Please provide complete and well-written solutions to the following exercises.

Due January 10, in the discussion section.

(This Review Assignment will be collected, but this Review Assignment will not be graded.)

Preliminary Review Assignment

Exercise 1. As needed, refresh your knowledge of proofs and logic by reading the following document by Michael Hutchings: http://math.berkeley.edu/~hutching/teach/proofs.pdf

Exercise 2. Take the following quizzes on logic, set theory, and functions:

 $\label{eq:http://scherk.pbworks.com/w/page/14864234/Quiz\%3A\%20Logic http://scherk.pbworks.com/w/page/14864241/Quiz\%3A\%20Sets http://scherk.pbworks.com/w/page/14864227/Quiz\%3A\%20Functions http://scherk.pbworks.com/w/page/14864234/Quiz\%3A\%20Functions http://scherk.pbworks.com/w/page/14864244/Quiz\%3A\%20Functions http://scherk.pbworks$

(These quizzes are just for your own benefit; you don't need to record your answers anywhere.)

Exercise 3. Prove the following assertion by induction:

For any natural number n, $1^2 + 2^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$.

Exercise 4. Prove that the set of real numbers \mathbf{R} can be written as the countable union

$$\mathbf{R} = \bigcup_{j=1}^{\infty} [-j, j].$$

(Hint: you should show that the left side contains the right side, and also show that the right side contains the left side.)

Prove that the singleton set $\{0\}$ can be written as

$$\{0\} = \bigcap_{j=1}^{\infty} [-1/j, 1/j].$$

Exercise 5 (Continuity of a Probability Law). Let **P** be a probability law on a sample space C. Let A_1, A_2, \ldots be sets in C which are increasing, so that $A_1 \subseteq A_2 \subseteq \cdots$. Then

$$\lim_{n \to \infty} \mathbf{P}(A_n) = \mathbf{P}(\bigcup_{n=1}^{\infty} A_n).$$

In particular, the limit on the left exists. Similarly, let A_1, A_2, \ldots be sets in \mathcal{C} which are decreasing, so that $A_1 \supseteq A_2 \supseteq \cdots$. Then

$$\lim_{n \to \infty} \mathbf{P}(A_n) = \mathbf{P}(\bigcap_{n=1}^{\infty} A_n).$$

 $\mathbf{2}$

Exercise 6. Retake at least one of the finals I gave when I taught math 170A:

http://www.math.ucla.edu/ heilman/teach/170afinal.pdf http://www.math.ucla.edu/ heilman/teach/170afinalsoln.pdf http://www.math.ucla.edu/ heilman/teach/170afinalv2.pdf http://www.math.ucla.edu/ heilman/teach/170afinalv2soln.pdf