). We define the expected
value of X, denoted E(X), by

E(X) =

∫ ∞
0

P(X > t)dt.

More generally, if g : [0,∞) → [0,∞) is a differentiable function such that g′ is continuous
and g(0) = 0, we define

Eg(X) =

∫ ∞
0

g′(t)P(X > t)dt.

In particular, taking g(t) = tn for any positive integer n, for any t ≥ 0, we have

EXn =

∫ ∞
0

ntn−1P(X > t)dt.

For a general random variable X, if E max(X, 0) < ∞ and if E max(−X, 0) < ∞, we then
define E(X) = E max(X, 0)− E max(−X, 0). Otherwise, we say that E(X) is undefined.

Remark 2.23. If we assume that the expected value and the integral on R can be commuted,
then the following derivation of the formula for Eg(X) can be given. From the Fundamental
Theorem of Calculus, we have

g(X) =

∫ X

0

g′(t)dt =

∫ ∞
0

g′(t)1{X>t}dt.

Therefore, Eg(X) = E
∫∞

0
g′(t)1{X>t}dt =

∫∞
0
g′(t)E1{X>t}dt =

∫∞
0
g′(t)P(X > t)dt.
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Remark 2.24. If X only takes positive integer values, then for any t > 0, if k is an integer
such that k − 1 < t ≤ k, then P(X > t) = P(X ≥ k), so

E(X) =

∫ ∞
0

P(X > t)dt =
∞∑
k=1

∫ k

k−1

P(X > t)dt =
∞∑
k=1

P(X ≥ k) =
∞∑
k=0

P(X > k).

Remark 2.25. If X is positive with density function f that is continuous, then recall that
(d/dt)P(X ≤ t) = f(t) for all t ∈ R. Since P(X > t) = 1 − P(X ≤ t), we then have
(d/dt)P(X > t) = −f(t). So, we can recover the usual formula for expected value by
integrating by parts (assuming g(0) = 0 and |g(t)| ≤ 1 for all t ≥ 0):

Eg(X) =

∫ ∞
0

g′(t)P(X > t)dt = −
∫ ∞

0

g(t)
d

dt
P(X > t)dt =

∫ ∞
0

g(t)f(t)dt.

Theorem 2.26 (Fundamental Theorem of Calculus). Let f be a probability density

function. Then the function g(t) =
∫ t
−∞ f(x)dx is continuous at any t ∈ R. Also, if f is

continuous at a point x, then g is differentiable at t = x, and g′(x) = f(x).

Proposition 2.27. Let X1, . . . , Xn be random variables. Then

E(
n∑
i=1

Xi) =
n∑
i=1

E(Xi).

Unfortunately the above property is not obvious from our definition of expected value.

Definition 2.28 (Convex Function). Let φ : R→ R. We say that φ is convex if, for any
x, y ∈ R and for any t ∈ [0, 1], we have

φ(tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y).

Exercise 2.29. Let φ : R → R. Show that φ is convex if and only if: for any y ∈ R, there
exists a constant a and there exists a function L : R→ R defined by L(x) = a(x− y) +φ(y),
x ∈ R, such that L(y) = φ(y) and such that L(x) ≤ φ(x) for all x ∈ R. (In the case that φ
is differentiable, the latter condition says that φ lies above all of its tangent lines.)

(Hint: Suppose φ is convex. If x is fixed and y varies, show that φ(y)−φ(x)
y−x increases as y

increases. Draw a picture. What slope a should L have at x?)

Exercise 2.30. Let X, Y be positive random variables on a sample space C. Assume that
X(c) ≥ Y (c) for all c ∈ C. Prove that EX ≥ EY .

More generally, if X ≤ Y , E |X| <∞ and E |Y | <∞, show that EX ≤ EY .

Proposition 2.31 (Jensen’s Inequality). Let X be a random variable. Let φ : R→ R be
convex. Then

φ(EX) ≤ Eφ(X).

Proof. Let y = EX. Then Exercise 2.29 says there exists a linear function L(x) = a(x −
y) + φ(y) such that L(x) ≤ φ(x) for all x ∈ R. Taking expected values with respect to
x and using Exercise 2.30, we get EL(X) ≤ Eφ(X). But EL(X) = a(EX − y) + φ(y) =
a(y − y) + φ(y) = φ(y). So, φ(y) = φ(EX) ≤ Eφ(X). �
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Definition 2.32 (Variance). Let C be a sample space, let P be a probability law on C. Let
X be a random variable on C. We define the variance of X, denoted var(X), by

var(X) = E(X − E(X))2 = EX2 − (EX)2.

We define the standard deviation of X, denoted σX , by

σX =
√

var(X).

Proposition 2.33. Let C be a sample space, let P be a probability law on C. Let X be a
random variable on C. Let a, b be constants. Then

var(aX + b) = a2var(X).

We will review conditional expectation later on in the notes.

Definition 2.34 (Joint Density Function). We say that random variables X1, . . . , Xn

have joint density function f : Rn → [0,∞) if
∫
Rn f(x)dx = 1, and if

P((X1, . . . , Xn) ∈ A) =

∫
A

f(x)dx, ∀A ⊆ Rn.

We define the marginal density f1 : R→ [0,∞) of X1 so that

f1(x1) =

∫
Rn−1

f(x1, . . . , xn)dx2 · · · dxn, ∀x1 ∈ R.

Similarly, we can define the marginal density f12 : R2 → [0,∞) of X1, X2 so that

f12(x1, x2) =

∫
Rn−2

f(x1, . . . , xn)dx3 · · · dxn, ∀x1, x2 ∈ R.

And so on.

Definition 2.35 (Independence of Random Variables). Let X1, . . . , Xn be random
variables on a sample space C, and let P be a probability law on C. We say that X1, . . . , Xn

are independent if

P(X1 ≤ x1, . . . , Xn ≤ xn) =
n∏
i=1

P(Xi ≤ xi), ∀x1, . . . , xn ∈ R.

Exercise 2.36. Let X1, . . . , Xn be discrete random variables. Assume that

P(X1 = x1, . . . , Xn = xn) =
n∏
i=1

P(Xi = xi), ∀x1, . . . , xn ∈ R.

Show that X1, . . . , Xn are independent.

Exercise 2.37. Let X1, . . . , Xn be continuous random variables with joint PDF f : Rn →
[0,∞). Assume that

fX1,...,Xn(x1, . . . , xn) =
n∏
i=1

fXi(xi), ∀x1, . . . , xn ∈ R.

Show that X1, . . . , Xn are independent.
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Proposition 2.38. Let X1, . . . , Xn be random variables on a sample space C, and let P be
a probability law on C. Assume that X1, . . . , Xn are pairwise independent. That is, Xi and
Xj are independent whenever i, j ∈ {1, . . . , n} with i 6= j. Then

var(
n∑
i=1

Xi) =
n∑
i=1

var(Xi).

Proposition 2.39. Let X1, . . . , Xn be independent random variables. Then

E(
n∏
i=1

Xi) =
n∏
i=1

E(Xi).

Proposition 2.40. Let 0 = n0 < n1 < n2 < . . . < nk = n be integers. Let X1, . . . , Xn

be independent random variables. For any 1 ≤ i ≤ k, let gi : Rni−ni−1 → R. Then the
random variables g1(X1, . . . , Xn1), g2(Xn1+1, . . . , Xn2), . . ., gk(Xnk−1+1, . . . , Xnk) are inde-
pendent. Consequently,

E(
n∏
i=1

gi(Xni−1+1, . . . , Xni)) =
n∏
i=1

Egi(Xni−1+1, . . . , Xni).

2.2. Some Linear algebra.

Definition 2.41 (Eigenvector, Eigenvalue). Let A be an m×m real matrix, let x ∈ Rm

be a column vector, and let y ∈ Rm be a row vector. We say x is a (right) eigenvector of
A with eigenvalue λ ∈ C if x 6= 0 and

Ax = λx.

We say y is a (left) eigenvector of A with eigenvalue λ ∈ C if y 6= 0 and

yA = λy.

Note that x is a right eigenvector for A if and only if xT is a left eigenvector of AT .

Definition 2.42. The null space (or kernel) of an m × n real matrix A is the set of all
column-vectors x ∈ Rn such that Ax = 0. The nullity of A is the number of nonzero vectors
that can form a basis of the null space of A

The column space is the set of all linear combinations of the columns of the matrix A.
The rank of A is the number of nonzero vectors that can form a basis of the column space
of A.

Theorem 2.43 (Rank-Nullity Theorem). Let A be an m×n real matrix. Then the rank
of A plus the nullity of A is equal to n.

2.3. Law Of Large Numbers.

Theorem 2.44 (Weak Law of Large Numbers). Let X1, . . . , Xn be independent identi-
cally distributed random variables. Assume that µ := EX1 is finite. Then for any ε > 0

lim
n→∞

P

( ∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ > ε

)
= 0.
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Theorem 2.45 (Strong Law of Large Numbers). Let X1, . . . , Xn be independent iden-
tically distributed random variables. Assume that µ := EX1 is finite. Then

P

(
lim
n→∞

X1 + · · ·+Xn

n
= µ

)
= 1.

2.4. Central Limit Theorem. The following Theorem is a special case of the Central
Limit Theorem.

Theorem 2.46 (De Moivre-Laplace Theorem). Let X1, . . . , Xn be independent Bernoulli
random variables with parameter 1/2. Recall that X1 has mean 1/2 and variance 1/4. Let
a ∈ R. Then

lim
n→∞

P

(
X1 + · · ·+Xn − (1/2)n

√
n
√

1/4
≤ a

)
=

∫ a

−∞
e−t

2/2 dt√
2π
.

That is, when n is large, the CDF of X1+···+Xn−(1/2)n
√
n
√

1/4
is roughly the same as that of a

standard normal. In particular, if you flip n fair coins, then the number of heads you get
should typically be in the interval (n/2−

√
n/2, n/2 +

√
n/2), when n is large.

Remark 2.47. The random variable X1+···+Xn−(1/2)n
√
n
√

1/4
has mean zero and variance 1, just like

the standard Gaussian. So, the normalizations of X1 + · · ·+Xn we have chosen are sensible.
Also, to explain the interval (n/2−

√
n/2, n/2 +

√
n/2), note that

lim
n→∞

P

(
n

2
−
√
n

2
≤ X1 + · · ·+Xn ≤

n

2
+

√
n

2

)
= lim

n→∞
P

(
−
√
n

2
≤ X1 + · · ·+Xn −

n

2
≤
√
n

2

)
= lim

n→∞
P

(
−1 ≤

X1 + · · ·+Xn − n
2√

n/2
≤ 1

)
=

∫ 1

−1

e−t
2/2 dt√

2π
≈ .6827.

Exercise 2.48. Estimate the probability that 1000000 coin flips of fair coins will result
in more than 501, 000 heads, using the De Moivre-Laplace Theorem. (Some of the fol-

lowing integrals may be relevant:
∫ 0

−∞ e
−t2/2dt/

√
2π = 1/2,

∫ 1

−∞ e
−t2/2dt/

√
2π ≈ .8413,∫ 2

−∞ e
−t2/2dt/

√
2π ≈ .9772,

∫ 3

−∞ e
−t2/2dt/

√
2π ≈ .9987.)

Casinos do these kinds of calculations to make sure they make money and that they do
not go bankrupt. Financial institutions and insurance companies do similar calculations for
similar reasons.

In fact, there is nothing special about the parameter 1/2 in the above theorem.

Theorem 2.49 (De Moivre-Laplace Theorem, Second Version). Let X1, . . . , Xn be
independent Bernoulli random variables with parameter p. Recall that X1 has mean p and
variance p(1− p). Let a ∈ R. Then

lim
n→∞

P

(
X1 + · · ·+Xn − pn√

n
√
p(1− p)

≤ a

)
=

∫ a

−∞
e−t

2/2 dt√
2π
.

In fact, there is nothing special about Bernoulli random variables in the above theorem.
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Theorem 2.50 (Central Limit Theorem). Let X1, . . . , Xn be independent identically
distributed random variables. Assume that E |X1| <∞ and 0 < Var(X1) <∞.

Let µ = EX1 and let σ =
√

Var(X1). Then for any −∞ ≤ a ≤ ∞,

lim
n→∞

P

(
X1 + · · ·+Xn − µn

σ
√
n

≤ a

)
=

∫ a

−∞
e−t

2/2 dt√
2π
.

Remark 2.51. The random variable X1+···+Xn−(1/2)n
σ
√
n

has mean zero and variance 1, just like

the standard Gaussian.

Theorem 2.52 (Fubini Theorem for Integrals). Let h : R2 → R be a continuous function
such that

∫∫
R2 |h(x, y)| dxdy <∞. Then∫∫

R2

h(x, y)dxdy =

∫
R

(∫
R
h(x, y)dx

)
dy =

∫
R

(∫
R
h(x, y)dy

)
dx.

Theorem 2.53 (Fubini Theorem for Sums). Let {aij}i,j≥0 be a doubly-infinite array of
nonnegative numbers. Then

∞∑
i=0

(
∞∑
j=0

aij

)
=
∞∑
j=0

(
∞∑
i=0

aij

)
.

Exercise 2.54. Find a doubly-infinite array of real numbers {aij}i,j≥0 such that

∞∑
i=0

(
∞∑
j=0

aij

)
= 1 6= 0 =

∞∑
j=0

(
∞∑
i=0

aij

)
.

(Hint: the array can be chosen to have all entries either −1, 0, or 1. And most of the entries
can be chosen to be 0.)

Exercise 2.55. Let X, Y be independent, discrete random variables. Using a total proba-
bility theorem-type argument, show that

P(X + Y = z) =
∑
x∈R

P(X = x)P(Y = z − x), ∀ z ∈ R.

Exercise 2.56. Let X, Y be independent, continuous random variables with densities fX , fY ,
respectively. Let fX+Y be the density of X + Y . Show that

fX+Y (z) =

∫
R
fX(x)fY (z − x)dx, ∀z ∈ R.

Using this identity, find the density fX+Y when X and Y are both independent, uniformly
distributed on [0, 1].

3. Markov Chains

Our first example of a stochastic process will be a Markov chain. Before defining a Markov
chain formally, we give an example of one.

Example 3.1 (Frog on two Lily Pads). Suppose there are two different lily pads labelled
e (for east) and w (for west). Suppose the frog starts on one of the two lily pads. Let
0 < p, q < 1. There is a coin on the lily pad e which has probability p of landing heads
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and probability 1− p of landing tails. Similarly, there is a coin on the lily pad w which has
probability q of landing heads and probability 1− q of landing tails. Every day, the frog flips
the coin on the lily pad it currently occupies. If the coin lands heads, the frog goes to the
other lily pad. If the coin lands tails, the frog stays on its current lily pad.

For any n ≥ 0, let Xn be the (random) location of the frog at the beginning of day n.
Then the sequence of random variables X0, X1, X2, . . . describes the sequence of positions
that the frog takes. Note that if C is the sample space, then for any n ≥ 0, Xn : C → {e, w}
is a random variable, taking either the value e or w. We would like to find the probabilities
that X1, X2, . . . take the values e and w. To this end, let P be a real 2× 2 matrix such that
P (x, y) = P(X1 = y |X0 = x), for all x, y ∈ {e, w}. That is,

P =

(
P (e, e) P (e, w)
P (w, e) P (w,w)

)
=

(
1− p p
q 1− q

)
.

More generally, note that for any integer n ≥ 1, P (x, y) = P(Xn = y |Xn−1 = x), since the
location of the frog tomorrow only depends on its location today.

Then the random variables (X0, X1, . . .) is a Markov Chain with transition matrix P .

Definition 3.2 (Finite Markov Chain). A finite Markov Chain is a stochastic process
(X0, X1, X2, . . .) together with a finite set Ω, which is called the state space of the Markov
Chain, and an |Ω| × |Ω| real matrix P . The random variables X0, X1, . . . take values in the
finite set Ω. The matrix P is stochastic, that is all of its entries are nonnegative and∑

y∈Ω

P (x, y) = 1, ∀x ∈ Ω.

And the stochastic process satisfies the following Markov property: for all x, y ∈ Ω, for
any n ≥ 1, and for all events Hn−1 of the form Hn−1 = ∩n−1

k=0{Xk = xk}, where xk ∈ Ω for all
0 ≤ k ≤ n− 1, such that P(Hn−1 ∩ {Xn = x}) > 0, we have

P(Xn+1 = y |Hn−1 ∩ {Xn = x}) = P(Xn+1 = y |Xn = x) = P (x, y).

That is, the next location of the Markov chain only depends on its current location. And
the transition probability is defined by P (x, y).

Exercise 3.3. Let P,Q be stochastic matrices of the same size. Show that PQ is a stochastic
matrix. Conclude that, if r is a positive integer, then P r is a stochastic matrix.

Exercise 3.4. Let A,B be events in a sample space. Let C1, . . . , Cn be events such that
Ci ∩ Cj = ∅ for any i, j ∈ {1, . . . , n} with i 6= j, and such that ∪ni=1Ci is the whole sample
space. Show:

P(A|B) =
n∑
i=1

P(A|B, Ci)P(Ci|B).

(Hint: consider using the Total Probability Theorem (Theorem 2.9) and Proposition 2.7.)

Example 3.5. Returning to the frog example, we have

P =

(
1− p p
q 1− q

)
.

11



Note that each row of this matrix sums to 1, so P is stochastic. We can then compute the
probabilities that X2 takes various values, by conditioning on the two possible values of X1.
Using Exercise 3.4, the Markov Property, and the definition of P ,

P(X2 = w |X0 = e) = P(X2 = w |X1 = e,X0 = e)P(X1 = e |X0 = e)

+ P(X2 = w |X1 = w,X0 = e)P(X1 = w |X0 = e)

= P(X2 = w |X1 = e)P(X1 = e |X0 = e) + P(X2 = w |X1 = w)P(X1 = w |X0 = e)

= P (e, w)P (e, e) + P (w,w)P (e, w) = p(1− p) + (1− q)p. (1)

More generally, for any n ≥ 1, define the 1× 2 row vector

µn :=
(
P(Xn = e |X0 = e), P(Xn = w |X0 = e)

)
.

Also, assume the frog starts on the lily pad e, so that µ0 = (1, 0). Then (1) generalizes to

µn = µn−1P, ∀n ≥ 1.

Iteratively applying this identity,

µn = µ0P
n, ∀n ≥ 0.

What happens when n becomes large? In this case, we might expect the vector µn to
converge to something as n→∞. That is, when n becomes very large, the probability that
Xn takes a particular value converges to a number. Suppose the vector µn converges to some
1× 2 row vector π as n→∞. Note that the entries of µn sum to 1 and are nonnegative, so
the same is true for π. We claim that

π = πP.

That is, π is a (left)-eigenvector of P with eigenvalue 1. To see why π = πP should be true,
note that

π = lim
n→∞

µn = lim
n→∞

µ0P
n = ( lim

n→∞
µ0P

n)P = ( lim
n→∞

µn)P = πP.

The equation π = πP allows us to solve for π, since it says(
π(e), π(w)

)
=
(
π(e)(1− p) + π(w)q, π(e)p+ π(w)(1− q)

)
.

So, 0 = −pπ(e) + π(w)q, π(w) = π(e)(p/q), and π(e) + π(w) = 1, so π(e)(1 + p/q) = 1, so

π(e) =
q

p+ q
, π(w) =

p

p+ q
.

That is, when n becomes very large, the frog has probability roughly q/(q + p) of being on
the e pad, and it has probability roughly p/(q + p) of being on the w pad.

We can actually say something a bit more precise. For any n ≥ 0, define

∆n = µn(e)− q

p+ q
.

Then, using the definition of µn+1, and µn(w) = 1− µn(e), we have, for any n ≥ 0

∆n+1 = (µnP )(e)− q

p+ q
= µn(e)(1− p) + q(1− µn(e))− q

p+ q
= (1− p− q)∆n.

So, iterating this equality, we have

∆n = (1− p− q)n∆0, ∀n ≥ 1.
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Since 0 < p, q < 1, this means that the quantity ∆n is converging exponentially fast to 0. In
particular,

lim
n→∞

∆n = 0, lim
n→∞

µn = π.

(A similar argument shows that µn(w)− p
p+q

converges exponentially fast to zero)

Exercise 3.6. Let 0 < p, q < 1. Let P =

(
1− p p
q 1− q

)
. Find the (left) eigenvectors of

P , and find the eigenvalues of P . By writing any row vector x ∈ R2 as a linear combination
of eigenvectors of P (whenever possible), find an expression for xP n for any n ≥ 1. What is
limn→∞ xP

n? Is it related to the vector π = (q/(p+ q), p/(p+ q))?

3.1. Examples of Markov Chains. Unfortunately, not all Markov chains converge when
n becomes large, as we now demonstrate.

Example 3.7. Consider the Markov chain defined by the matrix P =

(
0 1
1 0

)
. Note that

P n = P for any positive odd integer n, and P n =

(
1 0
0 1

)
for any positive even integer n.

So, if µ is any 1× 2 row vector with unequal entries, it is impossible for µP n to converge as
n→∞.

Example 3.8 (Random Walk on a Graph). A (finite, undirected, simple) graph G =
(V,E) consists of a finite vertex set V and an edge set E. The edge set consists of
unordered pairs of vertices, so that E ⊆ {{x, y} : x, y ∈ V, x 6= y}. We think of distinct
vertices as distinct nodes, where two nodes x, y ∈ V are joined by an edge if and only if
{x, y} ∈ E. When {x, y} ∈ E, we say that y is a neighbor of x (and x is a neighbor of
y). The degree deg(x) of a vertex x ∈ V is the number of neighbors of x. We assume that
deg(x) > 0 for every x ∈ V , so that G has no isolated vertices.

Given a graph G = (V,E), we define the simple random walk on G to be the Markov
chain with state space V and transition matrix

P (x, y) =

{
1

deg(x)
, if x and y are neighbors

0 , otherwise.

In this Markov chain, starting from any position x, the next state is then any neighbor y
of x, each with equal probability. More generally, a random walk on a vertex set V is any
Markov chain with state space V .

1

2

P (1, 2)

P (2, 1)
3

4

5
P (3, 5)

P (4, 3)

P (4, 5)P (5, 4)

P (1, 3)

Exercise 3.9. Let G = (V,E) be a graph. Let |E| denote the number of elements in the set
E, i.e. |E| is the number of edges of the graph. Prove:

∑
x∈V deg(x) = 2 |E|.
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Example 3.10 (Lazy Random Walk). Let P be the matrix defined by a simple random
walk on a graph G = (V,E). Let I denote the |V | × |V | identity matrix. The lazy random
walk is the Markov chain with transition matrix (P + I)/2. That is, with probability 1/2,
the next state is your current state, and with probability 1/2, the next state is any neighbor
of the current state, each chosen with equal probability.

Example 3.11 (Google’s PageRank Algorithm). We can think of the set of all websites
on the internet as a graph, where each website is a vertex in V , and {x, y} ∈ E if and only if
there is a hyperlink on page x that links to page y (or if there is a hyperlink on page y that
links to page x). Let P denote the normalized adjacency matrix, so that P (x, y) = 1/deg(x)
if {x, y} ∈ E, and P (x, y) = 0 otherwise. Note that P is a stochastic matrix. Let Q be the
|V | × |V | matrix such that all entries of Q are 1. Consider the matrix

N := (.85)P + (.15)Q/ |V | .

Then N is a stochastic matrix. We can think of the Markov chain associated to N as follows:
85% of the time, you move from one website to another by one of the hyperlinks on that site,
each with equal probability. And 15% of the time, you go to any website on the internet,
uniformly at random. The PageRank vector π is then a 1 × |V | vector with π(x) ≥ 0 for
all x ∈ V , and

∑
x∈V π(x) = 1 such that π = πN . That is, the PageRank value of website

x ∈ V is π(x). The most “relevant” websites x have the largest values of π(x).
The idea here is that if π(x) is large, then the Markov chain will often encounter the website

x, so we think of x as being an important website. At the moment, π is not guaranteed to
exist. We will return to this issue in Theorem 3.33 below.

3.2. Classification of States.

Definition 3.12. Suppose we have a Markov chain (X0, X1, X2, . . .) with state space Ω. Let
x ∈ Ω be fixed. For any set A in the sample space, define a probability law Px such that

Px(A) := P(A|X0 = x).

Similarly, we define Ex to be the expected value with respect to the probability law Px.
More generally, if µ is a probability distribution on Ω, we let Pµ denote the probability

law, given that the Markov chain started from the probability distribution µ, so that P(X0 =
x0) = µ(x0) for any x0 ∈ Ω. So, for example,

Pµ(X1 = x1) =
∑
x0∈Ω

P (x0, x1)µ(x0), ∀x1 ∈ Ω.

Note also that if x ∈ Ω is fixed, and if µ is defined so that µ(x) = 1 and µ(y) = 1 for all
y 6= x, then Pµ = Px.

Definition 3.13 (Return Time). Suppose we have a Markov Chain X0, X1, . . . with state
space Ω. Let y ∈ Ω. Define the first return time of y to be the following random variable:

Ty := min{n ≥ 1: Xn = y}.

Also, define

ρyy := Py(Ty <∞).

That is, ρyy is the probability that the chain starts at y, and it returns to y in finite time.
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Definition 3.14 (Stopping Time). A stopping time for a Markov chain X0, X1, . . . is a
random variable T taking values in 0, 1, 2, . . . ,∪{∞} such that, for any integer n ≥ 0, the
event {T = n} is determined by X0, . . . , Xn. More formally, for any integer n ≥ 1, there is
a set Bn ⊆ Ωn+1 such that {T = n} = {(X0, . . . , Xn) ∈ Bn}. Put another way, the indicator
function 1{T=n} is a function of the random variables X0, . . . , Xn.

Example 3.15. Fix y ∈ Ω. The first return time Ty is a stopping time since

{Ty = n} = {X1 6= y, X2 6= y, . . . , Xn−1 6= y, Xn = y}
= {(X0, . . . , Xn) ∈ Ω× {y}c × · · · {y}c × {y}}, ∀n ≥ 0.

For an intuitive example of a stopping time, suppose X0, X1, . . . is a Markov chain where
Xn is the price of a stock at time n ≥ 0. Then a stopping time could be the first time that the
stock price reaches either $90 or $100. That is, a stopping time is a stock trading strategy,
or a way of “stopping” the random process, but only using information from the past and
present. An example of a random variable T that is not a stopping time is to let T be the
time that stock price becomes highest, before the price drops to 0. (For example, {T = 100}
could depend on X104.) So, since T relies on future information, T is not a stopping time.

Theorem 3.16 (Strong Markov Property). Let T be a stopping time for a Markov chain.
Let ` ≥ 1, and let A ⊆ Ω`. Fix n ≥ 1. Then, for any x0, . . . , xn ∈ Ω,

Px0((XT+1, . . . , XT+`) ∈ A |T = n and (X0, . . . , Xn) = (x0, . . . , xn))

= Pxn((X1, . . . , X`) ∈ A).

That is, if we know T = n, Xn = xn and if we know the previous n states of the Markov
chain, then this is exactly the same as starting the Markov chain from the state xn.

Proof. By the definition of the stopping time, there exists Bn ⊆ Ωn+1 such that {T = n} =
{(X0, . . . , Xn) ∈ Bn}. If (x0, . . . , xn) ∈ Bn, we then have (using Exercise 3.17)

Px0((XT+1, . . . , XT+`) ∈ A |T = n, (X0, . . . , Xn) = (x0, . . . , xn))

= P((XT+1, . . . , XT+`) ∈ A |T = n, (X0, . . . , Xn) = (x0, . . . , xn))

= P((Xn+1, . . . , Xn+`) ∈ A |T = n, (X0, . . . , Xn) = (x0, . . . , xn))

= P((Xn+1, . . . , Xn+`) ∈ A | (X0, . . . , Xn) = (x0, . . . , xn))

= P((Xn+1, . . . , Xn+`) ∈ A |Xn = xn) , by Exercise 3.18

= P((X1, . . . , X`) ∈ A |X0 = xn) , by Exercise 3.18

= Pxn((X1, . . . , X`) ∈ A), , by definition of Pxn .

Finally, if (x0, . . . , xn) /∈ Bn, then {T = n} ∩ {(X0, . . . , Xn) = (x0, . . . , xn)} = ∅, so the
conditional probability of this event is undefined, and there is nothing to prove. �

Exercise 3.17. Let A,B be events such that B ⊆ {X0 = x0}. Then P(A|B) = Px0(A|B).
More generally, if A,B are events, then Px0(A|B) = P(A|B,X0 = x0).

Exercise 3.18. Suppose we have a Markov Chain with state space Ω. Let n ≥ 0, ` ≥ 1, let
x0, . . . , xn ∈ Ω and let A ⊆ Ω`. Using the (usual) Markov property, show that

P((Xn+1, . . . , Xn+`) ∈ A | (X0, . . . , Xn) = (x0, . . . , xn))

= P((Xn+1, . . . , Xn+`) ∈ A |Xn = xn).
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Then, show that

P((Xn+1, . . . , Xn+`) ∈ A |Xn = xn) = P((X1, . . . , X`) ∈ A |X0 = xn).

(Hint: it may be helpful to use the Multiplication Rule (Proposition 2.8).)

Exercise 3.19. Suppose we have a Markov chain X0, X1, . . . with finite state space Ω. Let
y ∈ Ω. Define Ly := max{n ≥ 0: Xn = y}. Is Ly a stopping time? Prove your assertion.

Example 3.20. If y is in the state space of a Markov chain, recall we defined the return

time to be Ty = min{n ≥ 1: Xn = y}. We also verified Ty is a stopping time. Let T
(1)
y = Ty,

and for any k ≥ 2, define a random variable

T (k)
y = min{n > T (k−1)

y : Xn = y}.

So, T
(k)
y is the time of the kth return of the Markov chain to state y. Just as before, we can

verify that T
(k)
y is a stopping time for any k ≥ 1.

Let T := T
(k−1)
y . Note that if T < ∞, then T

(k)
y − T = min{n ≥ 1: XT+n = y}. Let

A ⊆ Ω` such that A = {y}c×· · ·×{y}c×{y}. From the Strong Markov Property (Theorem
3.16), for any n ≥ 1,

Px0((XT+1, . . . , XT+`) ∈ A |T = n and (X0, . . . , Xn) = (x0, . . . , xn))

= Pxn((X1, . . . , X`) ∈ A).

Since {T (k)
y − T = `} = {(XT+1, . . . , XT+`) ∈ A}, and {Ty = `} = {(X1, . . . , X`) ∈ A}, if we

use x0 = xn = y, we get

Py(T
(k)
y − T = ` |T = n, X1 = x1, . . . , Xn−1 = xn−1, Xn = y) = Py(Ty = `), ∀ `, n ≥ 1.

From the definition of conditional probability,

Py(T
(k)
y − T = `, T = n, X1 = x1, . . . , Xn−1 = xn−1, Xn = y)

= Py(T = n, X1 = x1, . . . , Xn−1 = xn−1, Xn = y)Py(Ty = `) ∀ `, n ≥ 1.

Summing over all x1, . . . , xn−1 such that {X1 = x1, . . . , Xn−1 = xn−1, Xn = y} ⊆ {T = n},
Py(T

(k)
y − T = `, T = n) = Py(T = n)Py(Ty = `), ∀ `, n ≥ 1.

Taking the union over all ` ≥ 1,

Py(T
(k)
y − T <∞, T = n) = Py(T = n)Py(Ty <∞) = Py(T = n)ρyy, ∀n ≥ 1.

Then, summing over all n ≥ 1,

Py(T
(k)
y − T <∞, T <∞) = ρyyPy(T <∞).

Using the definition of conditional probability again,

Py(T
(k)
y − T <∞|T <∞) = ρyy. (∗)

So, using the multiplication rule (Proposition 2.8) and recalling the definition of T ,

Py(T
(k)
y <∞) = Py(T

(k)
y − T (k−1)

y <∞)

= Py(T
(k)
y − T (k−1)

y <∞|T (k−1)
y <∞)Py(T

(k−1)
y <∞)

= ρyyPy(T
(k−1)
y <∞) , by (∗)

Iterating this equality k − 1 times, we have shown:
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Proposition 3.21. For any integer k ≥ 1,

Py(T
(k)
y <∞) = [Py(Ty <∞)]k = ρkyy.

In particular, if ρyy = 1, then the Markov chain returns to y an infinite number of times.
But if ρyy < 1, then eventually the Markov chain will not return to y:

Py(T
(k)
y =∞ ∀ k ≥ j) = Py(T

(j)
y =∞) = 1− ρjyy → 1 as j →∞.

For this reason, we make the following definitions.

Definition 3.22 (Recurrent State, Transient State). If ρyy = 1, we say the state y ∈ Ω
is recurrent. If ρyy < 1, we say the state y ∈ Ω is transient.

Example 3.23 (Gambler’s Ruin). Consider the Markov Chain defined by the following
5× 5 stochastic matrix

P =


1 0 0 0 0
.6 0 .4 0 0
0 .6 0 .4 0
0 0 .6 0 .4
0 0 0 0 1

 .

We label the rows and columns of this matrix as {1, 2, 3, 4, 5}, so that we consider the Markov
chain to have state space {1, 2, 3, 4, 5}. We think of state 1 as a Gambler going bankrupt,
state 5 as a Gambler reaching a high amount of money and cashing out. And at each of the
states 2, 3, 4, the gambler can either win a round of some game with probability .4, or lose
a round of the game with probability .6.

We will show that states 1 and 5 are recurrent, whereas states 2, 3, 4 are transient.
Since P (1, 1) = 1, P1(T1 = 1) = 1, so P1(T1 < ∞) = 1. Similarly, P (5, 5) = 1, so

P5(T5 = 1) and P5(T5 <∞) = 1. So, states 1 and 5 are recurrent.
Now, P (2, 1) = .6, and since P (1, 1) = 1, if the Markov chain reaches 1 it will never return

to 2. So, using the Multiplication rule and the Markov property,

P2(T2 =∞) ≥ P2(X1 = 1, X2 = 1, X3 = 1, . . .)

= P(X1 = 1 |X0 = 2)P(X2 = 1 |X1 = 1)P(X3 = 1 |X2 = 1) · · ·
= lim

n→∞
P (2, 1)P (1, 1)n = P (2, 1) = .6 > 0.

That is, P2(T2 <∞) = 1−P(T2 =∞) ≤ 1− .6 < 1, so that state 2 is transient. Similarly,
P (4, 5) = .4, and P (5, 5) = 1, so P4(T4 =∞) ≥ P (4, 5) > 0, so P4(T4 <∞) < 1, so state 4
is transient. Using similar reasoning again,

P3(T3 =∞) ≥ lim
n→∞

P (3, 2)P (2, 1)P (1, 1)n = P (3, 2)P (2, 1) > 0.

So, P3(T3 <∞) < 1, so state 3 is transient.

We defined the transition matrix P so that P (x, y) = P(X1 = y |X0 = x), for any x, y in
the state space of the Markov chain. Powers of the matrix P have a similar interpretation.
For any n ≥ 1, x, y ∈ Ω, define p(n)(x, y) := P(Xn = y |X0 = x).
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Proposition 3.24 (Chapman-Kolmogorov Equation). Let n,m ≥ 1. Let x, y ∈ Ω be
states of a finite (or countable) Markov chain. Then

p(m+n)(x, y) =
∑
z∈Ω

p(m)(x, z)p(n)(z, y)

So, for any x, y, z ∈ Ω, p(m+n)(x, y) ≥ p(m)(x, z)p(n)(z, y).

Corollary 3.25. Let m ≥ 1. Let x, y ∈ Ω be states of a finite Markov chain. Then

Pm(x, y) = p(m)(x, y).

Proof of Corollary 3.25. We induct on m. The case m = 1 follows since by definition,
p(1)(x, y) = P (x, y) for all x, y ∈ Ω. We now perform the inductive step. From Proposition
3.24 with n = 1,

p(m+1)(x, y) =
∑
z∈Ω

p(m)(x, z)p(1)(z, y) =
∑
z∈Ω

Pm(x, z)P (z, y) = Pm+1(x, y).

The second equality is the inductive hypothesis, and the last equality is the definition of
matrix multiplication. �

Proof of Proposition 3.24. Let x, y ∈ Ω. Using the Total Probability Theorem, we have

p(m+n)(x, y) = P(Xm+n = y |X0 = x) =
∑
z∈Ω

P(Xm+n = y,Xm = z |X0 = x)

=
∑
z∈Ω

P(Xm+n = y,Xm = z,X0 = x)

P(X0 = x)

=
∑
z∈Ω

P(Xm+n = y,Xm = z,X0 = x)

P(Xm = z,X0 = x)

P(Xm = z,X0 = x)

P(X0 = x)

=
∑
z∈Ω

P(Xm+n = y |Xm = z,X0 = x)P(Xm = z |X0 = x).

Finally, the Markov property and Exercise 3.18 imply that

p(m+n)(x, y) =
∑
z∈Ω

P(Xm+n = y |Xm = z)P(Xm = z |X0 = x)

=
∑
z∈Ω

P(Xn = y |X0 = z)P(Xm = z |X0 = x) =
∑
z∈Ω

p(n)(z, y)p(m)(x, z).

(Since we only condition on events with positive probability, we did not divide by zero.) �

Definition 3.26 (Irreducible). A Markov chain with state space Ω and with transition
matrix P is called irreducible if, for any x, y ∈ Ω, there exists an integer n ≥ 1 (which is
allowed to depend on x, y) such that P n(x, y) > 0. That is the Markov chain is irreducible
if any state can reach any other state, with some positive probability, if the chain runs long
enough.

Lemma 3.27. Suppose we have a finite irreducible Markov chain with state space Ω. Then
there exists 0 < α < 1 and there exists an integer j > 0 such that, for any x, y ∈ Ω,

Px(Ty > kj) ≤ αk, ∀ k ≥ 1.
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Proof. As a consequence of irreducibility, there exists ε > 0 and integer j > 0 such that, for
any x, y ∈ Ω, there exists r(x, y) ≤ j such that P r(x,y)(x, y) > ε. That is, after at most j
steps of the Markov chain, the chain will move from x to y with some positive probability.

Px(Ty > kj) = Px(Ty > kj |Ty > (k − 1)j)Px(Ty > (k − 1)j)

≤ max
z∈Ω

Pz(Ty > j)Px(Ty > (k − 1)j), by Exercise 3.28

≤ max
z∈Ω

Pz(Ty > r(z, y))Px(Ty > (k − 1)j), since r(z, y) ≤ j

= max
z∈Ω

(1−Pz(Ty ≤ r(z, y)))Px(Ty > (k − 1)j)

≤ max
z∈Ω

(1− P r(z,y)(z, y))P(Ty > (k − 1)j), by Exercise 3.29

≤ (1− ε)P(Ty > (k − 1)j).

Iterating this inequality k − 1 times concludes the Lemma with α := 1− ε. �

Exercise 3.28. Let x, y be points in the state space of a finite Markov Chain (X0, X1, . . .).
Let Ty = min{n ≥ 1: Xn = y} be the first arrival time of y. Let j, k be positive integers.
Show that

Px(Ty > kj |Ty > (k − 1)j) ≤ max
z∈Ω

Pz(Ty > j).

(Hint: use Exercise 3.18)

Exercise 3.29. Let x, y be points in the state space of a finite Markov Chain (X0, X1, . . .)
with transition matrix P . Let Ty = min{n ≥ 1: Xn = y} be the first arrival time of y. Let
j be a positive integer. Show that

P j(x, y) ≤ Px(Ty ≤ j).

(Hint: can you induct on j?)

Example 3.30. Consider the Markov Chain with state space Ω = {1, 2, 3} and transition
matrix

P =

.2 .3 .5
.3 .3 .4
.4 .5 .1

 .

Then for any x, y in the state space of the Markov chain, P (x, y) ≥ .1. So, we can use
j = r = 1 and ε = .1, α = .9 in Lemma 3.27 to get

Px(Ty > k) ≤ (.9)k, ∀ k ≥ 1, ∀x, y ∈ Ω.

In particular, Py(Ty <∞) = 1, so all states are recurrent.

Exercise 3.31. Let x, y be any states in a finite irreducible Markov chain. Show that
ExTy <∞. In particular, Py(Ty <∞) = 1, so all states are recurrent.

3.3. Stationary Distribution.

Definition 3.32 (Stationary Distribution). Let P be the m×m transition matrix of a
finite irreducible Markov chain with state space Ω. Let π be a 1 ×m row vector. We say
that π is a stationary distribution if π(x) ≥ 0 for every x ∈ Ω,

∑
x∈Ω π(x) = 1, and if π

satisfies
π = πP.
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As discussed above, if a stationary distribution exists, we can think of π(x) as roughly the
fraction of time that the Markov chain spends in x, when the Markov chain runs for a long
period of time. Put another way, after the Markov chain has run for a long period of time,
π(x) is the probability that the Markov chain is in state x. In fact, π defines a probability
law on the state space Ω: for any A ⊆ Ω, define π(A) :=

∑
x∈A π(x). Then π is a probability

law on Ω.
Unfortunately, even if the stationary distribution exists, it may not be unique! If there is

more than one stationary distribution, then there may not be a sensible way of describing
where the Markov chain could be, after a long time has passed.

In this section, we address the existence and uniqueness of a stationary distribution π.

Theorem 3.33 (Existence). Suppose we have a finite irreducible Markov chain (X0, X1, . . .)
with state space Ω and transition matrix P . Then there exists a stationary distribution π
such that π = πP and π(x) > 0 for all x ∈ Ω.

Proof. Let y, z ∈ Ω. Let let Tz = min{n ≥ 1: Xn = z}. We define π̃(y) to be the expected
number of times the chain visits y before returning to z. That is, define

π̃(y) = Ez

(
∞∑
n=0

1{Xn=y, Tz>n}

)
=
∞∑
n=0

Pz(Xn = y, Tz > n). (∗)

First, note that since the Markov chain is irreducible, there is always some probability that
the chain starts at z and visits y before returning to z. Therefore, π̃(y) > 0 for any y ∈ Ω.
Now, using Remark 2.24, and then Exercise 3.31,

π̃(y) ≤
∞∑
n=0

Pz(Tz > n) = EzTz <∞, ∀ y ∈ Ω.

We now show that π̃ satisfies π̃ = π̃P . By definition of π̃,∑
x∈Ω

π̃(x)P (x, y) =
∑
x∈Ω

∞∑
n=0

Pz(Xn = x, Tz > n)P (x, y). (∗∗)

Consider the event {Tz > n} = {Tz ≥ n + 1} = {Tz ≤ n}c. That is, {Tz > n} only depends
on X0, . . . , Xn. So, the usual Markov property (rearranged a bit) says

Pz(Xn+1 = y, Xn = x, Tz ≥ n+ 1) = Pz(Xn = x, Tz ≥ n+ 1)P (x, y).

Substituting this into (∗∗) and first changing the order of summation,∑
x∈Ω

π̃(x)P (x, y) =
∞∑
n=0

∑
x∈Ω

Pz(Xn+1 = y, Xn = x, Tz ≥ n+ 1)

=
∞∑
n=0

Pz(Xn+1 = y, Tz ≥ n+ 1) =
∞∑
n=1

Pz(Xn = y, Tz ≥ n)

= π̃(y)−Pz(X0 = y, Tz > 0) +
∞∑
n=1

Pz(Xn = y, Tz = n), by (∗)

= π̃(y)−Pz(X0 = y) + Pz(XTz = y), substituting n = Tz.
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We now split into two cases. If y = z, then Pz(X0 = y) = 1 by definition of Pz, and also
XTz = z = y by definition of Tz, so Pz(XTz = y) = 1. If y 6= z, then by similar reasoning,
Pz(X0 = y) = Pz(XTz = y) = 0 In any case −Pz(X0 = y, Tz > 0) + Pz(XTz = y) = 0. In
conclusion, we have shown that

π̃ = π̃P.

Finally, to get a stationary distribution π also satisfying π = πP , we just define π(x) :=
π̃(x)/

∑
y∈Ω π̃(y) for any x ∈ Ω. �

Remark 3.34. We note in passing the following identity. By (∗) and Remark 2.24,∑
y∈Ω

π̃(y) =
∞∑
n=0

∑
y∈Ω

Pz(Xn = y, Tz > n) =
∞∑
n=0

Pz(Tz > n) = EzTz.

Lemma 3.35. Let P be the transition matrix of a finite irreducible Markov chain with state
space Ω. Let f : Ω→ R be a harmonic function, so that

f(x) =
∑
y∈Ω

P (x, y)f(y), ∀x ∈ Ω.

Then f is a constant function.

Proof. Since Ω is finite, there exists x0 ∈ Ω such that M := maxx∈Ω f(x) = f(x0). Let z ∈ Ω
with P (x0, z) > 0, and assume that f(z) < M . Then since f is harmonic,

f(x0) = P (x0, z)f(z) +
∑

y∈Ω: y 6=z

P (x0, y)f(y) < M
∑
y∈Ω

P (x0, y) = M,

a contradiction. Thus, f(z) = M for any z ∈ Ω with P (x0, z) > 0.
Finally, for any z ∈ Ω, irreducibility of P implies that there is a sequence of points

x0, x1, . . . , xk = z in Ω such that P (xi, xi+1) > 0 for every 0 ≤ i < k. So, by repeating the
above argument k − 1 times, M = f(x0) = f(x1) = · · · = f(xk) = f(z). That is, f(z) = M
for every z ∈ Ω. �

Theorem 3.36 (Uniqueness). Let P be the transition matrix of a finite irreducible Markov
chain. Then there exists a unique stationary distribution π such that π = πP .

Proof. By Theorem 3.33, there exists at least one stationary distribution π such that π = πP .
Let I denote the |Ω| × |Ω| identity matrix. Lemma 3.35 implies that the null-space of P − I
has dimension 1. So, by the rank-nullity theorem, the column rank of P − I is |Ω|− 1. Since
row rank and column rank are equal, the row rank of P − I is |Ω| − 1. That is, the space of
solutions of the row-vector equation µ = µP is one-dimensional (where µ denotes a 1× |Ω|
row vector.) Since this space is one-dimensional, it has only one vector whose entries sum
to 1. �

The following Corollary gives a sensible way of computing the stationary distribution of
an irreducible Markov chain.

Corollary 3.37. Let P be the transition matrix of a finite irreducible Markov chain with
state space Ω. If π is the unique solution to π = πP , then

π(x) =
1

ExTx
, ∀x ∈ Ω.
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Proof. Let y, z ∈ Ω and define π̃z(y) := π̃(y), where π̃(y) is defined in (∗) in Theorem
3.33. Also, define πz(y) := π̃z(y)/EzTz. Theorem 3.33 and Remark 3.34 imply that πz is a
stationary distribution such that πz = πzP . Theorem 3.36 implies that πz does not depend
on z. That is, for any x ∈ Ω, if we define π(x) := πz(x) (for any particular z ∈ Ω, since the
expression does not depend on z), then we have π = πP , and

π(x) = πx(x) =
π̃x(x)

ExTx
=

1

ExTx
.

In the last equality, we used π̃x(x) = 1, which follows by the definition of π̃x. (The n = 0
term in

∑∞
n=0 Px(Xn = x, Tx > n) is 1, and all other terms in the sum are zero.) �

Exercise 3.38 (Knight Moves). Consider a standard 8 × 8 chess board. Let V be a set of
vertices corresponding to each square on the board (so V has 64 elements). Any two vertices
x, y ∈ V are connected by an edge if and only if a knight can move from x to y. (The
knight chess piece moves in an L-shape, so that a single move constitutes two spaces moved
along the horizontal axis followed by one move along the vertical axis (or two spaces moved
along the vertical axis, followed by one move along the horizontal axis.) Consider the simple
random walk on this graph. This Markov chain then represents a knight randomly moving
around a chess board. For every space x on the chessboard, compute the expected return
time ExTx for that space. (It might be convenient to just draw the expected values on the
chessboard itself.)

Exercise 3.39 (Simplified Monopoly). Let Ω = {1, 2, . . . , 10}. We consider Ω to be the
ten spaces of a circular game board. You move from one space to the next by rolling a fair
six-sided die. So, for example P (1, k) = 1/6 for every 2 ≤ k ≤ 7. More generally, for every
j ∈ Ω with j 6= 5, P (j, k) = 1/6 if k = (j+ i) mod 10 for some 1 ≤ i ≤ 6. Finally, the space 5
forces you to return to 1, so that P (5, 1) = 1. (Note that mod 10 denotes arithmetic modulo
10, so e.g. 7 + 5 = 2 mod 10.)

Using a computer, find the unique stationary distribution of this Markov chain. Which
point has the highest stationary probability? The lowest?

Compare this stationary distribution to the stationary distribution that arises from the
doubly stochastic matrix: for all j ∈ Ω, P (j, k) = 1/6 if k = (j+i) mod 10 for some 1 ≤ i ≤ 6.
(See Exercise 3.42.)

Exercise 3.40. Give an example of a Markov chain where there are at least two different
stationary distributions.

Exercise 3.41. Is there a finite Markov chain where no stationary distribution exists? Either
find one, or prove that no such finite Markov chain exists.

(If you want to show that no such finite Markov chain exists, you are allowed to just prove
the weaker assertion that: for every stochastic matrix P , there always exists a nonzero vector
π with π = πP .)

Exercise 3.42. Let P be the transition matrix for a finite Markov chain with state space Ω.
We say that the matrix P is doubly stochastic if the columns of P each sum to 1. (Since
P is a transition matrix, each of its rows already sum to 1.) Let π such that π(x) = 1/ |Ω|
for all x ∈ Ω. That is, π is uniform on Ω. Show that π = πP .
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Remark 3.43. If a finite Markov chain is not irreducible, we can divide the state space into
pieces, each of which is irreducible (or transient), and then study how the Markov chain acts
on each individual piece. (For a precise statement, see Theorem 1.8 in the Durrett book.)

Definition 3.44 (Reversible). Let P be the transition matrix of a finite Markov chain
with state space Ω. We say that the Markov chain is reversible if there exists a probability
distribution π on Ω satisfying the following detailed balance condition:

π(x)P (x, y) = π(y)P (y, x), ∀x, y ∈ Ω.

Exercise 3.45. Give an example of a random walk on a graph that is not reversible.

Proposition 3.46 (Reversible Implies Stationary). Let π be a probability distribution
satisfying the detailed balance condition for a finite Markov chain. Then π is a stationary
distribution.

Proof. We sum both sides of the detailed balance condition over y, and use that P is sto-
chastic to get

(πP )(x) =
∑
y∈Ω

π(y)P (y, x) = π(x)
∑
y∈Ω

P (x, y) = π(x).

�

Exercise 3.47. Let P be the transition matrix of a finite, irreducible, reversible Markov
chain with state space Ω and stationary distribution π. Let f, g ∈ R|Ω| be column vectors.
Consider the following bilinear function on f, g, which is referred to as an inner product (or
dot product):

〈f, g〉 :=
∑
x∈Ω

f(x)g(x)π(x).

Show that P is self-adjoint (i.e. symmetric) in the sense that

〈f, Pg〉 = 〈Pf, g〉.
In particular (for those that have taken 115A), the spectral theorem implies that all eigen-
values of P are real.

Finally, find a transition matrix P such that at least one eigenvalue of P is not real.

Proposition 3.48. Suppose we have a finite irreducible Markov chain with state space Ω,
transition matrix P and stationary distribution π. Fix n ≥ 1, and for any 0 ≤ m ≤ n, define

X̂m = Xn−m. Then X̂m is a Markov chain with transition probabilities given by

P̂ (x, y) =
π(y)P (y, x)

π(x)
, ∀x, y ∈ Ω.

Moreover, π is stationary for P̂ , and we have

Pπ(X0 = x0, . . . , Xn = xn) = Pπ(X̂0 = xn, . . . , X̂n = x0), ∀x0, . . . , xn ∈ Ω.

Proof. First, from Theorem 3.33, π(x) > 0 for all x in the state space of the Markov chain,

so we have not divided by zero. Now, we first check π is stationary for P̂ :∑
y∈Ω

π(y)P̂ (y, x) =
∑
y∈Ω

π(y)
π(x)P (x, y)

π(y)
= π(x).
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Using similar reasoning, we know that
∑

y∈Ω P̂ (x, y) = 1, so that P̂ is itself a stochastic

matrix. Finally, noting that P (xi−1, xi) = π(xi)P̂ (xi, xi−1)/π(xi−1) for each 1 ≤ i ≤ n,

Pπ(X0 = x0, . . . , Xn = xn) = π(x0)P (x0, x1) · · ·P (xn−1, xn)

= π(xn)P̂ (xn, xn−1) · · · P̂ (x1, x0)

= Pπ(X̂0 = xn, . . . , X̂n = x0).

�

Remark 3.49. If the Markov chain is reversible, then P̂ = P . So, being reversible means
that the Markov chain can be run backwards or forwards in the same way, if we start the
Markov chain from the stationary distribution.

Example 3.50. We return to Example 3.8. Let G = (V,E) be a graph with at least one
edge, and let P correspond to the simple random walk on G. So, P (x, y) = 1/deg(x) if x and
y are neighbors, and P (x, y) = 0 otherwise. For any x ∈ V , define π(x) := deg(x)/(2 |E|).
We show π is stationary. From Proposition 3.46, it suffices to show the detailed balance
condition holds.

If x and y are not neighbors, then P (x, y) = P (y, x) = 0, and both sides of the detailed
balance condition are equal. If x and y are neighbors, then

π(x)P (x, y) =
deg(x)

2 |E|
1

deg(x)
=

1

2 |E|
=

deg(y)

2 |E|
1

deg(y)
= π(y)P (y, x).

Exercise 3.51 (Ehrenfest Urn Model). Suppose we have two urns and n spheres. Each
sphere is in either of the first or the second urn. At each step of the Markov chain, one of
the spheres is chosen uniformly at random and moved from its current urn to the other urn.
Let Xn be the number of spheres in the first urn at time n. A state of the Markov chain is
an integer in {0, 1, . . . , n}, which represents the number of spheres in the first urn. Then for
any j, k ∈ {1, . . . , n}, the transition matrix defining the Markov chain is

P (j, k) =


n−j
n

, if k = j + 1
j
n

, if k = j − 1

0 , otherwise.

Show that the unique stationary distribution for this Markov chain is a binomial PMF with
parameters n and 1/2.

Exercise 3.52. Let V = {0, 1}n be a set of vertices. We construct a graph from V as
follows. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ {0, 1}n. Then x and y are connected by an
edge in the graph if and only if

∑n
i=1 |xi − yi| = 1. That is, x and y are connected if and

only if they differ by a single coordinate.
For any x ∈ V , define f(x) =

∑n
i=1 xi, f : V → {0, 1, . . . , n}. Given x ∈ V , we identify

x with the state in the Ehrenfest urn model where the first urn has exactly f(x) spheres.
Show that the Ehrenfest urn model is a projection of the simple random walk on V in
the following sense. The probability that x ∈ V transitions to any state z ∈ V such that
y = f(z) is equal to: the probability that Ehrenfest model with state f(x) transitions to
state y.
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Moreover, the unique stationary distribution for the simple random walk on V can be
projected to give the unique stationary distribution in the Ehrenfest model. That is, if
π is the unique stationary distribution for the simple random walk on V , and if for any
A ⊆ {0, 1, . . . , n}, we define µ(A) := π(f−1(A)), then µ is a Binomial PMF with parameters
n and 1/2. (Here f−1(A) = {x ∈ V : f(x) ∈ A}.)

Exercise 3.53 (Birth-and-Death Chains). A birth-and-death chain can model the size
of some population of organisms. Fix a positive integer k. Consider the state space Ω =
{0, 1, 2, . . . , k}. The current state is the current size of the population, and at each step the
size can increase or decrease by at most 1. We define {(pn, rn, qn)}kn=0 such that pn+rn+qn =
1 and pn, rn, qn ≥ 0 for each 0 ≤ n ≤ k, and

• P (n, n+ 1) = pn > 0 for every 0 ≤ n < k.
• P (n, n− 1) = qn > 0 for every 0 < n ≤ k.
• P (n, n) = rn ≥ 0 for every 0 ≤ n ≤ k.
• q0 = pk = 0.

Show that the birth-and-death chain is reversible.

3.4. Limiting Behavior. From Theorem 3.36, we know an irreducible Markov chain has
a unique stationary distribution, and Corollary 3.37 gives a sensible way of computing that
stationary distribution. But what does this distribution tell us about the Markov chain’s
behavior? In general, it might not say anything! For example, recall Example 3.7, where we

considered the transition matrix P =

(
0 1
1 0

)
. If µ = (µ(1), µ(2)) is any 1 × 2 row vector,

then µP n = µ for n even, and µP n = (µ(2), µ(1)) for n odd. So, if the Markov chain starts
at the probability distribution µ where µ(1) 6= µ(2), then it is impossible for limn→∞ µP

n to
exist. That is, there is no sensible way of talking about the limiting behavior of this Markov
chain.

Put another way, we need to eliminate this “periodic” behavior to hope to get convergence
of the Markov chain. Thankfully, if an irreducible Markov chain has no “periodic” behavior
as in the above example, then it does actually converge as n → ∞. In fact, we will be
able to give an exponential rate of convergence of the Markov chain. Before doing so, we
formally define periodic behavior, and we formally define periodicity and how the Markov
chain converges.

Definition 3.54 (Period, Aperiodic). Let P be the transition matrix of a finite Markov
chain with state space Ω. For any x ∈ Ω, let N (x) := {n ≥ 1: P n(x, x) > 0}. The period of
state x ∈ Ω is the largest integer that divides all of the integers in N (x). That is, the period
of x, denoted gcdN (x), is the greatest common divisor of N (x). (If N (x) = ∅, we leave
gcdN (x) undefined.) (We say an integer m divides an integer n if there exists an integer k
such that n = km.)

A Markov chain is called aperiodic if all x ∈ Ω have period 1.

Exercise 3.55. Give an explicit example of a Markov chain where every state has period
100.

Lemma 3.56. Let P be the transition matrix of an irreducible, finite Markov chain with
state space Ω. Then gcdN (x) = gcdN (y) for all x, y ∈ Ω.
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Proof. Let x, y ∈ Ω. Since the Markov chain is irreducible, there exist r, ` ≥ 1 such that
P r(x, y) > 0 and P `(y, x) > 0. Let m = r + `. Then m ∈ N (x) ∩ N (y) (since Pm(x, x) ≥
P r(x, y)P `(y, x) > 0, and Pm(y, y) ≥ P `(y, x)P r(x, y) > 0), and N (x) ⊆ N (y) − m. (If
P k(x, x) > 0, then P k+m(y, y) ≥ P `(y, x)P k(x, x)P r(x, y) > 0.) Since gcdN (y) divides
m and all elements of N (y), we conclude that gcdN (y) divides all elements of N (x). In
particular, gcdN (y) ≤ gcdN (x). Reversing the roles of x and y in the above argument,
gcdN (x) ≤ gcdN (y). �

Lemma 3.57. Let P be the transition matrix of an aperiodic, irreducible, finite Markov
chain with state space Ω. Then there exists an integer r > 0 such that P r(x, y) > 0 for all
x, y ∈ Ω. (That is, we can choose the r to not depend on x, y.)

Proof. Since the Markov chain is aperiodic, gcdN (x) = 1. The set N (x) is closed under
addition, since if n,m ∈ N (x), then P n+m(x, x) ≥ P n(x, x)Pm(x, x) > 0, so that n + m ∈
N (x). From Lemma 3.58 with g = 1, there exists n(x) such that if n ≥ n(x), then n ∈ N (x).
Since the Markov chain is irreducible, for any y ∈ Ω there exists r = r(x, y) such that
P r(x, y) > 0. So, if n ≥ n(x) + r, we have

P n(x, y) ≥ P n−r(x, x)P r(x, y) > 0.

So, if n ≥ n′(x) := n(x) + maxx,y∈Ω r(x, y), then P n(x, y) > 0 for all y ∈ Ω. Then, if
n ≥ maxx∈Ω n

′(x), then P n(x, y) > 0 for all x, y ∈ Ω. �

Lemma 3.58. Let S be a nonempty subset of the positive integers. Let g = gcd(S). Then
there exists some integer nS such that, for all m ≥ nS, the product mg can be written as a
linear combination of elements of S, with nonnegative integer coefficients.

Proof. Let g∗ be the smallest positive integer which is an integer combination of elements
of S. Then g∗ ≤ s for every s ∈ S. Also, g∗ divides every element of S (if s ∈ S and if g∗

does not divide s, then the remainder obtained by dividing s by g∗ would be smaller than
g∗, while being an integer combination of elements of S). So, g∗ ≤ g. Since g divides every
element of S as well, g divides g∗, and g ≤ g∗. So, g = g∗.

Now, without loss of generality, we can assume S is finite, since the case that S is infinite
follows from the case that S is finite. The case when S has one element is clear. As a base
case, we consider when S = {a, b}, where a, b are distinct positive integers. Let m > 0. Since
g = g∗ and mg ≥ g∗, we can write mg = ca+ db for some integers c, d. Since mg = ca+ db,
we can also write mg = (c+kb)a+(d−ka)b for any k. That is, we can write mg = ca+db for
integers c, d with 0 ≤ c ≤ b−1. If mg > (b−1)a−b, then db = mg−ca ≥ mg−a(b−1) > −b.
So, d ≥ 0 as well. That is, we can choose nS such that nS ≥ ((ab− a− b)/g) + 1.

We now induct on the size of S, by adding one element a to S. Let gS := gcd(S)
and let g := gcd({a} ∪ S). For any positive integer a, the definition of gcd implies that
gcd({a} ∪ S) = gcd(a, gS). Suppose m satisfies mg ≥ n{a,gS}g + nSgS. Then we can write
mg−nSgS = ca+dgS for integers c, d ≥ 0, from the case when S could be {a, gS}. Therefore,
mg = ca + (d + nS)gS = ca +

∑
s∈S css for some integers cs ≥ 0, by definition of nS, and

using d + nS ≥ nS. In conclusion, we can choose n{a}∪S = n{a,gS} + nSgS/g, completing the
inductive step. �
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Definition 3.59 (Total Variation Distance). Let µ, ν be probability distributions on a
finite state space Ω. We define the total variation distance between µ and ν to be

‖µ− ν‖TV := max
A⊆Ω
|µ(A)− ν(A)| .

Exercise 3.60. Let Ω be a finite state space. This exercise demonstrates that the total
variation distance is a metric. That is, the following three properties are satisfied:

• ‖µ− ν‖TV ≥ 0 for all probability distributions µ, ν on Ω, and ‖µ− ν‖TV = 0 if and
only if µ = ν.
• ‖µ− ν‖TV = ‖ν − µ‖TV

• ‖µ− ν‖TV ≤ ‖µ− η‖TV + ‖η − ν‖TV for all probability distributions µ, ν, η on Ω.

(Hint: you may want to use the triangle inequality for real numbers: |x− y| ≤ |x− z| +
|z − y|, ∀ x, y, z ∈ R.)

Exercise 3.61. Let µ, ν be probability distributions on a finite state space Ω. Then

‖µ− ν‖TV =
1

2

∑
x∈Ω

|µ(x)− ν(x)| .

(Hint: consider the set A = {x ∈ Ω: µ(x) ≥ ν(x)}.)

Theorem 3.62 (The Convergence Theorem). Let P be the transition matrix of a fi-
nite, irreducible, aperiodic Markov chain, with state space Ω and with (unique) stationary
distribution π. Then there exist constants α ∈ (0, 1) and C > 0 such that

max
x∈Ω
‖P n(x, ·)− π(·)‖TV ≤ Cαn, ∀n ≥ 1.

Proof. Since the Markov chain is irreducible and aperiodic, Lemma 3.57 implies there exists
r > 0 such that all entries of P r are positive. Let Π be the matrix with |Ω| rows, each of
which is the row vector π (so Π = (1, . . . , 1)Tπ). From Theorem 3.33 (and Theorem 3.36),
minz∈Ω π(z) > 0. So, there exists 0 < δ < 1 such that

P r(x, y) ≥ δπ(y), ∀x, y ∈ Ω.

From Exercise 3.3, P r is a stochastic matrix. Also, Π is a stochastic matrix. Let θ := 1− δ.
Define Q := θ−1(P r − (1− θ)Π). Then Q is a stochastic matrix, and

P r = (1− θ)Π + θQ.

If M is an |Ω| × |Ω| stochastic matrix, then MΠ = Π (since MΠ = M(1, . . . , 1)Tπ =
(1, . . . , 1)Tπ = Π.) Similarly, if M satisfies πM = π, then ΠM = Π. We now prove by
induction that, for all k ≥ 1,

P rk = (1− θk)Π + θkQk. (∗)
We already know k = 1 holds, by the definition of Q. Assume (∗) holds for all 1 ≤ k ≤ n.
Then using (∗) twice,

P r(n+1) = P rnP r = [(1− θn)Π + θnQn]P r

= (1− θn)ΠP r + (1− θ)θnQnΠ + θn+1Qn+1

= (1− θn)Π + (1− θ)θnΠ + θn+1Qn+1, since πP = π, so πP n = π, and Qn is stochastic

= (1− θn+1)Π + θn+1Qn+1.
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So, we have completed the inductive step, i.e. we have shown (∗) holds for all k ≥ 1.
Let j ≥ 1. Multiplying (∗) by P j on the right and rearranging,

P rk+j − Π = θk(QkP j − Π). (∗∗)
From Exercise 3.3, QkP j is a stochastic matrix. Fix x ∈ Ω. Sum up the absolute values of
all the entries in row x of both sides of (∗∗) and divide by 2. By Exercise 3.61, the term
on the right is then θk multiplied by the total variation distance between two probability
distributions, which is at most 1, by definition of total variation distance. That is, the right
side is at most θk. So, using Exercise 3.61 for the left side as well,∥∥P rk+j(x, ·)− π(·)

∥∥
TV
≤ θk, ∀ j, k ≥ 1.

Taking the maximum of both sides over x ∈ Ω, and writing an arbitrary positive integer n
as n = rk + j where 0 ≤ j < r by Euclidean division of n by r (so that k = (n/r)− (j/r) ≥
(n/r)− 1), we get the bound

max
x∈Ω
‖P n(x, ·)− π(·)‖TV ≤ θ−1(θ1/r)n.

Setting C := θ−1 and α := θ1/r completes the proof. �

3.5. Infinite State Spaces.

Definition 3.63 (Markov Chain, Countable State Space). Let Ω be a countable set.
A Markov chain on a countable state space Ω is defined, as before, by its transition matrix
P : Ω×Ω→ [0, 1], where

∑
y∈Ω P (x, y) = 1 for all x ∈ Ω. The remaining defining properties

are stated in the same way as in the finite case. We can still think of P as a matrix, albeit
one with countably many rows and columns.

Unfortunately, the Convergence Theorem (Theorem 3.62), may not hold for all irreducible,
aperiodic Markov chains on infinite state spaces. So, studying the existence/non-existence
of stationary distributions is not as meaningful for infinite state spaces. However, we can
still try to understand where the Markov chain “typically” lies after the chain runs for a long
time.

To see why the Convergence Theorem cannot hold for all irreducible, aperiodic Markov
chains, just note that all states of the Markov chain could be transient. (We will show this
below in Exercise 3.70; all states are transient for the nearest neighbor simple random walk
on Z3, though we will not show this.) And if all states in the chain are transient, then
limn→∞ P

n(x, x) must converge to 0.
Note that by Exercise 3.31, all states in a finite irreducible Markov chain are recurrent, so

having all transient states can only happen for an irreducible Markov chain when the state
space is infinite.

Rather than delving into a general theory of infinite state space Markov chains (which can
become a bit more complicated than the finite case), we focus on some classic examples.

Example 3.64 (Nearest-Neighbor Random Walk on Z). Let Ω = Z. Let p, r, q ≥ 0
such that p+ r + q = 1. We define the transition matrix P so that

P (k, k + 1) = p, P (k, k) = r, P (k, k − 1) = q.

The case p = q = 1/2 and r = 0 corresponds to the simple random walk on Z. Let k ∈ Z
and let n ≥ 0. If Xn = k, then

∑n
j=1(Xj − Xj−1) = k, and each term in the sum is an
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independent random variable, each with probability 1/2 of being 1 and probability 1/2 of
being −1. To sum to k, there must be (n + k)/2, 1’s and n− (n + k)/2 = (n− k)/2, −1’s.
There are

(
n

(n+k)/2

)
different ways to choose the 1’s and −1’s to sum to k. So,

P0(Xn = k) =

{(
n

(n+k)/2

)
2−n , if n− k is even

0 , otherwise.

The case p = q = 1/4 and r = 1/2 is the lazy simple random walk on Z.

Exercise 3.65. Let (X0, X1, . . .) be the simple random walk on Z. Show that P0(Xn = 0)
decays like 1/

√
n as n→∞. That is, show

lim
n→∞

√
2nP0(X2n = 0) =

√
2

π
.

Also, show the upper bound

P0(Xn = k) ≤ 10√
n
, ∀n ≥ 0, k ∈ Z.

(Hint 1: first consider the case n = 2r for r ∈ Z. It may be helpful to show that
(

2r
r+j

)
is

maximized when j = 0. To eventually deal with k odd, just condition on the first step of
the walk.)

(Hint 2: you can freely use Stirling’s formula:

lim
n→∞

n!√
2πn(n/e)n

= 1.

Or, there is a more precise estimate: for any n ≥ 3, there exists 1/(12n+ 1) ≤ εn ≤ 1/(12n)
such that

n! =
√

2πe−nnn+1/2eεn .)

We can get an upper bound matching Exercise 3.65 even when the simple random walk
starts away from 0.

Theorem 3.66. Let (X0, X1, . . .) be the simple random walk on Z. Let k, r > 0 be integers.
We will start the Markov chain at k and upper bound T0 := min{n > 0: Xn = 0}, the first
time the random walk hits 0.

Pk(T0 > r) ≤ 20k√
r
.

Before proving Theorem 3.66, we prove some lemmas.

Lemma 3.67 (Reflection Principle). Let (X0, X1, . . .) be the simple random walk on Z
or the lazy simple random walk on Z. For any positive integers j, k, r,

Pk(T0 < r, Xr = j) = Pk(Xr = −j).
Pk(T0 < r, Xr > 0) = Pk(Xr < 0).

Proof. From the Strong Markov property, if the walk hits zero, then the walk is independent
of its previous movements, and we can then treat the walk as if it started at 0. That is, for
any integers 0 < s < r and j,

Pk(XT0+(r−s) = j |T0 = s, Xs = 0) = P0(Xr−s = j).
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Rearranging and simplifying,

Pk(T0 = s, Xr = j) = Pk(T0 = s)P0(Xr−s = j). (∗)

When the Markov chain starts at zero, it has equal probability of reaching j or −j (that is,
the random walk is symmetric with respect to zero). So, the right side is equal to

Pk(T0 = s)P0(Xr−s = −j) (∗)
= Pk(T0 = s, Xr = −j).

Summing over all 1 ≤ s < r, and combining this equality with (∗) (with j > 0),

Pk(T0 < r, Xr = j) = Pk(T0 < r, Xr = −j) = Pk(Xr = −j).

The last equality follows since a random walk started from k > 0 must pass through 0 before
reaching a negative integer −j. That is, given X0 = k, the event Xr = −j is contained in
the event T0 < r.

Finally, summing over j > 0 gives the final equality of the Lemma. �

Xn

n

k

T0

j

−j

r

Remark 3.68. We can interpret Lemma 3.67 combinatorially as follows. We plot the se-
quence of points visited by the Markov chain in the plane as (n,Xn) ∈ R2, n ≥ 0. Then
there is a bijection from the set of paths starting at k > 0 which hit 0 before time r and are
positive at time r, and the set of paths starting at k > 0 which are negative at time r. To
create the bijection, reflect a path across the line y = 0 after the first time it hits 0.

Lemma 3.69. Let (X0, X1, . . .) be the simple random walk on Z or the lazy simple random
walk on Z. For any r, k > 0

Pk(T0 > r) = P0(−k < Xr ≤ k).

Proof. First, write

Pk(Xr > 0) = Pk(Xr > 0, T0 ≤ r) + Pk(T0 > r) = Pk(Xr > 0, T0 < r) + Pk(T0 > r).

Applying the Reflection Principle (Lemma 3.67), we then get

Pk(Xr > 0) = Pk(Xr < 0) + Pk(T0 > r).
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Since the walk is symmetric, Pk(Xr < 0) = Pk(Xr > 2k), so rearranging and then using
translation invariance of the Markov chain,

Pk(T0 > r) = Pk(Xr > 0)−Pk(Xr > 2k) = Pk(0 < Xr ≤ 2k) = P0(−k < Xr ≤ k).

�

Proof of Theorem 3.66. Summing the upper bound of Exercise 3.65, we have

P0(−k < Xr ≤ k) ≤ 20k√
r
.

Then Lemma 3.69 completes the proof. �

Exercise 3.70. Show that every state in the simple random walk on Z is recurrent. (You
should show this statement for any starting location of the Markov chain.)

Then, find a nearest-neighbor random walk on Z such that every state is transient.

Exercise 3.71. For the simple random walk on Z, show that E0T0 = ∞. Conclude that,
for any x, y ∈ Z, ExTy =∞.

Exercise 3.72. Let (X0, X1, . . .) be the “corner walk” on Z2. The transitions are described
as follows. From any point (x, y) ∈ Z2, the Markov chain adds any of the following four
vector to (x, y) each with probability 1/4: {(1, 1, ), (1,−1), (−1, 1), (−1,−1)}. Using that
the coordinates of this walk are each independent simple random walks on Z, conclude that
there exists c > 0 such that

lim
n→∞

nP(0,0)(X2n = (0, 0)) = c.

That is, P(0,0)(X2n = (0, 0)) is about c/n, when n is large.
Now, note that the usual nearest-neighbor simple random walk on Z2 is a rotation of the

corner walk by an angle of π/4. So, the above limiting statement also holds for the simple
random walk on Z2.

4. Martingales

4.1. Review of Conditional Expectation.

Definition 4.1 (Conditional Expectation). Let X be a random variables on a sample
space C. Let A ⊆ C with P(A) > 0. Then the conditional expectation of X given A,
denoted E(X|A) is

E(X|A) :=
E(X · 1A)

P(A)
.

Equivalently, E(X|A) is the expectation of X with respect to the conditional probability
P(B|A) := P(B∩A)/P(A), for any B ⊆ C. To see the equivalence, note that the expectation
of X ≥ 0 with respect to P(·|A) is∫ ∞

0

P(X > t|A)dt =
1

P(A)

∫ ∞
0

P(X > t, A)dt =
1

P(A)

∫ ∞
0

P(X1A > t)dt =
E(X · 1A)

P(A)
.
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Example 4.2. Suppose a random variable X and a set A ⊆ C are independent. That is,
P(X ∈ B,A) = P(X ∈ B)P(A) for all B ⊆ R. Then P(X ∈ B,Ac) = P(X ∈ B)P(Ac)
for all B ⊆ R. Consequently, X and 1A are independent as random variables. So, from
Proposition 2.39, E(X1A) = (EX)(E1A) = P(A)EX. That is, if X,A are independent, then

E(X|A) = EX.

Also, if X, Y are random variables, then since E(X|A) is expectation of X with respect to
a conditional probability, we immediately have from Proposition 2.27

E(X + Y |A) = E(X|A) + E(Y |A).

Remark 4.3. Let A1, . . . , Ak be sets and let X be a random variables. We use the notation

E(X |A1, . . . , Ak) = E(X |A1 ∩ · · · ∩ Ak).

Lemma 4.4. Let X, Y be random variables on a sample space C. Let A ⊆ C and let d ∈ R.
If X is a random variable such that X = d on the set A, then

E(XY |A) = dE(Y |A).

Proof. Since X = d on A, XY 1A = dY 1A, so E(XY 1A) = dE(Y 1A). Dividing by P(A)
concludes the Lemma. �

As stated in Definition 4.1, conditional expectation is itself an expected value with respect
to a conditional probability. In particular, Jensen’s inequality (Proposition 2.31) applies to
conditional expectation

Lemma 4.5 (Jensen’s Inequality). Let X be a random variable on a sample space C. Let
A ⊆ C. Let φ : R→ R be convex. Then

φ(E(X|A)) ≤ E(φ(X)|A).

Lemma 4.6. Let A1, . . . , Ak be disjoint events such that ∪ki=1Ai = B. Let X be a random
variable. Then

E(X|B) =
k∑
i=1

E(X|Ai)
P(Ai)

P(B)
.

In particular, if B = C, we get the Total Expectation Theorem: EX =
∑k

i=1 E(X|Ai)P(Ai).

Proof. By assumption, 1B =
∑k

i=1 1Ai . So,

E(X|B) =
1

P(B)
E(X1B) =

k∑
i=1

1

P(B)
E(X1Ai) =

k∑
i=1

E(X|Ai)
P(Ai)

P(B)

�

Definition 4.7 (Martingale). Let (X0, X1, . . .) be a real-valued stochastic process. A real-
valued martingale with respect to (X0, X1, . . .) is a stochastic process (M0,M1, . . .) such
that E |Mn| <∞ for all n ≥ 0, and for any m0, x0, . . . , xn ∈ R,

E(Mn+1 −Mn|Xn = xn, . . . , X0 = x0,M0 = m0) = 0.

We say (M0,M1, . . .) is a supermartingale with respect to (X0, X1, . . .) if

E(Mn+1 −Mn|Xn = xn, . . . , X0 = x0,M0 = m0) ≤ 0.
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We say (M0,M1, . . .) is a submartingale with respect to (X0, X1, . . .) if

E(Mn+1 −Mn|Xn = xn, . . . , X0 = x0,M0 = m0) ≥ 0.

Remark 4.8. Some martingales are not Markov chains. Some Markov chains are not mar-
tingales. Some Markov chains are martingales. And some martingales are Markov chains.

Remark 4.9. A stochastic process is a martingale if and only if it is both a submartingale
and a supermartingale.

Remark 4.10. It follows from the Total Expectation Theorem that E(Mn+1−Mn) = 0 for
a martingale, for every n ≥ 0. Consequently,

EMn = EM0, ∀n ≥ 0.

That is, a martingale does not change in expectation.
Similarly, a supermartingale decreases in expectation, and a submartingale increases in

expectation. This terminology may then seem a bit backwards, but it is standard.

For many purposes, it is more natural to think of a conditional expectation as another
random variable, rather than just a number.

Definition 4.11 (Conditional Expectation). Suppose we have a partition of a sample
space C. That is, we have sets A1, . . . , Ak ⊆ C such that Ai ∩Aj = ∅ for all i, j ∈ {1, . . . , k}
with i 6= j, and ∪ki=1Ai = C. Denote A = {A1, . . . , Ak}. Define E(X|A) to be a random
variable that takes the value E(X|Ai) on the set Ai. That is, E(X|A) is itself a function on
the sample space C.

Remark 4.12. Lemma 4.6 with B = C (i.e. the Total Expectation Theorem) can be
rewritten as

E[E(X|A)] = E(X)

Also, Lemma 4.4 says: if for each 1 ≤ i ≤ k, X is constant on Ai, then

E(XY |A) = XE(X|A).

Exercise 4.13. Let C = [0, 1]. Let P be the uniform probability law on C. Let X : [0, 1]→ R
be a random variable such that X(t) = t2 for all t ∈ [0, 1]. Let

A = {[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1]}

Compute explicitly the function E(X|A). (It should be constant on each of the partition
elements.) Draw the function E(X|A) and compare it to a drawing of X itself.

Now, for every integer k > 1, let s = 2−k, and let Ak := {[0, s), [s, 2s), [2s, 3s), . . . , [1 −
2s, 1− s), [1− s, 1)}. Try to draw E(X|Ak). Convince yourself of the following fact (you can
prove it if you want, but you do not have to): for every t ∈ [0, 1]

lim
k→∞

E(X|Ak)(t) = X(t).

The purpose of this exercise is to demonstrate that E(X|A) is given by averaging X over
each partition element, such that E(X|A) is constant on each partition element of A.
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Exercise 4.14. Let X be a random variable with finite variance, and let t ∈ R. Consider
the function f : R → R defined by f(t) = E(X − t)2. Show that the function f is uniquely
minimized when t = EX. That is, f(EX) < f(t) for all t ∈ R such that t 6= EX. Put
another way, setting t to be the mean of X minimizes the quantity E(X − t)2 uniquely.

The conditional expectation, being a piecewise version of taking an average, has a similar
property. Let A1, . . . , Ak ⊆ C such that Ai ∩ Aj = ∅ for all i, j ∈ {1, . . . , k} with i 6= j, and
∪ki=1Ai = C. Write A = {A1, . . . , Ak}. By definition, for each 1 ≤ i ≤ k, E(X|A) is constant
on Ai. Now, let Y be any other random variable such that, for each 1 ≤ i ≤ k, Y is constant
on Ai. Show that the quantity E(X − Y )2 is uniquely minimized by such a Y only when
Y = E(X|A).

Exercise 4.15. Let C = [0, 1]. Let P be the uniform probability law on C. Let X : [0, 1]→ R
be a random variable such that X(t) = t2 for all t ∈ [0, 1]. For every integer k > 1, let
s = 2−k, letAk := {[0, s), [s, 2s), [2s, 3s), . . . , [1−2s, 1−s), [1−s, 1)}, and letMk := E(X|Ak).
Show that the increments M2 −M1,M3 −M2, . . . are orthogonal in the following sense. For
any i, j ≥ 1 with i 6= j,

E(Mi+1 −Mi)(Mj+1 −Mj) = 0.

This property is sometimes called orthogonality of martingale increments. This prop-
erty holds for many martingales, but we will not prove this.

4.2. Examples of Martingales.

Example 4.16 (Random Walk). Let X1, X2, . . . be independent identically distributed
random variables. Assume also that E |X1| < ∞. Let µ := EX1. For any n ≥ 1, define
Mn := X1 + · · ·+Xn−µn. Let M0 := 0 and let X0 := 0. Then (M0,M1, . . .) is a martingale
with respect to (X0, X1, . . .). Indeed, for any m0, x0, . . . , xn, using Example 4.2,

E(Mn+1 −Mn|Xn = xn, . . . , X0 = x0,M0 = m0)

= E(Xn+1 − µ|Xn = xn, . . . , X0 = x0,M0 = m0) = E(Xn+1)− µ = 0.

Example 4.17 (Gambler’s Ruin). Let 0 < p < 1. Suppose you are playing a game of
chance. For each round of the game, with probability p you win $1 and with probability
1−p you lose $1. Suppose you start with $50 and you decide to quit playing when you reach
either $0 or $100. With what probability will you end up with $100?

Later on, we will answer this question using Martingales and Stopping Times.
Let (X1, X2, . . .) be independent random variables such that P(Xn = 1) =: p and P(Xn =
−1) = 1 − p =: q ∀ n ≥ 1. Let X0 := 50. Let Yn = X0 + · · · + Xn, and let Mn := (q/p)Yn

∀ n ≥ 1. Then Yn denotes the amount of money you have at time n ≤ 50. We claim that
M0,M1, . . . is a martingale with respect to X0, X1, . . .. Indeed,

E((q/p)Yn+1 − (q/p)Yn |Xn = xn, . . . , X0 = x0,M0 = m0)

= (q/p)x0+···+xnE((q/p)Xn+1 − 1 |Xn = xn, . . . , X0 = x0,M0 = m0)

= (q/p)x0+···+xnE((q/p)Xn+1 − 1) = (q/p)x0+···+xn(p(q/p) + q(p/q)− 1) = 0.

4.3. Gambling Strategies.

Example 4.18. Suppose you can bet any amount of money you want on a fair coin flip.
And the coin can be flipped any number of times, i.e. you can play this game any number
of times. If you bet $d with d > 0 and the coin lands heads, then you win $d, but if the
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coin lands tails, then you lose $d. A naive strategy to make money off of this game is the
following. Just keep doubling your bet until you win. For example, start by betting $1. If
you lose, bet $2. If you lose that, bet $4. Then let’s say you finally won, then in total you
won $4 and you lost $3, so you gained $1 in total. We know that the probability of losing
k > 0 rounds of this game in a row is 2−k, so it seems like this strategy must win money.
However, there are some caveats to this analysis.

First, if your starting bet is $1, and if you lose twenty rounds of the game in a row, you
will be betting over one million dollars. More generally, if you lose k times in a row, you will
have to bet $2k. So, when k ≥ 20, most people would not be able to continue playing the
game, i.e. they would lose all of their money.

Second, your expected gain from every round of the game is zero. At each round of the
game, no matter what your bet is, your expected earnings are zero. So, it is impossible to
win money in this game, in expectation. And indeed, the Law of Large Numbers (Theorem
2.45) assures us that when the game is repeated many times, we will earn zero dollars on
average, with probability 1.

It turns out that, no matter what betting strategy is chosen in this game, there is still no
way to make any money. We will prove this using martingale methods. And indeed, these
gambling strategies are the first studied examples of martingales.

Let X1, X2, . . . each be independent random variables such that P(Xi = 1) = P(Xi =
−1) = 1/2 for every i ≥ 0. For any n ≥ 1, let Mn = X1 + · · ·+Xn. Let M0 = 0. If someone
bets one dollar at every round of the game, then their profit is Mn after the nth round of the
game. Since EX1 = 0, Example 4.16 implies that M0,M1, . . . is a martingale with respect
to X0, X1, . . .. A gambling strategy for the nth round of the game can use any information
from the previous rounds of the game. Let Hn be the amount of money we bet in the nth

round of the game. We assume that Hn is a function of Xn−1, . . . , X1,M0, and we call the
random variables H1, H2, . . . a predictable process. That is, for every n ≥ 1, there exists
a function fn : Rn → R such that Hn = fn(Xn−1, . . . , X1,M0). When the mth round of the
game occurs, we earn Hm(Mm −Mm−1) dollars. In summary, our wealth Wn at time n ≥ 1
is then

Wn := M0 +
n∑

m=1

Hm(Mm −Mm−1).

We will now prove that we cannot make money from this game.

Theorem 4.19. Let (X0, X1, . . .) be a stochastic process. Assume that (M0,M1, . . .) is a
(super)martingale with respect to X0, X1, . . .. Let c1, c2, . . . be constants. Let H1, H2, . . . be a
predictable process. Assume that 0 ≤ Hn ≤ cn for all n ≥ 1. Then

Wn := M0 +
n∑

m=1

Hm(Mm −Mm−1).

is also a (super)martingale with respect to (X0, X1, . . .).

That is, you cannot make money by trying to bet on a (super)martingale.

Remark 4.20. The quantity M0 +
∑n

m=1Hm(Mm−Mm−1) is a finite version of a stochastic
integral. And in fact, there is a corresponding statement to be made about stochastic
integrals, namely that you cannot make money off of (continuous time) supermartingales.
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Remark 4.21. Allowing Hn < 0 would correspond to betting negative amounts, so that
the gambler could assume the position of the “house.” So, we do not allow this to happen.
Also, requiring the predictable process to be bounded is only assumed so that the expected
values involved are finite; the boundedness assumption can in fact be weakened.

Proof of Theorem 4.19. First, observe that

Wn+1 −Wn = Hn+1(Mn+1 −Mn)

Also, from the triangle inequality, and since M0,M1, . . . is a (super)martingale, so that
E |Mm| <∞ for all m ≥ 0,

E |Wn| ≤ E |M0|+
n∑

m=1

cm(E |Mm|+ E |Mm−1|) <∞.

So, the sequence W0,W1, . . . satisfies the first condition of being a (super)martingale. Now,
let m0, x0, . . . , xn ∈ R. Let A := {Xn = xn, . . . , X0 = x0,M0 = m0}. Since Hn+1 is
predictable, Hn+1 is constant on A, so Lemma 4.4 implies

E(Wn+1 −Wn |A) = E(Hn+1(Mn+1 −Mn) |A) = Hn+1E(Mn+1 −Mn |A) ≤ 0.

The last inequality follows since M0,M1, . . . is a (super)martingale and Hn+1 ≥ 0. �

Definition 4.22 (Stopping Time). A stopping time for a martingale M0,M1, . . . is a
random variable T taking values in 0, 1, 2, . . . ,∪{∞} such that, for any integer n ≥ 0, the
event {T = n} is determined by M0, X0, . . . , Xn. More formally, for any integer n ≥ 1, there
is a set Bn ⊆ Rn+2 such that {T = n} = {(M0, X0, . . . , Xn) ∈ Bn}. Put another way, the
indicator function 1{T=n} is a function of the random variables M0, X0, . . . , Xn.

From Remark 4.10, a martingale satisfies EMn = EM0 for all n ≥ 0. In some cases, we
can replace n with a stopping time T in this equality. However, this cannot always hold.

Example 4.23. Let (X1, X2, . . .) be a sequence of independent random variables such that
P(Xi = 1) = P(Xi = −1) = 1/2 for all i ≥ 0. Let M0 = 0 and let Mn = X0 + · · · + Xn

for all n ≥ 0. Note that EX0 = 0. So, from Example 4.16, M0,M1, . . . is a martingale. Let
T := min{n ≥ 1: Mn = 1} be the return time to 1. Then MT = 1, so EMT = 1 6= 0 = EM0.

Remark 4.24. Let a, b ∈ R. We use the notation a ∧ b := min(a, b). Note that if T is a
stopping time, then a ∧ T is a stopping time, for any fixed a ∈ R.

Theorem 4.25 (Optional Stopping Theorem, Version 1). Let (M0,M1, . . .) be a mar-
tingale with respect to X0, X1, . . ., and let T be a stopping time. Then (M0∧T ,M1∧T , . . .) is
a martingale. In particular, EMn∧T = EM0 for all n ≥ 0.

Proof. Let n ≥ 1. Let Hn = 1{T≥n}. Then

Hn = 1− 1{T≤n−1} = 1−
n−1∑
m=0

1{T=m}.

Since T is a stopping time, we know that Hn can be written as a function of X0, . . . , Xn−1.
That is, H1, H2, . . . is a predictable process. For any n ≥ 0, define

Wn := M0 +
n∑

m=1

Hm(Mm −Mm−1).
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By Theorem 4.19, W0,W1, . . . is a martingale. By definition of Hm,

Wn = M0 +
n∑

m=1

(1{T≥m})(Mm −Mm−1) = M0 +
n∑

m=1

(MT∧m −MT∧(m−1)) = MT∧n.

�

Theorem 4.26 (Optional Stopping Theorem, Version 2). Let (M0,M1, . . .) be a mar-
tingale, and let T be a stopping time such that P(T < ∞) = 1. Let d ∈ R. Assume that
|Mn∧T | ≤ d for all n ≥ 0. Then EMT = EM0.

Proof. From Theorem 4.25, for any n ≥ 1,

EM0 = EMn∧T = EMn∧T (1{T≤n} + 1{T>n}) = EMn∧T1{T≤n} + EMn∧T1{T>n}.

We bound each term separately. We have∣∣EMn∧T1{T>n}
∣∣ ≤ E |Mn∧T | 1{T>n} ≤ d · E1{T>n} = d ·P(T > n). (∗)

Also, since P(T <∞) = 1, we have

P( lim
n→∞

Mn∧T = MT ) = 1, P(|MT | ≤ d) = 1.

Therefore, for any n ≥ 1,∣∣EMn∧T1{T≤n} − EMT

∣∣ =
∣∣EMT1{T≤n} − EMT (1{T≤n} + 1{T>n})

∣∣
=
∣∣EMT1{T>n}

∣∣ ≤ E |MT | 1{T>n} ≤ d · E1{T>n} = d ·P(T > n). (∗∗)
So, subtracting EMT from both sides of the above equality and using the triangle inequality,

|EMT − EM0| =
∣∣EMT − EMn∧T1{T≤n} − EMn∧T1{T>n}

∣∣
≤
∣∣EMT − EMn∧T1{T≤n}

∣∣+
∣∣EMn∧T1{T>n}

∣∣ (∗), (∗∗)
≤ 2d ·P(T > n), ∀n ≥ 1.

Letting n → ∞ and using P(T < ∞) = 1 concludes the proof. (By continuity of the
probability law, limn→∞P(T > n) = P(T =∞) = 0.) �

For a real-world example, suppose M0,M1, . . . is a martingale which describes the price of a
stock. Suppose the stock is currently priced at M0 = 100 and you instruct your stock broker
to sell the stock when its price reaches either $110 or $90. That is, define the stopping time
T = min{n ≥ 1: Mn ≥ 110 or Mn ≤ 90}. Then T is a stopping time. From the Optional
Stopping Theorem Version 2, EMT = EM0. That is, you cannot make money off of this
stock (if it is a martingale).

Remark 4.27. The assumptions of the Optional Stopping Theorem cannot be abandoned,
as shown in Example 4.23. Let (M0,M1, . . .) be the symmetric simple random walk on
Z with M0 = 0. Let T = min{n ≥ 1: Mn = 1}. Then EM0 = 0 but MT = 1, so
EMT = 1 6= 0 = EM0.

Example 4.28 (Gambler’s Ruin). We return to Example 4.17. Let 0 < p < 1 with
p 6= 1/2, and let q := 1 − p. Let 0 ≤ a < x0 < b. Let X0 := x0. Let (X0, X1, . . .) be
independent random variables such that P(Xi = 1) = p and P(Xi = −1) = 1 − p for all
i ≥ 1. For any n ≥ 0, let Yn = X0 + · · ·+Xn. Let T = min{n ≥ 1: Yn ∈ {a, b}}. That is, T
is the first time the simple random walk Yn hits either a or b. We showed in Example 4.17
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that (q/p)Yn is a Martingale. Let c := P(YT = a) be the probability that the random walk
hits a before it hits b. Lemma 3.27 implies that P(T <∞) = 1. From Theorem 4.26,

(q/p)x0 = E(q/p)Y0 = E(q/p)YT = c(q/p)a + (1− c)(q/p)b.
Solving for c, we get

c =
(q/p)x0 − (q/p)b

(q/p)a − (q/p)b
.

In the case p = 1/2, Yn itself is a martingale, so

x0 = EY0 = EYT = ca+ (1− c)b.
Solving for c, we get

c =
x0 − b
a− b

.

Exercise 4.29. Let X0 = 0. Let (X0, X1, . . .) such that P(Xi = 1) = P(Xi = −1) = 1/2
for all i ≥ 1. For any n ≥ 0, let Yn = X0 + · · · + Xn. So, (Y0, Y1, . . .) is a symmetric simple
random walk on Z. Show that Y 2

n − n is a martingale (with respect to (X0, X1, . . .)).

Exercise 4.30. Let 1/2 < p < 1. Let (X0, X1, . . .) such that P(Xi = 1) = p and P(Xi =
−1) = 1−p for all i ≥ 1. For any n ≥ 0, let Yn = X0+· · ·+Xn. Let T0 = min{n ≥ 1: Yn = 0}.
Prove that P1(T0 =∞) > 0. Then, deduce that P0(T0 =∞) > 0. That is, there is a positive
probability that the biased random walk never returns to 0, even though it started at 0.

Example 4.31. Continuing the Gambler’s Ruin example with p = 1/2, let a < 0 < b be
integers, and let x0 = 0 and let T := min{n ≥ 0: Yn /∈ (a, b)}. We claim that ET = −ab.
To see this, we use Exercise 4.29 and the Optional Stopping Theorem to get 0 = E(Y 2

T −T ),
then using Example 4.28,

ET = EY 2
T = a2P(ST = a) + b2P(ST = b)

= a2 b

b− a
+ b2 (−a)

b− a
= ab

a− b
b− a

= −ab.

Strictly speaking, the Optional Stopping Theorem, Version 2, does not apply, since the
martingale is not bounded. But Theorem 4.25 does apply, and we can then let n → ∞ to
get ET = −ab. Filling in the details is beyond the scope of this course.

Exercise 4.32. Let X1, . . . be independent identically distributed random variables with
P(Xi = 1) = P(Xi = −1) = 1/2 for every i ≥ 1. For any n ≥ 1, let Mn := X1 + · · · + Xn.
Let M0 = 0. For any n ≥ 1, define

Wn := M0 +
n∑

m=1

Hm(Mm −Mm−1).

Show that if you have an infinite amount of money, then you can make money by using
the double-your-bet strategy in the game of coinflips (where if you bet $d, then you win $d
with probability 1/2, and you lose $d with probability 1/2). For example, show that if you
start by betting $1, and if you keep doubling your bet until you win (which should define
some betting strategy H1, H2, . . . and a stopping time T ), then EWT = 1, for a suitable
stopping time T .
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Exercise 4.33. Prove the following variant of the Optional Stopping Theorem. Assume
that (M0,M1, . . .) is a submartingale, and let T be a stopping time such that P(T < ∞).
Let c ∈ R. Assume that |Mn∧T | ≤ c for all n ≥ 0. Then EMT ≥ EM0. That is, you can
make money by stopping a submartingale.

Exercise 4.34 (Ballot Theorem). Let a, b be positive integers. Suppose there are c votes
cast by c people in an election. Candidate 1 gets a votes and candidate 2 gets b votes. (So
c = a + b.) Assume a > b. The votes are counted one by one. The votes are counted in a
uniformly random ordering, and we would like to keep a running tally of who is currently
winning. (News agencies seem to enjoy reporting about this number.) Suppose the first
candidate eventually wins the election. We ask: with what probability will candidate 1
always be ahead in the running tally of who is currently winning the election? As we will
see, the answer is a−b

a+b
.

To prove this, for any positive integer k, let Sk be the number of votes for candidate 1,
minus the number of votes for candidate 2, after k votes have been counted. Then, define
Xk := Sc−k/(c− k). Show that X0, X1, . . . is a martingale with respect to Sc, Sc−1, Sc−2, . . ..
Then, let T such that T = min{0 ≤ k ≤ c : Xk = 0}, or T = c− 1 if no such k exists. Apply
the Optional Stopping theorem to XT to deduce the result.

Exercise 4.35. Let (X0, X1, . . .) be the simple random walk on Z. For any n ≥ 0, define
Mn = X3

n − 3nXn. Show that (M0,M1, . . .) is a martingale with respect to (X0, X1, . . .)
Now, fix m > 0 and let T be the first time that the walk hits either 0 or m. Show that,

for any 0 < k ≤ m,

Ek(T |XT = m) =
m2 − k2

3
.

Exercise 4.36. Let X1, X2, . . . be independent random variables with EXi = 0 for every
i ≥ 1. Suppose there exists σ > 0 such that Var(Xi) = σ2 for all i ≥ 1. For any n ≥ 1, let
Sn = X1 + · · · + Xn. Show that S2

n − nσ2 is a martingale with respect to X1, X2, . . .. (We
let X0 = 0.)

Let a > 0. Let T = min{n ≥ 1: |Sn| ≥ a}. Using the Optional Stopping Theorem, show
that ET ≥ a2/σ2. Observe that a simple random walk on Z has σ2 = 1 and ET = a2 when
a ∈ Z.

5. Poisson Process

5.1. Review of Conditional Expectation for Continuous Random Variables.

Definition 5.1 (Conditioning one Random Variable on Another). Let X and Y be
continuous random variables with joint PDF fX,Y . That is, for any A ⊆ R2,

P((X, Y ) ∈ A) =

∫∫
A

fX,Y (x, y)dxdy.

Fix some y ∈ R with fY (y) > 0. For any x ∈ R, define the conditional PDF of X, given
that Y = y by

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
, ∀x ∈ R.
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We also define the conditional expectation

E(X |Y = y) =

∫ ∞
−∞

xfX|Y (x|y)dx.

And for any −∞ ≤ a < b ≤ ∞, define the conditional probability

P(a ≤ X ≤ b |Y = y) =

∫ b

a

fX|Y (x|y)dx.

More generally, if X1, . . . , Xn have joint PDF fX1,...,Xn , we define

fX1|X2,...,Xn(x1|x2, . . . , xn) =
fX1,...,Xn(x1, . . . , xn)

fX2,...,Xn(x2, . . . , xn)
, ∀x1, . . . , xn ∈ R.

Here the marginal fX2,...,Xn is defined by

fX2,...,Xn(x2, . . . , xn) =

∫ ∞
−∞

fX1,...,Xn(x1, . . . , xn)dx1, ∀x2, . . . , xn ∈ R.

We can similarly define conditional probability and conditional expectations.
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Figure 1. One Sample Path of a Poisson Process. The horizontal axis is the s-axis.

5.2. Construction of the Poisson Process. Up until this point, we have focused on
discrete time stochastic processes. That is, we have discussed sequences (X0, X1, X2, . . .)
of random variables, indexed by the nonnegative integers. In theory and in applications,
it is often beneficial to consider continuous time stochastic processes. That is, it is often
helpful to consider sets of random variables {Xs}s≥0. Here, s ranges over all nonnegative
real numbers.

The Poisson Process is our first example of a continuous time stochastic process. This
process will be integer-valued.

Let λ > 0. Recall that a random variable T is exponential with parameter λ if T
has the density function given by fT (x) = λe−λx for all x ≥ 0, and fT (x) = 0 otherwise.
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Moreover,

P(T ≤ t) =

∫ t

−∞
fT (x)dx =

∫ t

0

fT (x)dx =

{
1− e−λt, if t ≥ 0

0 if t < 0.

Lemma 5.2. Let τ be an exponential random variable with parameter λ > 0. Let t, s > 0.
Then

P(τ > t+ s | τ > t) = P(τ > s).

That is, T has the memoryless property, or lack of memory property. Moreover,

P(τ ≤ t+ s | τ > t) = P(τ ≤ s).

Proof.

P(τ > t+ s | τ > t) =
P(τ > t+ s, τ > t)

P(τ > t)
=

P(τ > t+ s)

P(τ > t)

=
λ
∫∞
t+s

e−λxdx

λ
∫∞
t
e−λxdx

=
e−λ(t+s)

e−λt
= e−λs = λ

∫ ∞
s

e−λxdx.

Then, note that P(τ ≤ t+s | τ > t) = 1−P(τ > t+s | τ > t) = 1−P(τ > s) = P(τ ≤ s). �

Lemma 5.3. Let λ > 0. Let τ1, . . . , τn be independent exponential random variables with
parameter λ. Define Tn := τ1 + · · · + τn. Then Tn is a gamma distributed random
variable with parameters n and λ. That is, Tn has density

fTn(t) :=

{
λe−λt (λt)n−1

(n−1)!
, if t ≥ 0

0, otherwise.

Proof. We induct on n. The case n = 1 follows (using 0! = 1) since T1 = τ1 is an exponential
random variable. We now do the inductive step. Suppose the assertion holds for n and
consider the case n + 1. Then Tn+1 = Tn + τn+1. So, for any s > 0, using that Tn and τn+1

are independent,

P(Tn+1 < s) = P(Tn + τn+1 < s) =

∫ ∞
−∞

∫ s−t

−∞
fτn+1(y)fTn(t)dydt.

Taking the derivative with respect to s > 0,

fTn+1(s) =
d

ds
P(Tn+1 < s) =

∫ ∞
−∞

d

ds

∫ s−t

−∞
fτn+1(y)fTn(t)dydt. =

∫ ∞
−∞

fτn+1(s− t)fTn(t)dt.

Applying the inductive hypothesis,

fTn+1(s) =

∫ s

0

λe−λ(s−t)λe−λt
(λt)n−1

(n− 1)!
dt = λe−λs

λn

(n− 1)!

∫ s

0

tn−1dt = λe−λs
λnsn

n!
.

�

Definition 5.4 (Poisson Process). Let λ > 0. Let τ1, τ2, . . . be independent exponential
random variables with parameter λ. Let T0 = 0, and for any n ≥ 1, let Tn := τ1 + · · · + τn.
A Poisson Process with parameter λ > 0 is a set of integer-valued random variables
{N(s)}s≥0 defined by N(s) := max{n ≥ 0: Tn ≤ s}.
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Figure 2. One Sample Path of a Poisson Process.

We can think of the Poisson Process intuitively, so that τk is the time between the arrival
of the (k− 1)st person and the kth person at a bank, and N(s) is the number of people who
have arrived by time s ≥ 0.

Recall that a discrete random variable X is a Poisson random variable with mean
λ > 0 if P(X = n) = e−λ · λn

n!
for all nonnegative integers n.

Lemma 5.5. Let {N(s)}s≥0 be a Poisson Process with parameter λ > 0. Then, for any
s ≥ 0, N(s) is a Poisson random variable with parameter λs.

Proof. Let n be a nonnegative integer. Then

P(N(s) = n) = P(max{m ≥ 0: Tm ≤ s} = n) = P(Tn ≤ s, Tn+1 > s)

= P(Tn ≤ s, Tn + τn+1 > s)

=

∫ s

−∞

∫ ∞
s−t

fτn+1(y)fTn(t)dydt, since Tn and τn+1 are independent

=

∫ s

−∞
P(τn+1 > s− t)fTn(t)dt =

∫ s

0

e−λ(s−t)λe−λt
(λt)n−1

(n− 1)!
dt, by Lemma 5.3

= e−λs
λn

(n− 1)!

∫ s

0

tn−1dt = e−λs
λnsn

n!
.

�

Exercise 5.6. Let λ > 0. Let τ1, τ2, . . . be independent exponential random variables with
parameter λ. For any n ≥ 1, let Tn = τ1 + · · ·+ τn. Fix positive integers nk > · · · > n1 and
positive real numbers tk > · · · > t1. Then

fTnk ,...,Tn1 (tk, . . . , t1) = fT(nk−nk−1)
(tk − tk−1) · · · fT(n2−n1)(t2 − t1)fTn1 (t1).

(Hint: just try to case k = 2 first, and use a conditional density function.)

Exercise 5.7. Let s, t > 0 and let m,n be nonnegative integers. Let 0 < tm < tm+1 <
tm+n < tm+n+1, and define (using the notation of Exercise 5.6),

g(tm, tm+1, tm+n, tm+n+1) := fT1(tm+n+1 − tm+n)fTn−1(tm+n − tm+1)fT1(tm+1 − tm)fTm(tm).
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Figure 3. Several Sample Paths of a Poisson Process. The horizontal axis is
the s-axis.

Let {N(s)}s≥0 be a Poisson Process with parameter λ > 0. Show that

P(N(s+ t) = m+ n, N(s) = m)

=

∫ s

0

(∫ s+t

s

(∫ s+t

tm+1

(∫ ∞
s+t

g(tm, tm+1, tm+n, tm+n+1)dtm+n+1

)
dtm+n

)
dtm+1

)
dtm.

(Hint: use the joint density, and then use Exercise 5.6.)

Lemma 5.8. Let {N(s)}s≥0 be a Poisson Process with parameter λ > 0. Let s, t > 0 and
let m,n be nonnegative integers. Then

P(N(s+ t) = m+ n, N(s) = m) = P(N(s) = m)P(N(t) = n).

Proof. Suppose n > 1. From Lemma 5.3 and Exercise 5.7 we have

g(tm, tm+1, tm+n, tm+n+1) = λm+n+1e−λtm+n+1
(tm+n − tm+1)n−2

(n− 2)!

tm−1
m

(m− 1)!
.

P(N(s+ t) = m+ n, N(s) = m) =
λm+n+1

(n− 2)!(m− 1)!

∫ ∞
s+t

e−λtm+n+1dtm+n+1

·
(∫ s+t

s

∫ s+t

tm+1

(tm+n − tm+1)n−2dtm+ndtm+1

)∫ s

0

tm−1
m dtm

= λm+ne−λ(s+t) sm

m!(n− 1)!

(∫ s+t

s

(s+ t− tm+1)n−1dtm+1

)
= λm+ne−λ(s+t) s

mtn

m!n!
= P(N(s) = m)P(N(t) = n).

In the last line, we used Lemma 5.5. The cases n = 0 and n = 1 are treated similarly. �

Lemma 5.9. Let {N(s)}s≥0 be a Poisson Process with parameter λ > 0. Fix s > 0. Then
N(t + s) − N(s) is a Poisson random variable which is independent of N(s). (In fact,
{N(t + s) − N(s)}t≥0 is a Poisson process with parameter λ which is independent of the
random variable N(s), but we cannot prove this yet.)
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Proof. Let s, t > 0 and let m,n be nonnegative integers. From Lemma 5.8,

P(N(s+ t)−N(s) = n, N(s) = m) = P(N(s+ t) = m+ n, N(s) = m)

= P(N(t) = n)P(N(s) = m). (∗)
Summing over all m ≥ 0 gives P(N(s + t)−N(s) = n) = P(N(t) = n), for all s, t > 0, for
all n ≥ 0. That is, N(t+ s)−N(s) is a Poisson random variable with parameter λ. For the
independence property, we can just rewrite (∗) as

P(N(s+ t)−N(s) = n, N(s) = m) = P(N(s+ t)−N(s) = n)P(N(s) = m), ∀m,n ≥ 0.

�

Lemma 5.10. The Poisson Process has independent increments. That is, for any 0 <
u0 < · · · < uk, the following random variables are independent:

N(u1)−N(u0), . . . , N(uk)−N(uk−1).

Proof. In Lemma 5.9, we showed that N(s+t)−N(s) is independent of N(s). By generalizing
the arguments of Exercise 5.7 and Lemma 5.8, we have: if 1 < n1, . . . , nk, and if mi :=
n1 + · · ·+ ni, for all 1 ≤ i ≤ k,

g(tm1 , tm1+1, . . . , tmk , tmk+1) := λmk+1e−λtmk+1
tn1−1
m1

(n1 − 1)!

k∏
i=2

(tmi − tm(i−1)+1)ni−2

(ni − 2)!
.

If 0 < s1, . . . , sk, and if ui := s1 + · · ·+ si for all 1 ≤ i ≤ k,

P(N(uk) = mk, . . . , N(u1) = m1)

=

∫ u1

0

∫ u2

u1

∫ u2

tm1+1

∫ u3

u2

∫ u3

tm2+1

· · ·
∫ uk

tmk+1

∫ ∞
uk

g(tm1 , tm1+1, . . . , tmk , tmk+1)dtmk+1dtmk · · · dtm1+1dtm1

= λmke−λuk
k∏
i=1

snii
ni!

=
k∏
i=1

λnie−λsisnii
ni!

=
k∏
i=1

P(N(sk) = nk).

So, using this equality and Lemma 5.9,

P(N(uk)−N(uk−1) = nk, . . . , N(u2)−N(u1) = n2, N(u1) = n1)

= P(N(uk) = mk, . . . , N(u2) = m2, N(u1) = n1)

=
k∏
i=1

P(N(sk) = nk) =
k∏
i=1

P(N(uk)−N(uk−1) = nk).

�

We summarize the above discussion.

Definition 5.11 (Right-Continuous Function). Let f : [0,∞) → R. We say that f is
right-continuous if: for any s ≥ 0, limt→s+ f(t) = f(s).

Exercise 5.12. Give an example of a right-continuous function. Then give an example of a
function that is not right-continuous.

Theorem 5.13. Let {N(s)}s≥0 be a Poisson process with parameter λ > 0. Then N(0) = 0,
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(i) With probability 1, s 7→ N(s) is right-continuous.
(ii) N(t+ s)−N(s) is a Poisson random variable with parameter λt for all s, t > 0.

(iii) {N(s)}s≥0 has independent increments.

Conversely, if N(0) = 0 and if (i), (ii) and (iii) hold, then {N(s)}s≥0 is a Poisson process
with parameter λ > 0.

Remark 5.14. In particular, we could use (i), (ii) and (iii) as an alternate definition of a
Poisson process.

Proof. Property (ii) follows from Lemma 5.9, and Property (iii) follows from Lemma 5.10.
Property (i) follows from Definition 5.4. For the converse direction, suppose {N(s)}s≥0

is a stochastic process satisfying (i), (ii) and (iii) and N(0) = 0. For any n ≥ 1, define
Tn = min{s ≥ 0: N(s) ≥ n}. Note that N(s) is valued in the nonnegative integers and
increasing by Property (ii). Also, by Property (i), min{s ≥ 0: N(s) ≥ n} exists and
N(Tn) = n for any n ≥ 1. To see that N(Tn) = n, note that, N(Tn) ≥ n by definition
of Tn, and if N(Tn) > n, then N(Tn) − N(Tn − ε) > 1 for all 0 < ε < Tn. Then, for any
s ≥ 0, j ≥ 1, we have by the union bound

P(N(Tn) > n, Tn < s)

≤ P

(
∃ 1 ≤ i ≤ j, N

((
s
(

1− i

j

))
−N

((
s
(

1− i− 1

j

)))
> 1

)
≤

j∑
i=1

P

(
N
(
s
(

1− i

j

))
−N

(
s
(

1− i− 1

j

))
> 1

)
(ii)
=

j∑
i=1

(1− e−λ/j[1 + λ/j])

By Taylor expansion, e−λ/j(1 + λ/j) = 1− λ2/j2 + c(j), where |c(j)| ≤ 10λ3/j3. So,

P(N(Tn) > n, Tn < s) ≤
j∑
i=1

λ2

j2
+

10λ3

j3
=
λ2

j
+

10λ3

j2
.

Letting j →∞, we get P(N(Tn) > n, Tn < s) = 0. Letting s, n→∞, we see that N(Tn) = n
with probability 1, as desired.

Now, for any t > 0, property (ii) says

P(T1 > t) = P(N(t) = 0) = e−λt.

That is, T1 is an exponential random variable with parameter λ.
Also, if τ1 := T1 and τ2 := T2 − T1, then property (iii) implies

P(τ2 > t | τ1 = s) = P(T2 > t+ s |N(s)−N(r) = 1 for all 0 < r < s)

= P(N(t+ s)−N(s) = 0 |N(s)−N(r) = 1 for all 0 < r < s)

= P(N(t+ s)−N(s) = 0) = e−λt, by Property (ii).

Since this equality holds for any s > 0, we conclude that τ2 is an exponential random variable
with parameter λ, and τ1, τ2 are independent.
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More generally, if k > 1 and τk := Tk − Tk−1, then for any 0 < s1 < · · · < sk−1,

P(τk > t | τk−1 = sk−1, . . . , τ1 = s1)

= P(N(t+ sk−1)−N(sk−1) = 0 |
N(sk−1)−N(rk−1) = 1, ∀ sk−2 < rk−1 < sk−1, . . . , N(s1)−N(r1) = 1, ∀ 0 < r1 < s1)

= P(N(t+ sk−1)−N(sk−1) = 0) = e−λt, by Property (ii).

Since this equality holds for any 0 < s1 < · · · < sk−1, we conclude that τk is an exponential
random variable with parameter λ, and by induction on k, τ1, . . . , τk are independent. �

Remark 5.15. Let {N(s)}s≥0 be a Poisson Process with parameter λ > 0. Fix s > 0. Then
{N(t + s) − N(s)}t≥0 is a Poisson process with parameter λ which is independent of the
random variable N(s). This follows from Theorem 5.13.

Proposition 5.16 (Poisson Approximation to the Binomial). Let λ > 0. For each
positive integer n, let 0 < pn < 1, and let Xn be a binomial distributed random variable with
parameters n and pn. Assume that limn→∞ pn = 0 and limn→∞ npn = λ. Then, for any
nonnegative integer k, we have

lim
n→∞

P(Xn = k) = e−λ
λk

k!
.

From the Poisson Approximation to the Binomial, we can use a Poisson random variable
to model any low probability event with many chances of happening. For example, the
Poisson random variable can model the number of people who win the lottery, the number
of magnetic defects in a hard drive, the number of typos per page in a book, etc.

The Poisson Process can be treated in the same way, with an added time variable. That
is, we can use the Poisson Process to model any kind of low probability event with many
chances of happening over time. For example, this process can model the number of people
arriving at a restaurant during a week, the number of car accidents over the course of a day,
the number of visitors to a website over the course of a year, etc.

Definition 5.17 (Inhomogeneous Poisson Process). Let λ : [0,∞)→ [0,∞) be a func-
tion. We say a stochastic process {N(s)}s≥0 is a inhomogeneous Poisson Process with
rate λ if N(0) = 0 and if

(i) With probability 1, s 7→ N(s) is right-continuous.

(ii) N(t)−N(s) is a Poisson random variable with parameter
∫ t
s
λ(r)dr for all t > s > 0.

(iii) {N(s)}s≥0 has independent increments.

We recover the usual Poisson process by choosing λ(r) := λ for all r ≥ 0.

5.3. Compound Poisson Process.

Exercise 5.18. Let Y1, Y2, . . . be independent identically distributed random variables. Let
N be an independent, nonnegative integer-valued random variable. Let S = Y1 + · · · + YN ,
where S := 0 if N = 0.

• If E |Y1| <∞ and EN <∞, then ES = (EN)(EY1).
• If EY 2

1 <∞ and EN2 <∞, then var(S) = (EN)(var(Y1)) + (EY1)2(var(N)).
• If N is a Poisson random variable with parameter λ > 0, then var(S) = λEY 2

1 .
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(Hint: for the second part, use E(S2|N = n) = n · var(Y1) + (nEY1)2. Use this to compute
ES2. Then compute var(S).)

Exercise 5.19. Suppose the number of students going to a restaurant in Ackerman in a single
day has a Poisson distribution with mean 500. Suppose each student spends an average of
$10 with a standard deviation of $5. What is the average revenue of the restaurant in one
day? What is the standard deviation of the revenue in one day? (The amounts spent by the
students are independent identically distributed random variables.)

5.4. Transformations.

Theorem 5.20 (Splitting). Let Y1, Y2, . . . be independent identically distributed positive
integer-valued random variables. Let {N(s)}s≥0 be a Poisson process with parameter λ > 0
that is independent of Y1, Y2, . . .. For any s > 0, j ≥ 1, let Nj(s) be the number of integers i ≤
N(s) such that Yi = j. Then {N1(s)}s≥0, {N2(s)}s≥0, . . . are independent Poisson processes
with rates λP(Y1 = 1), λP(Y1 = 2), . . ..

Proof. Fix an integer k > 0 and assume that Y1 ≤ k. Note that Nj(s) =
∑N(s)

i=1 1{Yi=j}, and
N1(s) + · · ·+Nk(s) = N(s). Let n := n1 + · · ·+ nk. We first consider the case k = 2. Then

P(N1(s) = n1, N2(s) = n2 |N(s) = n) = P(
n∑
i=1

1{Yi=1} = n1,
n∑
i=1

1{Yi=2} = n2 |N(s) = n)

= P(
n∑
i=1

1{Yi=1} = n1,
n∑
i=1

1{Yi=2} = n2) , by independence

=
n!

n1!n2!
P(Y1 = 1)n1P(Y1 = 2)n2 .

So, since {N(s) = n} ⊇ {N1(s) = n1, N2(s) = n2}, we get from Lemma 5.5,

P(N1(s) = n1, N2(s) = n2) = P(N1(s) = n1, N2(s) = n2, N(s) = n)

= P(N1(s) = n1, N2(s) = n2 |N(s) = n)P(N(s) = n)

=
n!

n1!n2!
P(Y1 = 1)n1P(Y1 = 2)n2e−λs

λnsn

n!

= e−λs(P(Y1=1)) [λsP(Y1 = 1)]n1

n1!
e−λs(P(Y1=2)) [λsP(Y1 = 2)]n2

n2!
.

So, N1(s) and N2(s) are independent Poisson random variables with parameters λsP(Y1 =
1) and λsP(Y1 = 2), respectively. So, one part of condition (ii) of Theorem 5.13 holds.
Conditions (iii) follows since {N(s)}s≥0 itself has independent increments. (If we condition
on the values of Y1, Y2, . . ., then N1 has (conditionally) independent increments. Then the
Total Probability Theorem implies that N1 has independent increments.)
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We now handle the more general case, where we verify the full condition (ii). Let s, t > 0,
and for any 1 ≤ i ≤ k, let Xi := Ni(s+ t)−Ni(s), and let X := N(s+ t)−N(s). Then

P(X1 = n1, . . . , Xk = nk |X = n)

= P(
n∑
i=1

1{Yi=1} = n1, . . . ,

n∑
i=1

1{Yi=k} = nk |X = n) , since X =
k∑
j=1

Xj

= P(
n∑
i=1

1{Yi=1} = n1, . . . ,

n∑
i=1

1{Yi=k} = nk) , by independence

=
n!

n1! · · ·nk!
P(Y1 = 1)n1 · · ·P(Y1 = k)nk .

So, since {X = n} ⊇ {X1 = n1, . . . , Xk = nk}, we get from Lemma 5.5,

P(X1 = n1, . . . , Xk = nk) = P(X1 = n1, . . . , Xk = nk, X = n)

= P(X1 = n1, . . . , Xk = nk |X = n)P(X = n)

=
n!

n1! · · ·nk!
P(Y1 = 1)n1 · · ·P(Y1 = k)nke−λs

λnsn

n!

=
n∏
i=1

e−λs(P(Y1=i)) [λsP(Y1 = i)]ni

ni!
.

The Theorem now follows since conditions (i), (ii) and (iii) of Theorem 5.13 hold ∀ j ≥ 1. �

Exercise 5.21. Suppose you run a (busy) car wash, and the number of cars that come to
the car wash between time 0 and time s > 0 is a Poisson poisson with rate λ = 1. Suppose
each car is equally likely to have one, two, three, or four people in it. What is the average
number of cars with four people that have arrived by time s = 100?

Proposition 5.22 (Superposition). Let {N1(s)}s≥0, . . . , {Nk(s)}s≥0 be independent Pois-
son processes with rates λ1, . . . , λk > 0, respectively. Then {N1(s) + · · · + Nk(s)}s≥0 is a
Poisson process with rate λ1 + · · ·+ λk

Proof. It suffices to check the three conditions of Theorem 5.13. The first condition is clear.
The second condition follows by repeated application of Exercise 5.23. The third condition
follows by assumption. �

Exercise 5.23. Let X be a Poisson random variable with parameter λ > 0. Let Y be a
Poisson random variable with parameter δ > 0. Assume that X, Y are independent. Then
X + Y is a Poisson random variable with parameter λ+ δ.

Exercise 5.24. Suppose you are still running a (busy) car wash. The number of red cars
that come to the car wash between time 0 and time s > 0 is a Poisson poisson with rate
2. The number of blue cars that come to car wash between time 0 and time s > 0 is a
Poisson poisson with rate 3. Both Poisson processes are independent of each other. All cars
are either red or blue. With what probability will five blue cars arrive, before three red cars
have arrived?

48



6. Renewal Theory

The Poisson Process can be generalized by replacing the exponential random variables by
more general random variables. This generalized process is called a renewal process. We
can still think of a renewal process in the same way that we think of the Poisson process,
e.g. by modeling the number of people visiting a restaurant over time, or the number of
lightbulbs that need to be installed in a single socket, up to a certain time, etc. However, a
general renewal process will no longer have the independent increment property, as we had
in the case of the Poisson process. Indeed, the independent increment property was a crucial
ingredient in Theorem 5.13, where we uniquely characterized the Poisson process.

Definition 6.1 (Renewal Process). Let τ1, τ2, . . . be nonnegative independent identically
distributed variables. Let T0 = 0, and for any n ≥ 1, let Tn := τ1 + · · · + τn. A Renewal
process is a set of integer-valued random variables {N(s)}s≥0 defined by N(s) := max{n ≥
0: Tn ≤ s}.

Example 6.2. Let X0, X1, . . . be a Markov chain with X0 := x ∈ Ω. Let T1 := min{k ≥
1: Xk = x}, and for any n ≥ 2, inductively define Tn := min{k > Tn−1 : Xk = x}. Let
τn := Tn+1 − Tn for any n ≥ 1. The Strong Markov property implies that τ1, τ2, . . . are
independent and identically distributed. Therefore, {N(s)}s≥0, as defined above is a renewal
process. Note that N(s) is the number of times the Markov chain returns to x up to time s.

6.1. Law of Large Numbers.

Theorem 6.3 (Law of Large Numbers for Renewal Process). Suppose we have a
renewal process {N(s)}s≥0 with arrival increments τ1, τ2, . . .. Let µ := Eτ1. Assume that
0 < µ <∞. Then

P

(
lim
s→∞

N(s)

s
=

1

µ

)
= 1.

That is, if one light bulb lasts µ years on average, then after s years, we will have replaced
about s/µ light bulbs (when s is large).

Proof. Let Tn := τ1 + · · · + τn. Recall that τ1, τ2, . . . are independent and identically dis-
tributed, by the definition of a renewal process. So, the Strong Law of Large Numbers,
Theorem 2.45, implies that

P

(
lim
n→∞

Tn
n

= µ

)
= 1. (∗)

By the definition of N(s) := max{n ≥ 0: Tn ≤ s}, we have

TN(s) ≤ s < TN(s)+1.

Dividing by N(s) > 0, we get

TN(s)

N(s)
≤ s

N(s)
<

TN(s)+1

N(s) + 1

N(s) + 1

N(s)
. (∗∗)

Also by definition of N(s), for any fixed integer m > 0, we have P(N(s) < m) = P(Tm >
s) ≤ ETm/s = mµ/s → 0 as s → ∞. So, using this fact and (∗), the left and right sides of
(∗∗) converge to µ with probability 1. The Theorem follows. �
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Exercise 6.4. Prove the following two facts, which we used in the proof of the Law of Large
Numbers for Renewal Processes.

Let X1, X2, . . . , Y1, Y2, . . . , Z1, Z2, . . . be random variables. Let a, b ∈ R.

• Assume that Xn ≤ Yn ≤ Zn for any n ≥ 1. Assume that P(limn→∞Xn = a) = 1 and
P(limn→∞ Zn = a) = 1. Prove that P(limn→∞ Yn = a) = 1.
• Assume that P(limn→∞Xn = a) = 1 and P(limn→∞ Yn = b) = 1. Prove that

P(limn→∞XnYn = ab) = 1.

7. Brownian Motion

7.1. Construction of Brownian Motion. Let X1, X2, . . . be independent random vari-
ables such that P(Xi = 1) = P(Xi = −1) = 1/2 for all i ≥ 1. Define

B1(t) :=

btc∑
i=1

Xi, ∀ t ≥ 0.

Note that if j is an integer such that j ≤ t < j + 1, then btc := j and B1(t) is constant
when t ∈ [j, j + 1), and then the value of B1(t) changes at t = j, according to the value of
Xj. That is, the value of B1(t) changes at each positive integer value according to one of
the random variables X1, X2, . . .. Put another way, B1(t) plots the path of a simple random
walk on the integers, if we imagine that the random walker stops for one second before each
of their random movements. Note also that, for any integers t > s > 0, B1(t) − B1(s) has
mean zero and variance t− s.

Now, let k be a positive integer. We now consider changing the time between the random
walker’s movements to 1/k. To keep the same variance property as before, we also multiply

the sum by 1/
√
k:

Bk(t) :=
1√
k

btkc∑
i=1

Xi, ∀ t ≥ 0.

Note that Bk(t) is only constant on intervals of length 1/k now. Also, as promised, if t > s >
0 are integers divided by k, then Bk(t)−Bk(s) has mean zero and variance (tk−sk)/k = t−s.
Finally, observe that the process {Bk(t)}t≥0 has the independent increments property.
So, for example, if 0 < t1 < t2 < t3 < t4 are integers divided by k, then Bk(t4)−Bk(t3) and
Bk(t2)−Bk(t1) are independent.

If k is large, i.e. something like k = 1000, already Bk(t) can model various random
phenomena that depend on time, e.g. a stock price, the position of a randomly moving
particle, etc. However, just as we let Riemann sums converge to integrals to create a useful
theory of integration, it is also helpful for us to take a certain limit of the continuous-time
process {Bk(t)}t≥0 as k → ∞. The resulting limiting stochastic process {B(t)}t≥0 is called
Brownian motion. The precise meaning of this limit as k → ∞ is beyond this course
material. However, we can still make some observations about Brownian motion.

Fix t > 0. From the Central Limit Theorem (Theorem 2.50), observe that

lim
k→∞

P

(
1√
t
Bk(t) ≤ a

)
= lim

k→∞
P

 1√
tk

btkc∑
i=1

Xi ≤ a

 =

∫ a

−∞
e−x

2/2 dx√
2π
, ∀ a ∈ R.
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Replacing a by a/
√
t and changing variables, we get

lim
k→∞

P (Bk(t) ≤ a) =

∫ a/
√
t

−∞
e−x

2/2 dx√
2π

=

∫ a

−∞
e−

x2

2t
dx√
2πt

, ∀ a ∈ R.

That is, from Definition 2.20, as k → ∞, Bk(t) has the same CDF as a Gaussian random
variable with mean zero and variance t.

Arguing similarly, if t > s > 0, then as k → ∞, Bk(t) − Bk(s) has the same CDF as a
Gaussian random variable with mean zero and variance t − s. Moreover, we could believe
that the stationary increments property is also preserved as k → ∞. We are therefore led
to the following definition.

Definition 7.1 (Brownian Motion). Standard Brownian motion is a stochastic process
{B(t)}t≥0 which is the limit (in a sense we will not make precise) of the processes {Bk(t)}t≥0

as k → ∞. Standard Brownian motion with B(0) = 0 is uniquely characterized by the
following properties:

(i) (Continuous Sample Paths) With probability 1, the function t 7→ B(t) is continuous.
(ii) (Stationary Gaussian increments) for any 0 < s < t, B(t) − B(s) is a Gaussian

random variable with mean zero and variance t− s.
(iii) (Independent increments) For any 0 < t1 < · · · < tn, the random variables B(t2) −

B(t1), . . . , B(tn)−B(tn−1) are all independent.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 4. Sample Paths of Standard Brownian Motion. The horizontal axis
is the t-axis.
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Exercise 7.2 (Scaling Invariance). Let a > 0. Let {B(t)}t≥0 be a standard Brownian
motion. For any t > 0, define X(t) := 1√

a
B(at). Then {X(t)}t≥0 is also a standard Brownian

motion.

Dealing rigorously with Brownian motion is beyond our course material. So, we will
occasionally ignore some details when dealing with Brownian motion, and when doing your
homework, it is okay to do the same. However, we will always try to provide as many details
as possible, and you should try your best to do the same.

Below, we will not formally define a stopping time, and we will not formally state an
Optional Stopping Theorem. However, since we know that {Bk(t)}t∈{0,1/k,2/k,3/k,...} is a mar-
tingale for every k ≥ 1, then it seems that {B(t)}t≥0 should be a martingale in some sense.
In fact, by the independent increments property of Brownian Motion, if t > s > 0, if
x1, . . . , xn ∈ R, and if s > sn > · · · > s1 > 0, then

E(B(t)−B(s) |B(sn) = xn, . . . , B(s1) = x1) = E(B(t)−B(s)) = 0.

The last equality follows since B(t)−B(s) is a mean zero Gaussian random variable.

Remark 7.3. Just as we have seen for random walks, we cannot apply an Optional Stopping
Theorem to every stopping time. For example, let {B(t)}t≥0 be standard Brownian motion,
and let T = min{t > 0: B(t) = 1}. Then EB(0) = E(0) = 0 but B(T ) = 1, so EB(T ) =
1 6= 0 = EB(0).

Below, whenever we apply an Optional Stopping Theorem to a stochastic process {X(t)}t≥0

and stopping time T , we will always verify that there exists a constant c > 0 such that
|X(t ∧ T )| ≤ c for all t ≥ 0, as in the statement of Theorem 4.26.

We will not formally define a stopping time T in these notes for continuous time stochastic
processes.

Brownian Motion satisfies a Markov property, in the following sense

Proposition 7.4 (Markov Property). Let {B(t)}t≥0 be a standard Brownian motion. Let
s > 0. Then the stochastic process {B(t+s)−B(s)}t≥0 is itself a standard Brownian motion,
which is independent of the set of random variables {B(u)}0≤u≤s.

Proof. Properties (i), (ii) and (iii) for {B(t + s) − B(s)}t≥0 in the definition of Brownian
Motion all follow from properties (i), (ii) and (iii) for {B(t)}t≥0. To see the independence
property, note that the independent increments property for {B(t)}t≥0 implies that B(t) −
B(s) is independent of B(u)−B(0) = B(u), for all 0 ≤ u ≤ s. �

Remark 7.5. Standard Brownian motion is also a martingale in the following sense: if
t > s > 0, and if s > sn > · · · > s1 > 0, and x1, . . . , xn ∈ R, then

E(B(t)−B(s) |B(sn) = xn, . . . , B(s1) = x1) = E(B(t)−B(s)) = 0.

The first equality follows from property (iii) and the second equality follows from (ii).

Exercise 7.6. Let x1, . . . , xn ∈ R, and if tn > · · · > t1 > 0. Using the independent increment
property, show that the event

{B(t1) = x1, . . . , B(tn) = xn}
has a multivariate normal distribution. That is, the joint density of (B(t1), . . . , B(tn)) is

f(x1, . . . , xn) = ft1(x1)ft2−t1(x2 − x1) · · · ftn−tn−1(xn − xn−1)
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where

ft(x) =
1√
2πt

e−x
2/(2t), ∀x ∈ R, t > 0.

Exercise 7.7. Let X be a Gaussian random variable with mean 0 and variance σ2
X > 0. Let

Y be a Gaussian random variable with mean 0 and variance σ2
Y > 0. Assume that X and

Y are independent. Show that X + Y is also a Gaussian random variable with mean 0 and
variance σ2

X + σ2
Y .

(Hint: write an expression for P(X + Y ≤ t), t ∈ R, then take a derivative in t.)

The covariances of Brownian motion can be computed from the definition of Brownian
motion.

Proposition 7.8. Let {B(t)}t≥0 be a standard Brownian motion. Let 0 < s < t. Then

EB(s)B(t) = s.

Proof. Using that B(s) has variance s, and using the independent increment property,

EB(s)B(t) = EB(s)(B(t)−B(s) +B(s)) = E(B(s))2 + E[B(s)(B(t)−B(s))]

= s+ [EB(s)][E(B(t)−B(s))] = s.

�

7.2. Properties of Brownian Motion. Standard Brownian motion has some counterintu-
itive properties: for example with probability 1, there is no smallest t > 0 such that B(t) = 0.
That is, with probability 1, the function t 7→ B(t) crosses the t-axis an infinite number of
times. For an intuitive explanation of this fact, recall that the simple random walk on the
integers has all states recurrent. That is, a random walk on the integers returns to t = 0
an infinite number of times. And Brownian motion is constructed by re-scaling the random
walk on the integers.

Since there is no smallest t > 0 when B(t) = 0, in order to ask when standard Brownian
motion takes the value zero, we need to replace the minimum over t > 0 by the infimum
over t > 0.

Definition 7.9 (Infimum). Let A be a nonempty set of nonnegative real numbers. The
infimum of A, denote inf(A) is the largest number y ∈ R such that y ≤ a for all a ∈ A.
That is, inf(A) is the greatest lower bound of A.

The existence of inf(A) is proven in Math 131A, so we will not justify its existence here.

Exercise 7.10. Let A := {1, 1/2, 1/3, 1/4, 1/5, . . .}. Find inf(A). Note that inf(A) exists,
but A has no minimum element. The infimum is better to work with for this reason.

Proposition 7.11. Let {B(t)}t≥0 be a standard Brownian motion. Let a, b > 0. Let Ta :=
inf{t ≥ 0: B(t) = a}. Then

P(Ta < T−b) =
b

a+ b

Proof. Let c := P(Ta < T−b). Let T := inf{t ≥ 0: B(t) ∈ {a,−b}}. From the Optional
Stopping Theorem (for continuous-time martingales) (noting that |B(t ∧ T )| ≤ max(a, b) for
all t ≥ 0)

0 = EB(0) = EB(T ) = ac− b(1− c).
Solving for c proves the result. �
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Exercise 7.12. Let {B(t)}t≥0 be a standard Brownian motion. Then {(B(t))2 − t}t≥0 is a
(continuous-time) martingale in the following sense: it t > s > 0, and if s > sn > · · · > s1 >
0, and x1, . . . , xn ∈ R, then

E((B(t))2 − t− ((B(s))2 − s) |B(sn) = xn, . . . , B(s1) = x1) = 0.

Proposition 7.13. Let a, b > 0. Let {B(t)}t≥0 be a standard Brownian motion. Let T =
inf{t ≥ 0: B(t) /∈ (−b, a)}. Then

ET = ab.

Proof. Using Exercise 7.12 and the Optional Stopping Theorem, we get 0 = E((B(T ))2−T ),
then using Proposition 7.11,

ET = E(B(T ))2 = a2P(B(T ) = a) + b2P(B(T ) = −b)

= a2 b

a+ b
+ b2

(
1− b

a+ b

)
= a2 b

a+ b
+ b2 a

a+ b
= ab

a+ b

a+ b
= ab.

Strictly speaking, the Optional Stopping Theorem, Version 2, does not apply, since the
martingale is not bounded. But Optional Stopping Version 1 does apply to (B(T∧t))2−T∧t,
and we can then let t → ∞ to get ET = −ab. Filling in the details is beyond the scope of
this course, as in Example 4.31. �

Exercise 7.14. Let {B(t)}t≥0 be a standard Brownian motion.

• Given that B(1) = 10, what is the expected length of time after t = 1 until B(t) hits
either 8 or 12?
• Now, let σ = 2, and µ = −5. Suppose a commodity has price X(t) = σB(t) + µt for

any time t ≥ 0. Given that the price of the commodity is 4 at time t = 8, what is
the probability that the price is below 1 at time t = 9?
• Suppose a stock has a price S(t) = 4eB(t) for any t ≥ 0. That is, the stock moves

according to Geometric Brownian Motion. What is the probability that the stock
reaches a price of 7 before it reaches a price of 2?

A reflection principle holds for standard Brownian motion, similar to Lemma 3.69 for the
simple random walk on Z.

Proposition 7.15 (Reflection Principle). Let x > 0. Then

P(Tx > t) = P(−x < B(t) < x) =

∫ x

−x
e−

y2

2t
dy√
2πt

, ∀ t > 0.

The final equality above follows since B(t) is a Gaussian random variable with mean 0
and variance t.

Exercise 7.16. Fix x > 0

• Show the bound P(−x < B(t) < x) ≥ x
20
√
t

holds for all t > x2.

• Show that ETx = ∞. (Recall we observed something similar for the simple random
walk on Z in Exercise 3.71.)

Corollary 7.17.

P(max
0≤s≤t

B(s) ≥ x) = P(Tx ≤ t) = 1−P(−x < B(t) < x) = 1−
∫ x

−x
e−

y2

2t
dy√
2πt

.
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Proof. The first equality follows since max0≤s≤tB(s) ≥ x occurs if and only if Tx ≤ t (by
property (i) of Brownian motion). Finally, apply Proposition 7.15. �

Remark 7.18. Property (i) of Brownian motion and the Extreme Value Theorem ensure
that max0≤s≤tB(s) exists with probability 1.

Definition 7.19 (Brownian Motion with Drift). Let σ > 0 and let µ ∈ R. A standard
Brownian motion with drift µ and variance σ2 is a stochastic process of the form

{σB(t) + µt}t≥0

where {B(t)}t≥0 is a standard Brownian motion.

Exercise 7.20. Let {X(s)}s≥0 be a standard Brownian motion with drift µ and variance
σ2. For any t > s > 0, show that X(t) − X(s) is a Gaussian random variable with mean
µ(t− s) and variance σ2(t− s).

In the Gambler’s ruin problem (i.e. for a biased random walk on Z), in Example 4.28, we
computed the probabilities that the random walk hits a certain value before another. We
can do a similar computation for the standard Brownian motion with drift.

Exercise 7.21. Let {X(t)}t≥0 = {σB(t) + µt}t≥0 be a standard Brownian motion with

variance σ2 > 0 and drift µ ∈ R. Fix λ ∈ R. Then {Y (t)}t≥0 = {eλX(t)−(λµ+λ2σ2/2)t}t≥0 is a
(continuous-time) martingale in the following sense: it t > s > 0, and if s > sn > · · · > s1 >
0, and x1, . . . , xn ∈ R, then

E(Y (t)− Y (s) |B(sn) = xn, . . . , B(s1) = x1) = 0.

Proposition 7.22. Let {X(t)}t≥0 = {σB(t) + µt}t≥0 be a standard Brownian motion with
variance σ2 > 0 and negative drift µ < 0. Let a < 0 < b. Let α := 2 |µ| /σ2. Let
Ta := inf{t > 0: X(t) = a}. Then

P(Tb < Ta) =
1− eαa

eαb − eαa
.

Letting a→ −∞, we then get

P(max
t≥0

X(t) ≥ b) = e−αb, ∀ b ≥ 0.

That is, maxt≥0X(t) is an exponential random variable with mean σ2/(2 |µ|).

Proof. Let c := P(Tb < Ta). Choose λ := α = −2µ/σ2. Then, by Exercise 7.21, eαX(t) is a
martingale. Let T := inf{t ≥ 0: X(t) ∈ {a, b}}. From the Optional Stopping Theorem

1 = EeαX(0) = EeαX(T ) = ceαb + (1− c)eαa.
Solving for c proves the first statement. (We verify the assumptions of the Optional Stopping
Theorem, Version 2. Note that |eαX(t∧T )| ≤ max{eαa, eαb} for all t ≥ 0. Also, P(T <∞) ≥
P(Ta < ∞), and if Ta < ∞, then a = X(Ta) = σB(Ta) + µTa ≤ σB(Ta). So, if we define
T ′a := inf{t ≥ 0: B(t) = a/σ}, then Ta < ∞ implies T ′a < ∞, by property (i) of Brownian
motion. So, P(T < ∞) ≥ P(Ta < ∞) ≥ P(T ′a < ∞), and P(T ′a < ∞) = 1 by Proposition

7.15, since P(T ′a <∞) = 1− lims→∞
∫ a/σ
−a/σ e

− y
2

2s
ds√
2πs

= 1.)

For the second statement, letting a → −∞ gives P(Tb < ∞) = e−αb (assuming that
Ta →∞ as a→ −∞). Then, note that {Tb <∞} = {maxt≥0X(t) ≥ b}. �
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For example, there is some chance that the standard Brownian motion with negative drift
will never take the value b = 1.

Exercise 7.23. Let {X(t)}t≥0 = {σB(t) + µt}t≥0 be a standard Brownian motion with
variance σ2 > 0 and negative drift µ < 0. Let a < 0 < b. Let T := inf{t ≥ 0: X(t) ∈ {a, b}}.
Let α := 2 |µ| /σ2. Show that

ET =
1

µ
· b(1− e

αa) + a(eαb − 1)

eαb − eαa

Exercise 7.24. Let {X(t)}t≥0 = {σB(t) + µt}t≥0 be a standard Brownian motion with
variance σ2 > 0 and negative drift µ < 0. Let a < 0. Let Ta := inf{t ≥ 0: X(t) = a}. Let
α := 2 |µ| /σ2. Show that

ETa =
a

µ
.

Exercise 7.25 (Optional). Write a computer program to simulate standard Brownian mo-
tion. More specifically, the program should simulate a random walk on Z with some small
step size such as .002. (That is, simulate Bk(t) when k = 5002 and, say, 0 ≤ t ≤ 1.)

Exercise 7.26 (Optional). The following exercise assumes familiarity with Matlab and is
derived from Cleve Moler’s book, Numerical Computing with Matlab.

The file brownian.m plots the evolution of a cloud of particles that starts at the origin and
diffuses in a two-dimensional random walk, modeling the Brownian motion of gas molecules.

(a) Modify brownian.m to keep track of both the average and the maximum particle
distance from the origin. Using loglog axes, plot both sets of distances as functions of n, the
number of steps. You should observe that, on the log-log scale, both plots are nearly linear.
Fit both sets of distances with functions of the form cn1/2. Plot the observed distances and
the fits, using linear axes.

(b) Modify brownian.m to model a random walk in three dimensions. Do the distances
behave like n1/2?

The program brownian.m appears below.

% BROWNIAN Two-dimensional random walk.

% What is the expansion rate of the cloud of particles?

shg

clf

set(gcf,’doublebuffer’,’on’)

delta = .002;

x = zeros(100,2);

h = plot(x(:,1),x(:,2),’.’);

axis([-1 1 -1 1])

axis square

stop = uicontrol(’style’,’toggle’,’string’,’stop’);

while get(stop,’value’) == 0

x = x + delta*randn(size(x));

set(h,’xdata’,x(:,1),’ydata’,x(:,2))

drawnow
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end

set(stop,’string’,’close’,’value’,0,’callback’,’close(gcf)’)
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8. Appendix: Notation

Let n,m be a positive integers. Let A,B,B1, . . . , Bn be sets contained in a universal set
C.

R denotes the set of real numbers

Z denotes the set of integers

∈ means “is an element of.” For example, 2 ∈ R is read as “2 is an element of R.”

∀ means “for all”

∃ means “there exists”

Rn = {(x1, x2, . . . , xn) : xi ∈ R ∀ 1 ≤ i ≤ n}
f : A→ B means f is a function with domain A and range B. For example,

f : R2 → R means that f is a function with domain R2 and range R
∅ denotes the empty set

A ⊆ B means ∀ a ∈ A, we have a ∈ B, so A is contained in B

ArB := {a ∈ A : a /∈ B}
Ac := C r A, the complement of A in C

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B

P denotes a probability law on C
P(A|B) denotes the conditional probability of A, given B.

P(A|B1, . . . , Bn) := P(A| ∩ni=1 Bi) denotes the conditional probability of A, given ∩ni=1Bi.

|A| denotes the number of elements in the (finite) set A.

1A : C → {0, 1}, denotes the indicator function of A, so that

1A(c) =

{
1 , if c ∈ A
0 , otherwise.

Let a1, . . . , an be real numbers. Let n be a positive integer.

n∑
i=1

ai = a1 + a2 + · · ·+ an−1 + an.

n∏
i=1

ai = a1 · a2 · · · an−1 · an.

min(a1, a2) = a ∧ b denotes the minimum of a1 and a2.

max(a1, a2) = a ∨ b denotes the maximum of a1 and a2.

Let A be a set and let f : A→ R be a function. Then maxx∈A f(x) denotes the maximum
value of f on A (if it exists). Similarly, minx∈A f(x) denotes the minimum value of f on A
(if it exists).
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Let X be a discrete random variable on a sample space C, so that X : C → R. Let P be a
probability law on C. Let x ∈ R. Let A ⊆ C. Let Y be another discrete random variable

pX(x) = P(X = x) = P({c ∈ C : X(c) = x}), ∀x ∈ R
the Probability Mass Function (PMF) of X

E(X) denotes the expected value of X

var(X) = E(X − E(X))2, the variance of X

σX =
√

var(X), the standard deviation of X

X|A denotes the random variable X conditioned on the event A.

E(X|A) denotes the expected value of X conditioned on the event A.

E(X|B1, . . . , Bn) := E(X| ∩ni=1 Bi) denotes the conditional expectation of X, given ∩ni=1Bi.

Let X, Y be a continuous random variables on a sample space C, so that X, Y : C → R.
Let −∞ ≤ a ≤ b ≤ ∞, −∞ ≤ c ≤ d ≤ ∞. Let P be a probability law on C. Let A ⊆ C.

fX : R→ [0,∞) denotes the Probability Density Function (PDF) of X, so

P(a ≤ X ≤ b) =

∫ b

a

fX(x)dx

fX,Y : R→ [0,∞) denotes the joint PDF of X and Y , so

P(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ d

c

∫ b

a

fX,Y (x, y)dxdy

fX|A denotes the Conditional PDF of X given A

E(X|A) denotes the expected value of X conditioned on the event A.

E(X|A) denotes the expected value of X given a partition A = {A1, . . . , Ak} of C.

Let X be a random variable on a sample space C, so that X : C → R. Let P be a probability
law on C. Let x ∈ R.

FX(x) = P(X ≤ x) = P({c ∈ C : X(c) ≤ x})
the Cumulative Distibution Function (CDF) of X.

Let (X0, X1, . . .) be a finite Markov chain with state space Ω. Let x ∈ Ω. Let C be a
subset of positive integers. Let y ∈ R.

Px denotes the conditional probability such that

Px(A) = P(A |X0 = x)∀A in the sample space

Ex denotes expectation with respect to Px

gcdC is the greatest common divisor of C

Θ(y) :=

∫ y

−∞
e−t

2/2 dt√
2π
.
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Let A be a nonempty set of nonnegative real numbers. Then inf(A) denotes the infimum
of A, the greatest lower bound of A.

UCLA Department of Mathematics, Los Angeles, CA 90095-1555
E-mail address: heilman@math.ucla.edu
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