
171 Final Solutions, Winter 20171

1. Question 1

Suppose we have a Markov Chain (X0, X1, . . .) with state space Ω = {1, 2, 3, 4, 5} and with
the following transition matrix

P =


1/2 1/2 0 0 0
1/2 1/2 0 0 0
0 1/3 1/3 1/3 0
0 0 0 1/2 1/2
0 0 0 1/2 1/2

 .

Classify state 3 as either transient or recurrent.
Is this Markov Chain irreducible? Prove your assertions.
Solution. State 3 is transient since P (3, 2) > 0, while P n(2, 3) = 0 for all n ≥ 1. In fact,

it follows by induction on n and the definition of P that P n(i, j) = 0 for all 1 ≤ i ≤ 2 and
3 ≤ j ≤ 5. By the definition of matrix multiplication, by the inductive hypothesis, and by
definition of P , we have

P n+1(i, j) =
5∑

k=1

P n(i, k)P (k, j) =
2∑

k=1

P n(i, k)P (k, j) =
2∑

k=1

P n(i, k) · 0 = 0.

So, if X1 = 2, we know that Xn ∈ {1, 2} for all n ≥ 1 with probability 1. Therefore,

P3(T3 =∞) ≥ P3(X1 = 2, Xn ∈ {1, 2} ∀n ≥ 2) = P3(X1 = 2) = P (3, 2) = 1/3 > 0.

The Markov chain is not irreducible, since as we mentioned above, P n(1, 3) = 0 for all
n ≥ 1.

2. Question 2

Consider a non-standard 4 × 4 chess board. Let V be a set of vertices corresponding to
each square on the board (so V has 16 elements). Any two vertices x, y ∈ V are connected by
an edge if and only if a knight can move from x to y. (The knight chess piece moves in an L-
shape, so that a single move constitutes two spaces moved along the horizontal axis followed
by one move along the vertical axis (or two spaces moved along the vertical axis, followed by
one move along the horizontal axis.) Consider the simple random walk on this graph. This
Markov chain then represents a knight randomly moving around the chess board. For every
space x on the chessboard, compute the expected return time ExTx for that space.

When you are done, write ExTx for each point x in the chess board below. (You may
assume the Markov chain is irreducible.)

Solution. By Corollary 3.37, if π is the unique solution to π = πP , then ExTx = 1/π(x). So,
it suffices to find π(x) for any x ∈ Ω. From Example 3.50 in the notes, π(x) = deg(x)/(2 |E|).
(From a previous exercise, we know that

∑
x∈V deg(x) = 2 |E|.) The following table depicts
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the degrees of each entry in the chess board
2 3 3 2
3 4 4 3
3 4 4 3
2 3 3 2

 .

So, 48 =
∑

x∈V deg(x) = 2 |E|, so ExTx = 1/π(x) = (2 |E|)/deg(x) = 48/deg(x). So, the
following table depicts ExTx at each point on the chessboard

24 16 16 24
16 12 12 16
16 12 12 16
24 16 16 24

 .

3. Question 3

Give an example of a random walk on a graph that is not reversible.
Solution. Let P be any doubly stochastic matrix that is not symmetric, and such that

the Markov chain is irreducible. Then the Markov chain will not be reversible. Since P is
doublye staochastic, the (unique) stationary distribution is uniform, since

(πP )(x) =
∑
y∈Ω

π(y)P (y, x) =
1

|Ω|
∑
y∈Ω

P (y, x) =
1

|Ω|
= π(x).

So reversibility reduces to P (x, y) = P (y, x) for all x, y ∈ Ω. And this equality will not hold
when P is not symmetric.

For example, let

P =

0 1 0
0 0 1
1 0 0

 .

The (left) eigenvector of P corresponding to the eigenvalue 1 is (1, 1, 1). So the unique
stationary distribution satisfies π(1) = π(2) = π(3) = 1/3. But π(1)P (1, 2) = (1/3)(1) = 1/3
whereas π(2)P (2, 1) = (1/3)(0) = 0.

4. Question 4

Suppose we have a finite, irreducible, aperiodic Markov chain with transition matrix P .
Since there exists a unique stationary distribution for this Markov chain, we know that one
eigenvalue of P is 1.

Show that any other eigenvalue λ of P satisfies |λ| < 1.
Solution. We argue by contradiction. Suppose P has an eigenvalue λ with |λ| ≥ 1 and

λ 6= 1. Let µ be a (left) eigenvector of P with eigenvalue λ. Then µP = λµ, so that
µP n = λnµ for any n ≥ 1. The Convergence Theorem (Theorem 3.62 in the notes) implies
that as n→∞, P n converges to a matrix Π each of whose rows is the stationary distribution
π. So,

µΠ = lim
n→∞

µP n = lim
n→∞

λnµ.

In particular, the limit on the right exists. This limit can only exist if |λ| ≤ 1 and λ 6= −1.
Since λ 6= 1, we conclude that |λ| < 1.
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5. Question 5

Let X0 = 0, and let a < 0 < b be integers. Let 0 < p < 1 with p 6= 1/2. Let X1, X2, . . .
be independent identically distributed random variables so that P(Xi = 1) = p and P(Xi =
−1) = 1 − p for all i ≥ 1. For any n ≥ 0, let Yn := X0 + · · · + Xn. Define T := min{n ≥
1: Yn /∈ (a, b)}.

Compute ET , in terms of a, b, p.
(Hint: use martingales, somehow. If you use the Optional Stopping Theorem, you do not

have to verify that the martingale is bounded.)

(Second hint: you can freely use the formula P(YT = a) = (q/p)x0−(q/p)b

(q/p)a−(q/p)b
, where q := 1− p.)

Solution. Let Z0 := 0. For any n ≥ 1, let Zn := Yn− nµ, where µ := EX1 = p− (1− p) =
1− 2p. As shown in the notes in Example 4.16, Z0, Z1, Z2, . . . is a martingale. So, from the
Optional Stopping Theorem, Version 2,

0 = EZ0 = EZT = EYT − µET.
That is,

ET =
1

µ
EYT =

1

1− 2p
(ca+ (1− c)b).

6. Question 6

Let {N(s)}s≥0 be a Poisson Process with parameter λ > 0. Using the definition of
the Poisson process, show that, for any s ≥ 0, N(s) is a Poisson random variable with
parameter λs.

(Recall, X is a Poisson random variable with parameter λ > 0 if P(X = n) = e−λ · λn
n!

for
all nonnegative integers n.)

(Hint: a gamma distributed random variable Tn with parameters n and λ has density

fTn(t) :=

{
λe−λt (λt)n−1

(n−1)!
, if t ≥ 0

0, otherwise.)

Let n be a nonnegative integer. Then

P(N(s) = n) = P(max{m ≥ 0: Tm ≤ s} = n) = P(Tn ≤ s, Tn+1 > s)

= P(Tn ≤ s, Tn + τn+1 > s)

=

∫ s

−∞

∫ ∞
s−t

fτn+1(y)fTn(t)dydt, since Tn and τn+1 are independent

=

∫ s

−∞
P(τn+1 > s− t)fTn(t)dt =

∫ s

0

e−λ(s−t)λe−λt
(λt)n−1

(n− 1)!
dt, by the fTn formula

= e−λs
λn

(n− 1)!

∫ s

0

tn−1dt = e−λs
λnsn

n!
.

7. Question 7

Suppose you run a (busy) car wash, and the number of cars that come to the car wash
between time 0 and time s > 0 is a Poisson process with rate λ = 1. Suppose every car has
either one, two, three, or four people in it. The probability that a car has one, two, three or
four people in it is 1/2, 1/8, 1/8 and 1/4, respectively.
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What is the average number of cars with four people that have arrived by time s = 60?
Solution. From Theorem 5.17 in the notes, the number of cars with four people in it

is a Poisson process with rate λ · (1/4) = 1/4. So, the average number of cars with four
people is the expected value EN(60) of a Poisson Process with rate 1/4. From Lemma 5.5
in the notes, N(60) is a Poisson random variable with parameter 60(1/4) = 15. That is,
P(N(60) = n) = e−1515n/n! for any nonnegative integer n. So,

EN(60) = e−15

∞∑
n=0

n
15n

n!
= e−1515

∞∑
n=0

15n

n!
= e−15e1515 = 15.

8. Question 8

Let (X0, X1, . . .) be the simple random walk on Z. For any n ≥ 0, define Mn = X3
n−3nXn.

Show that (M0,M1, . . .) is a martingale with respect to (X0, X1, . . .)
Now, fix m > 0 and let T be the first time that the walk hits either 0 or m. Show that,

for any 0 < k ≤ m,

Ek(T |XT = m) =
m2 − k2

3
.

(You can apply the Optional stopping theorem without verifying that the martingale is
bounded.)

Solution.

E(Mn+1 −Mn |Xn = xn, . . . , X0 = x0,M0 = m0)

= E(([Xn+1 −Xn] + xn)3 − 3(n+ 1)([Xn+1 −Xn] + xn)− x3
n + 3nxn |Xn = xn)

=
1

2

(
(1 + xn)3 − 3(n+ 1)(1 + xn)− x3

n + 3nxn

)
+

1

2

(
(−1 + xn)3 − 3(n+ 1)(−1 + xn)− x3

n + 3nxn

)
=

1

2

(
(1 + xn)3 − x3

n − 3xn + (−1 + xn)3 − x3
n − 3xn

)
=

1

2

(
3x2

n + 1− 3x2
n − 1

)
= 0.

Now, if X0 = k with 0 ≤ k ≤ m, then the Optional Stopping Theorem says

k3 = EkX3
0 = EkM0 = EkMT = EkX3

T − 3EkTXT .

(Note that P(T <∞) = 1 by Lemma 3.27 in the notes.) Let p := Pk(T = m). Since T = 0
or T = m, the Total Expectation Theorem says

EkTXT = Pk(T = m)Ek(TXT |T = m) + Pk(T = 0)Ek(TXT |T = 0)

= mpEk(XT |T = m).

Also, EkX3
T = m3p. So, we have

k3 = m3p− 3mpEk(XT |T = m).

From Example 4.28 in the notes, p = k
m

. So,

Ek(XT |T = m) =
k3 −m3p

−3mp
=
m2k − k3

3k
=
m2 − k2

3
.
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9. Question 9

Let {B(t)}t≥0 be a standard Brownian motion. Let x1, . . . , xn ∈ R, and let tn > · · · >
t1 > 0. Show that the event

{B(t1) = x1, . . . , B(tn) = xn}

has a multivariate normal distribution. That is, the joint density of (B(t1), . . . , B(tn)) is

f(x1, . . . , xn) = ft1(x1)ft2−t1(x2 − x1) · · · ftn−tn−1(xn − xn−1)

where

ft(x) =
1√
2πt

e−x
2/(2t), ∀x ∈ R, t > 0.

Solution.

{B(t1) = x1, . . . , B(tn) = xn}
= {B(t1) = x1, B(t2)−B(t1) = x2 − x1, . . . , B(tn)−B(tn−1) = xn − xn−1}.

The random variables listed on the right are all independent, by the independent increment
property (i) of Brownian motion. So, the joint density of (B(t1), B(t2)−B(t1), . . . , B(tn)−
B(tn−1)) is the product of the respective densities of the random variables. By property
(ii) of Brownian motion, B(s) − B(t) is a Gaussian random variable with mean zero and
variance t−s. So, the joint density of (B(t1), B(t2)−B(t1), . . . , B(tn)−B(tn−1)) has density
ft1(x1)ft2−t1(x2 − x1) · · · ftn−tn−1(xn − xn−1). The proof is complete.

10. Question 10

Let {B(t)}t≥0 be a standard Brownian motion.

• Given that B(1) = 10, what is the expected length of time after t = 1 until B(t) hits
either 8 or 12?
• Now, let σ = 2, and µ = −5. Suppose a commodity has price X(t) = σB(t) + µt

for any time t ≥ 0. Given that the price of the commodity is 4 at time t = 8, what
is the probability that the price is below 1 at time t = 9? (You can leave your final
answer here as an integral.)

Solution. Let T := inf{t ≥ 1: B(t) = 8 or B(t) = 12}. From the independent increment
property, {B(t+ 1)−B(1)}t≥0 is a standard Brownian motion that is independent of B(1).
So, given that B(1) = 10, T := inf{t ≥ 0: B(t+1)−B(1) = −2 or B(t+1)−B(1) = 2}. So,
if {Z(t)}t≥0 is a standard Brownian motion and if S := inf{t ≥ 0: Z(t) = −2 or Z(t) = 2},
we have

E(T |B(1) = 10) = ES.
From Proposition 7.13 in the notes, ES = 4. So, E(T |B(1) = 10) = 4.

We now answer the second question. It is given that X(8) = 4. That is, σB(8)+8µ = 4, so
B(8) = (4− 8µ)/σ. We want to find the probability that X(9) < 1, i.e. σB(9) + 9µ < 1, i.e.
B(9) < (1− 9µ)/σ. That is, we want to compute the probability that B(9)−B(8) +B(8) <
(1 − 9µ)/σ. By the independent increment property, B(9) − B(8) is a standard Gaussian
random variable which is independent of B(8). So, we need to compute the probability that
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B(9) − B(8) < (1 − 9µ)/σ + (8µ − 4)/σ. So, if Y is a standard Gaussian random variable,
we need to compute

P

(
Y <

−3− µ
σ

)
=

∫ (−3−µ)/σ

−∞
e−t

2/2 dt√
2π
.
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