171 Midterm 1 Solutions, Spring 2017^{1}

1. Question 1

True/False
(a) Let \mathbf{P} be a probability law on a sample space \mathcal{C}. Let A_{1}, A_{2}, \ldots be sets in \mathcal{C} which are increasing, so that $A_{1} \subseteq A_{2} \subseteq \cdots$. Then

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(A_{n}\right)=\mathbf{P}\left(\cap_{n=1}^{\infty} A_{n}\right)
$$

FALSE. If $A_{1}=\emptyset$, and $A_{2}=A_{3}=\cdots=\mathcal{C}$, then the left side is 1 , while the right side is $\mathbf{P}(\emptyset)=0$.
(b) The Markov Chain with transition matrix $P=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ has exactly two recurrent states.

FALSE. All three states are recurrent. Since $P^{2}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, for any $x \in\{1,2,3\}$ we have $\mathbf{P}_{x}\left(X_{2}=x\right)=1$. So, $\mathbf{P}_{x}\left(T_{x} \leq 2\right)=1$, and $\mathbf{P}_{x}\left(T_{x}<\infty\right)=1$.
(c) Let X, Y be discrete random variables such that

$$
\mathbf{P}(X \leq x, Y=y)=\mathbf{P}(X \leq x) \mathbf{P}(Y=y), \quad \forall x, y \in \mathbb{R}
$$

Then

$$
\mathbf{P}(X \leq x, Y \leq y)=\mathbf{P}(X \leq x) \mathbf{P}(Y \leq y), \quad \forall x, y \in \mathbb{R}
$$

TRUE. For any $t \in \mathbb{R}$, let $A_{t}=\{Y=t\}$. Then $A_{t_{1}} \cap A_{t_{2}}=\emptyset$ if $t_{1} \neq t_{2}$, and $\cup_{t \leq y} A_{t}=$ $\{Y \leq y\}$, so
$\sum_{t \leq y} \mathbf{P}(X \leq x, Y=t)=\sum_{t \leq y} \mathbf{P}\left(\{X \leq x\} \cap A_{t}\right)=\mathbf{P}\left(\{X \leq x\} \cap\left(\cup_{t \leq y} A_{t}\right)\right)=\mathbf{P}(X \leq x, Y \leq y)$.
Similarly, $\sum_{t \leq y} \mathbf{P}(Y=t)=\mathbf{P}(Y \leq y)$. So, summing both sides of the equality $\mathbf{P}(X \leq$ $x, Y=t)=\mathbf{P}(X \leq x) \mathbf{P}(Y=t)$ over all $t \leq y$ proves the assertion.

2. Question 2

For any $x \in \mathbb{R}$, define

$$
\phi(x):=\max (-x-1,0, x-1)
$$

Prove that $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex.
(In this problem, unlike the other problems, you are allowed to use results from the homework.)

Solution. From Homework 1, Exercise 1, it suffices to show: for any $y \in \mathbb{R}$, there exists $a \in \mathbb{R}$ such that $L(x):=a(x-y)+\phi(y)$ satisfies $L(y)=\phi(y)$ and $L(x) \leq \phi(x)$ for all $x \in \mathbb{R}$. We break into three cases.

Case 1. $y \in[-1,1]$. In this case we choose $a=0$. Then $L(x)=0$ for all $x \in \mathbb{R}$, $L(y)=\phi(y)=0$, and $L(x)=0 \leq \phi(x)$ for all $x \in \mathbb{R}$ by definition of ϕ.

[^0]Case 2. $y>1$. In this case we choose $a=1$. Then $L(x)=(x-y)+(y-1)=x-1$ for all $x \in \mathbb{R}, L(y)=y-1=\phi(y)$, and $L(x) \leq \phi(x)$ for all $x \in \mathbb{R}$, since $L(x)=\phi(x)$ when $x \geq 1$, and if $x<1$, then $L(x)<0 \leq \phi(x)$ since $\phi(x) \geq 0$ by definition of ϕ.

Case 3. $y<-1$. In this case we choose $a=-1$. Then $L(x)=-(x-y)+(-y-1)=-x-1$ for all $x \in \mathbb{R}, L(y)=-y-1=\phi(y)$, and $L(x) \leq \phi(x)$ for all $x \in \mathbb{R}$, since $L(x)=\phi(x)$ when $x \leq-1$, and if $x>-1$, then $L(x)<0 \leq \phi(x)$ since $\phi \geq 0$ by definition of ϕ.

3. Question 3

Suppose we have a Markov chain X_{0}, X_{1}, \ldots with finite state space Ω. Let $y \in \Omega$. Define $L_{y}:=\max \left\{n \geq 0: X_{n}=y\right\}$. Is L_{y} a stopping time? Prove your assertion.

Solution. No, L_{y} is not a stopping time. We argue by contradiction. Let $\Omega:=\{1,2\}$. If L_{1} were a stopping time, then there exists $B \subseteq \Omega^{2}$ such that $\left\{L_{1}=1\right\}=\left\{\left(X_{0}, X_{1}\right) \in B\right\}$. But $\left\{L_{1}=1\right\}=\left\{X_{1}=1,2=X_{2}=X_{3}=X_{4}=\cdots\right\}$. That is, the B as defined before does not exist.

4. Question 4

Suppose we have a Markov Chain $\left(X_{0}, X_{1}, \ldots\right)$ with state space $\Omega=\{1,2,3,4,5\}$ and with the following transition matrix

$$
P=\left(\begin{array}{ccccc}
1 / 2 & 1 / 2 & 0 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & 0 & 0 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 & 0 \\
0 & 0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 0 & 1 / 2 & 1 / 2
\end{array}\right)
$$

Classify state 3 as either transient or recurrent.
Is this Markov Chain irreducible? Prove your assertions.
Solution. State 3 is transient since $P(3,2)>0$, while $P^{n}(2,3)=0$ for all $n \geq 1$. In fact, it follows by induction on n and the definition of P that $P^{n}(i, j)=0$ for all $1 \leq i \leq 2$ and $3 \leq j \leq 5$. By the definition of matrix multiplication, by the inductive hypothesis, and by definition of P, we have

$$
P^{n+1}(i, j)=\sum_{k=1}^{5} P^{n}(i, k) P(k, j)=\sum_{k=1}^{2} P^{n}(i, k) P(k, j)=\sum_{k=1}^{2} P^{n}(i, k) \cdot 0=0 .
$$

So, if $X_{1}=2$, we know that $X_{n} \in\{1,2\}$ for all $n \geq 1$ with probability 1 . Therefore,

$$
\mathbf{P}_{3}\left(T_{3}=\infty\right) \geq \mathbf{P}_{3}\left(X_{1}=2, X_{n} \in\{1,2\} \forall n \geq 2\right)=\mathbf{P}_{3}\left(X_{1}=2\right)=P(3,2)=1 / 3>0
$$

The Markov chain is not irreducible, since as we mentioned above, $P^{n}(1,3)=0$ for all $n \geq 1$.

5. Question 5

Give an example of a Markov chain on the state space $\Omega=\{1,2\}$ such that state 1 is recurrent and state 2 is transient. Prove your assertions.

Solution. Define

$$
P:=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right) .
$$

Then P is a stochastic matrix, so P defines a Markov chain on $\{1,2\}$. Since $P(1,1)=1$, $\mathbf{P}_{1}\left(T_{1}<\infty\right) \geq \mathbf{P}_{1}\left(T_{1}=1\right)=P(1,1)=1$. That is, $\mathbf{P}_{1}\left(T_{1}<\infty\right)=1$, so the state 1 is recurrent. On the other hand, $\mathbf{P}_{2}\left(T_{2}=\infty\right)=\mathbf{P}_{2}\left(1=X_{1}=X_{2}=X_{3}=\cdots\right)=$ $\lim _{n \rightarrow \infty} P(2,1)[P(1,1)]^{n}=1$. That is, $\mathbf{P}_{2}\left(T_{2}<\infty\right)=0$, so that state 2 is transient.

[^0]: ${ }^{1}$ February 3, 2017, © 2017 Steven Heilman, All Rights Reserved.

